首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein-coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal-regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt.These findings provide the first evidence that, independent of its acylation, ghrelin gene product may act as a survival factor directly on the cardiovascular system through binding to a novel, yet to be identified receptor, which is distinct from GHSR-1a.  相似文献   

2.
3.
Ghrelin is a native ligand for the growth hormone secretagogue (GHS) receptor that stimulates pulsatile GH secretion markedly. At present, no formal construct exists to unify ensemble effects of ghrelin, GH-releasing hormone (GHRH), somatostatin (SRIF), and GH feedback. To model such interactions, we have assumed that ghrelin can stimulate pituitary GH secretion directly, antagonize inhibition of pituitary GH release by SRIF, oppose suppression of GHRH neurons in the arcuate nucleus (ArC) by SRIF, and induce GHRH secretion from ArC. The dynamics of such connectivity yield self-renewable GH pulse patterns mirroring those in the adult male and female rat and explicate the following key experimental observations. 1) Constant GHS infusion stimulates pulsatile GH secretion. 2) GHS and GHRH display synergy in vivo. 3) A systemic pulse of GHS stimulates GH secretion in the female rat at any time and in the male more during a spontaneous peak than during a trough. 4) Transgenetic silencing of the neuronal GHS receptor blunts GH pulses in the female. 5) Intracerebroventricular administration of GHS induces GH secretion. The minimal construct of GHS-GHRH-SRIF-GH interactions should aid in integrating physiological data, testing regulatory hypotheses, and forecasting innovative experiments.  相似文献   

4.
Ghrelin is an endogenous ligand for growth hormone secretagogue receptor 1a (GHS-R1a), and consists of 28 amino acid residues with octanoyl modification at Ser3. The previous studies have revealed that N-terminal part of ghrelin including modified Ser3 is the active core for the activation of GHS-R1a. On the other hand, the role of C-terminal (8-28) region in ghrelin has not been clarified yet. In the present study, we prepared human ghrelin, C-terminal truncated ghrelin derivatives and anamorelin, a small molecular GHS compound which supposedly mimics the N-terminal active core, and examined GHS-R1a agonist activity in vitro, pharmacokinetic (PK) profile and growth hormone (GH) releasing activity in rats. All compounds demonstrated potent GHS-R1a agonist activities in vitro. Although the lack of C-terminal two amino acids did not modify PK profile and GH releasing activity, the deletion of C-terminal 8 and 20 amino acids affected them, and ghrelin(1-7)-Lys-NH2 exhibited very short plasma half-life and low GH releasing activity in vivo. In rat plasma, ghrelin(1-7)-Lys-NH2 was degraded more rapidly than ghrelin, suggesting that C-terminal part of ghrelin protected octanoylation of Ser3 from plasma esterases. Subdiaphragmatic vagotomy significantly attenuated GH response to ghrelