共查询到20条相似文献,搜索用时 0 毫秒
1.
Penguins are adapted to live in extreme environments, but they can be highly sensitive to climate change, which disrupts penguin life history strategies when it alters the weather, oceanography and critical habitats. For example, in the southwest Atlantic, the distributional range of the ice‐obligate emperor and Adélie penguins has shifted poleward and contracted, while the ice‐intolerant gentoo and chinstrap penguins have expanded their range southward. In the Southern Ocean, the El Niño‐Southern Oscillation and the Southern Annular Mode are the main modes of climate variability that drive changes in the marine ecosystem, ultimately affecting penguins. The interaction between these modes is complex and changes over time, so that penguin responses to climate change are expected to vary accordingly, complicating our understanding of their future population processes. Penguins have long life spans, which slow microevolution, and which is unlikely to increase their tolerance to rapid warming. Therefore, in order that penguins may continue to exploit their transformed ecological niche and maintain their current distributional ranges, they must possess adequate phenotypic plasticity. However, past species‐specific adaptations also constrain potential changes in phenology, and are unlikely to be adaptive for altered climatic conditions. Thus, the paleoecological record suggests that penguins are more likely to respond by dispersal rather than adaptation. Ecosystem changes are potentially most important at the borders of current geographic distributions, where penguins operate at the limits of their tolerance; species with low adaptability, particularly the ice‐obligates, may therefore be more affected by their need to disperse in response to climate and may struggle to colonize new habitats. While future sea‐ice contraction around Antarctica is likely to continue affecting the ice‐obligate penguins, understanding the responses of the ice‐intolerant penguins also depends on changes in climate mode periodicities and interactions, which to date remain difficult to reproduce in general circulation models. 相似文献
2.
Mary I. O'Connor Elizabeth R. Selig Malin L. Pinsky Florian Altermatt 《Global Ecology and Biogeography》2012,21(7):693-703
Aim To identify hypotheses for how climate change affects long‐term population persistence that can be used as a framework for future syntheses of ecological responses to climate change. Location Global. Methods We surveyed ecological and evolutionary concepts related to how a changing climate might alter population persistence. We organized established concepts into a two‐stage framework that relates abiotic change to population persistence via changes in the rates or outcomes of ecological and evolutionary processes. We surveyed reviews of climate change responses, and evaluated patterns in light of our conceptual framework. Results We classified hypotheses for population responses to climate change as one of two types: (1) hypotheses that relate rates of ecological and evolutionary processes (plasticity, dispersal, population growth and evolution) to abiotic change, and (2) hypotheses that relate changes in these processes to four fundamental population‐level responses (colonization, acclimatization, adaptation or extinction). We found that a disproportionate emphasis on response in the climate change literature is difficult to reconcile with ecological and evolutionary theories that emphasize processes. We discuss a set of 24 hypotheses that represent gaps in the literature that limit our ability determine whether observed climate change responses are sufficient to facilitate persistence through future climate change. Main conclusions Though theory relates environmental change to fundamental ecological and evolutionary processes and population‐level responses, clear hypotheses based on theory have not been systematically formulated and tested in the context of climate change. Stronger links between basic theory and observed impacts of climate change are required to assess which responses are common, likely or able to facilitate population persistence despite ongoing environmental change. We anticipate that a hypothesis‐testing framework will reveal that indirect effects of climate change responses are more pervasive than previously thought and related to a few general processes, even though the patterns they create are incredibly diverse. 相似文献
3.
The changes in species' geographical distribution demanded by climate change are often critically limited by the availability of key interacting species. In such cases, species' persistence will depend on the rapid evolution of biotic interactions. Understanding evolutionary limits to such adaptation is therefore crucial for predicting biological responses to environmental change. The recent poleward range expansion of the UK brown argus butterfly has been associated with a shift in female preference from its main host plant, rockrose (Cistaceae), onto Geraniaceae host plants throughout its new distribution. Using reciprocal transplants onto natural host plants across the UK range, we demonstrate reduced fitness of females from recently colonised Geraniaceae‐dominated habitat when moved to ancestral rockrose habitats. By contrast, individuals from ancestral rockrose habitats show no reduction in fitness on Geraniaceae. Climate‐driven range expansion in this species is therefore associated with the rapid evolution of biotic interactions and a significant loss of adaptive variation. 相似文献
4.
Donghai Wu Xiang Zhao Shunlin Liang Tao Zhou Kaicheng Huang Bijian Tang Wenqian Zhao 《Global Change Biology》2015,21(9):3520-3531
Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time‐lag effects, which are the most important mechanism of climate–vegetation interactive effects. Extensive studies focused on large‐scale vegetation–climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time‐lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time‐lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time‐lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate‐driving factors for different vegetation types were determined. The results showed that (i) both the time‐lag effects of the vegetation responses and the major climate‐driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time‐lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time‐lag effects; (iii) for the area with a significant change trend (for the period 1982–2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time‐lag effects is quite important for better predicting and evaluating the vegetation dynamics under the background of global climate change. 相似文献
5.
Nicola Saino Diego Rubolini Esa Lehikoinen Leonid V. Sokolov Andrea Bonisoli-Alquati Roberto Ambrosini Giuseppe Boncoraglio Anders P. M?ller 《Biology letters》2009,5(4):539-541
Phenological responses to climate change vary among taxa and across trophic levels. This can lead to a mismatch between the life cycles of ecologically interrelated populations (e.g. predators and prey), with negative consequences for population dynamics of some of the interacting species. Here we provide, to our knowledge, the first evidence that climate change might disrupt the association between the life cycles of the common cuckoo (Cuculus canorus), a migratory brood parasitic bird, and its hosts. We investigated changes in timing of spring arrival of the cuckoo and its hosts throughout Europe over six decades, and found that short-distance, but not long-distance, migratory hosts have advanced their arrival more than the cuckoo. Hence, cuckoos may keep track of phenological changes of long-distance, but not short-distance migrant hosts, with potential consequences for breeding of both cuckoo and hosts. The mismatch to some of the important hosts may contribute to the decline of cuckoo populations and explain some of the observed local changes in parasitism rates of migratory hosts. 相似文献
6.
森林凋落物分解及其对全球气候变化的响应 总被引:17,自引:4,他引:17
凋落物分解是重要的森林生态系统过程之一,受到气候、凋落物质量、土壤生物群落等生物和非生物因素的综合调控.迄今,有关不同森林生态系统和不同树种地上部分的凋落物动态、凋落物分解过程中的养分释放动态、生物和非生物因素对凋落物分解的影响等研究报道较多,但对地下凋落物的分解研究相对较少.近年来,森林凋落物分解对以大气CO2浓度增加和温度升高为主要特征的全球变化的响应逐步受到重视,但其研究结果仍具有很多不确定性.因此,未来凋落物生态研究的重点应是凋落物分解对土壤有机碳固定的贡献、地上/地下凋落物的物理、化学和生物学过程及其对各种生态因子(例如冻融、干湿交替)及交互作用的响应、凋落物特别是地下凋落物分解对全球气候变化的响应机制等方面. 相似文献
7.
Range shift, a widespread response to climate change, will depend on species abilities to withstand warmer climates. However, these abilities may vary within species and such intraspecific variation can strongly impact species responses to climate change. Facing warmer climates, individuals should disperse according to their thermal optimum with consequences for species range shifts. Here, we studied individual dispersal of a reptile in response to climate warming and preferred temperature using a semi‐natural warming experiment. Individuals with low preferred temperatures dispersed more from warmer semi‐natural habitats, whereas individuals with higher preferred temperatures dispersed more from cooler habitats. These dispersal decisions partly matched phenotype‐dependent survival rates in the different thermal habitats, suggesting adaptive dispersal decisions. This process should result into a spatial segregation of thermal phenotypes along species moving ranges which should facilitate local adaptation to warming climates. We therefore call for range shift models including intraspecific variation in thermal phenotype and dispersal decision. 相似文献
8.
郑州植物物候对气候变化的响应 总被引:12,自引:4,他引:12
利用统计和突变分析方法,对郑州气候(1956~2003年)和4种乔木物候(1986~2003年)的趋势变化特征进行了分析,并探讨了植物物候期与平均温度、日照的相关性以及对温度变化的响应趋势。分析发现:(1)郑州近50a来在冬、春季升温现象明显;日照在夏季下降最为显著,冬季其次,但在2~4月份历年呈弱上升趋势。(2)物候期变化趋势表现在展叶、开花、果熟期(除楝树外)呈提前趋势,落叶期略有推迟,绿叶期延长,特别是在20世纪90年代中后期,春季物候期(除垂柳外)提前10d左右。(3)平均温度是影响物候期最为显著的气候因子,温度每升高1℃,春季物候平均提前6d左右,绿叶期延长9.5~18.6d;物候期突变一般发生在温度突变之后。以上分析说明植物物候对气候变化响应比较敏感,通过分析和掌握气候和物候变化规律,了解其对当地植物物候的可能影响,可为农业生产、生态环境监测和评估等提供一些理论依据。 相似文献
9.
Prediction of Arctic plant phenological sensitivity to climate change from historical records 下载免费PDF全文
The pace of climate change in the Arctic is dramatic, with temperatures rising at a rate double the global average. The timing of flowering and fruiting (phenology) is often temperature dependent and tends to advance as the climate warms. Herbarium specimens, photographs, and field observations can provide historical phenology records and have been used, on a localised scale, to predict species’ phenological sensitivity to climate change. Conducting similar localised studies in the Canadian Arctic, however, poses a challenge where the collection of herbarium specimens, photographs, and field observations have been temporally and spatially sporadic. We used flowering and seed dispersal times of 23 Arctic species from herbarium specimens, photographs, and field observations collected from across the 2.1 million km2 area of Nunavut, Canada, to determine (1) which monthly temperatures influence flowering and seed dispersal times; (2) species’ phenological sensitivity to temperature; and (3) whether flowering or seed dispersal times have advanced over the past 120 years. We tested this at different spatial scales and compared the sensitivity in different regions of Nunavut. Broadly speaking, this research serves as a proof of concept to assess whether phenology–climate change studies using historic data can be conducted at large spatial scales. Flowering times and seed dispersal time were most strongly correlated with June and July temperatures, respectively. Seed dispersal times have advanced at double the rate of flowering times over the past 120 years, reflecting greater late‐summer temperature rises in Nunavut. There is great diversity in the flowering time sensitivity to temperature of Arctic plant species, suggesting climate change implications for Arctic ecological communities, including altered community composition, competition, and pollinator interactions. Intraspecific temperature sensitivity and warming trends varied markedly across Nunavut and could result in greater changes in some parts of Nunavut than in others. 相似文献
10.
SHANNON L. PELINI JESSICA A. KEPPEL ANN E. KELLEY JESSICA. J. HELLMANN 《Global Change Biology》2010,16(11):2923-2929
We must consider the role of multitrophic interactions when examining species' responses to climate change. Many plant species, particularly trees, are limited in their ability to shift their geographic ranges quickly under climate change. Consequently, for herbivorous insects, geographic mosaics of host plant specialization could prohibit range shifts and adaptation when insects become separated from suitable host plants. In this study, we examined larval growth and survival of an oak specialist butterfly (Erynnis propertius) on different oaks (Quercus spp.) that occur across its range to determine if individuals can switch host plants if they move into new areas under climate change. Individuals from Oregon and northern California, USA that feed on Q. garryana and Q. kelloggii in the field experienced increased mortality on Q. agrifolia, a southern species with low nutrient content. In contrast, populations from southern California that normally feed on Q. agrifolia performed well on Q. agrifolia and Q. garryana and poorly on the northern, high elevation Q. kelloggii. Therefore, colonization of southern E. propertius in higher elevations and some northern locales may be prohibited under climate change but latitudinal shifts to Q. garryana may be possible. Where shifts are precluded due to maladaptation to hosts, populations may not accrue warm‐adapted genotypes. Our study suggests that, when interacting species experience asynchronous range shifts, historical local adaptation may preclude populations from colonizing new locales under climate change. 相似文献
11.
Jayme M. M. Lewthwaite Diane M. Debinski Jeremy T. Kerr 《Global Ecology and Biogeography》2017,26(4):459-471
Aim Many competing hypotheses seek to identify the mechanisms behind species richness gradients. Yet, the determinants of species turnover over broad scales are uncertain. We test whether environmental dissimilarity predicts biotic turnover spatially and temporally across an array of environmental variables and spatial scales using recently observed climate changes as a pseudo‐experimental opportunity. Location Canada. Methods We used an extensive database of observation records of 282 Canadian butterfly species collected between 1900 and 2010 to characterize spatial and temporal turnover based on Jaccard indices. We compare relationships between spatial turnover and differences in an array of relevant environmental conditions, including aspects of temperature, precipitation, elevation, primary productivity and land cover. Measurements were taken within 100‐, 200‐ and 400‐km grid cells, respectively. We tested the relative importance of each variable in predicting spatial turnover using bootstrap analysis. Finally, we tested for effects of temperature and precipitation change on temporal turnover, including distinctly accounting for turnover under individual species’ potential dispersal limitations. Results Temperature differences between areas correlate with spatial turnover in butterfly assemblages, independently of distance, sampling differences or the spatial resolution of the analysis. Increasing temperatures are positively related to biotic turnover within quadrats through time. Limitations on species dispersal may cause observed biotic turnover to be lower than expected given the magnitude of temperature changes through time. Main conclusions Temperature differences can account for spatial trends in biotic dissimilarity and turnover through time in areas where climate is changing. Butterfly communities are changing quickly in some areas, probably reflecting the dispersal capacities of individual species. However, turnover is lower through time than expected in many areas, suggesting that further work is needed to understand the factors that limit dispersal across broad regions. Our results illustrate the large‐scale effects of climate change on biodiversity in areas with strong environmental gradients. 相似文献
12.
Marta A. Jarzyna William F. Porter Brian A. Maurer Benjamin Zuckerberg Andrew O. Finley 《Global Change Biology》2015,21(8):2942-2953
Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well‐documented, there is a paucity of studies on climate‐mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human‐dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20‐year period using data from the New York State Breeding Atlases collected during 1980–1985 and 2000–2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change, whereas those changes are likely to be greater in contiguous and unfragmented habitats. 相似文献
13.
Dana D. Miller Yoshitaka Ota Ussif Rashid Sumaila Andrés M. Cisneros‐Montemayor William W. L. Cheung 《Global Change Biology》2018,24(1):e1-e14
The world's oceans are highly impacted by climate change and other human pressures, with significant implications for marine ecosystems and the livelihoods that they support. Adaptation for both natural and human systems is increasingly important as a coping strategy due to the rate and scale of ongoing and potential future change. Here, we conduct a review of literature concerning specific case studies of adaptation in marine systems, and discuss associated characteristics and influencing factors, including drivers, strategy, timeline, costs, and limitations. We found ample evidence in the literature that shows that marine species are adapting to climate change through shifting distributions and timing of biological events, while evidence for adaptation through evolutionary processes is limited. For human systems, existing studies focus on frameworks and principles of adaptation planning, but examples of implemented adaptation actions and evaluation of outcomes are scarce. These findings highlight potentially useful strategies given specific social–ecological contexts, as well as key barriers and specific information gaps requiring further research and actions. 相似文献
14.
The optimum body mass of passerine birds typically represents a trade‐off between starvation risk, which promotes fat gain, and predation pressure, which promotes fat loss to maintain maneuvrability. Changes in ecological factors that affect either of these variables will therefore change the optimum body masses of populations of passerine birds. This study sought to identify and quantify the effects of changing temperatures and predation pressures on the body masses and wing lengths of populations of passerine birds throughout Britain and Ireland over the last 50 years. We analyzed over 900,000 individual measurements of body mass and wing length of blue tits Cyanistes caeruleus, coal tits Periparus ater, and great tits Parus major collected by licenced bird ringers throughout Britain and Ireland from 1965 to 2017 and correlated these with publicly available temperature data and published, UK‐wide data on the abundance of a key predator, the sparrowhawk Accipiter nisus. We found highly significant, long‐term, UK‐wide decreases in winter body masses of adults and juveniles of all three species. We also found highly significant negative correlations between winter body mass and winter temperature, and between winter body mass and sparrowhawk abundance. Independent of these effects, body mass further correlated negatively with calendar year, suggesting that less well understood dynamic factors, such as supplementary feeding levels, may play a major role in determining population optimum body masses. Wing lengths of these birds also decreased, suggesting a hitherto unobserved large‐scale evolutionary adjustment of wing loading to the lower body mass. These findings provide crucial evidence of the ways in which species are adapting to climate change and other anthropogenic factors throughout Britain and Ireland. Such processes are likely to have widespread implications as the equilibria controlling evolutionary optima in species worldwide are upset by rapid, anthropogenic ecological changes. 相似文献
15.
蝴蝶对全球气候变化响应的研究综述 总被引:2,自引:0,他引:2
全球气候变化以及生物对其响应已引起人们的广泛关注。在众多生物中,蝴蝶被公认为是对全球气候变化最敏感的指示物种之一。已有大量的研究结果表明,蝴蝶类群已经在地理分布范围、生活史特性以及生物多样性变化等方面对全球气候变化作出了响应。根据全球范围内蝴蝶类群对气候变化响应的研究资料,尤其是欧美一些长期监测的研究成果,综述了蝴蝶类群在物种分布格局、物候、繁殖、形态特征变化、种群动态以及物种多样性变化等方面对气候变化的响应特征,认为温度升高和极端天气是导致蝴蝶物种分布格局和种群动态变化的主要因素。在此基础上,展望了我国开展蝴蝶类群对气候变化响应方面研究的未来发展趋势。 相似文献
16.
Guillermo Garcia-Costoya Claire E. Williams Trevor M. Faske Jacob D. Moorman Michael L. Logan 《Ecology letters》2023,26(4):529-539
Mounting evidence suggests that rapid evolutionary adaptation may rescue some organisms from the impacts of climate change. However, evolutionary constraints might hinder this process, especially when different aspects of environmental change generate antagonistic selection on genetically correlated traits. Here, we use individual-based simulations to explore how genetic correlations underlying the thermal physiology of ectotherms might influence their responses to the two major components of climate change—increases in mean temperature and thermal variability. We found that genetic correlations can influence population dynamics under climate change, with declines in population size varying three-fold depending on the type of correlation present. Surprisingly, populations whose thermal performance curves were constrained by genetic correlations often declined less rapidly than unconstrained populations. Our results suggest that accurate forecasts of the impact of climate change on ectotherms will require an understanding of the genetic architecture of the traits under selection. 相似文献
17.
Francesca Festa Leonardo Ancillotto Luca Santini Michela Pacifici Ricardo Rocha Nia Toshkova Francisco Amorim Ana Benítez-López Adi Domer Daniela Hamidović Stephanie Kramer-Schadt Fiona Mathews Viktoriia Radchuk Hugo Rebelo Ireneusz Ruczynski Estelle Solem Asaf Tsoar Danilo Russo Orly Razgour 《Biological reviews of the Cambridge Philosophical Society》2023,98(1):19-33
Understanding how species respond to climate change is key to informing vulnerability assessments and designing effective conservation strategies, yet research efforts on wildlife responses to climate change fail to deliver a representative overview due to inherent biases. Bats are a species-rich, globally distributed group of organisms that are thought to be particularly sensitive to the effects of climate change because of their high surface-to-volume ratios and low reproductive rates. We systematically reviewed the literature on bat responses to climate change to provide an overview of the current state of knowledge, identify research gaps and biases and highlight future research needs. We found that studies are geographically biased towards Europe, North America and Australia, and temperate and Mediterranean biomes, thus missing a substantial proportion of bat diversity and thermal responses. Less than half of the published studies provide concrete evidence for bat responses to climate change. For over a third of studied bat species, response evidence is only based on predictive species distribution models. Consequently, the most frequently reported responses involve range shifts (57% of species) and changes in patterns of species diversity (26%). Bats showed a variety of responses, including both positive (e.g. range expansion and population increase) and negative responses (range contraction and population decrease), although responses to extreme events were always negative or neutral. Spatial responses varied in their outcome and across families, with almost all taxonomic groups featuring both range expansions and contractions, while demographic responses were strongly biased towards negative outcomes, particularly among Pteropodidae and Molossidae. The commonly used correlative modelling approaches can be applied to many species, but do not provide mechanistic insight into behavioural, physiological, phenological or genetic responses. There was a paucity of experimental studies (26%), and only a small proportion of the 396 bat species covered in the examined studies were studied using long-term and/or experimental approaches (11%), even though they are more informative about the effects of climate change. We emphasise the need for more empirical studies to unravel the multifaceted nature of bats' responses to climate change and the need for standardised study designs that will enable synthesis and meta-analysis of the literature. Finally, we stress the importance of overcoming geographic and taxonomic disparities through strengthening research capacity in the Global South to provide a more comprehensive view of terrestrial biodiversity responses to climate change. 相似文献
18.
Amazon's vulnerability to climate change heightened by deforestation and man‐made dispersal barriers
Species migrations in response to climate change have already been observed in many taxonomic groups worldwide. However, it remains uncertain if species will be able to keep pace with future climate change. Keeping pace will be especially challenging for tropical lowland rainforests due to their high velocities of climate change combined with high rates of deforestation, which may eliminate potential climate analogs and/or increase the effective distances between analogs by blocking species movements. Here, we calculate the distances between current and future climate analogs under various climate change and deforestation scenarios. Under even the most sanguine of climate change models (IPSL_CM4, A1b emissions scenario), we find that the median distance between areas in the Amazon rainforest and their closest future (2050) climate analog as predicted based on just temperature changes alone is nearly 300 km. If we include precipitation, the median distance increases by over 50% to >475 km. Since deforestation is generally concentrated in the hottest and driest portions of the Amazon, we predict that the habitat loss will have little direct impact on distances between climate analogs. If, however, deforested areas also act as a barrier to species movements, nearly 30% or 55% of the Amazon will effectively have no climate analogs anywhere in tropical South America under projections of reduced or Business‐As‐Usual deforestation, respectively. These ‘disappearing climates’ will be concentrated primarily in the southeastern Amazon. Consequently, we predict that several Amazonian ecoregions will have no areas with future climate analogs, greatly increasing the vulnerability of any populations or species specialized on these conditions. These results highlight the importance of including multiple climatic factors and human land‐use in predicting the effects of climate change, as well as the daunting challenges that Amazonian diversity faces in the near future. 相似文献
19.
Ongoing climate change is assumed to be exceptional because of its unprecedented velocity. However, new geophysical research suggests that dramatic climatic changes during the Late Pleistocene occurred extremely rapid, over just a few years. These abrupt climatic changes may have been even faster than contemporary ones, but relatively few continent‐wide extinctions of species have been documented for these periods. This raises questions about the ability of extant species to adapt to ongoing climate change. We propose that the advances in geophysical research challenge current views about species' ability to cope with climate change, and that lessons must be learned for modelling future impacts of climate change on species. 相似文献
20.
Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China 下载免费PDF全文
Charles G. Willis Zhiqiang Zhou Tong Liu Wujun Dai Yuan Zhao Keping Ma 《Ecology and evolution》2017,7(17):6747-6757
Climate change has resulted in major changes in plant phenology across the globe that includes leaf‐out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf‐out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf‐out date to climate factors exhibits phylogenetic signal. We used a 52‐year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf‐out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf‐out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf‐out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf‐out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non‐native species. Earlier leaf‐out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf‐out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf‐out sensitivity. 相似文献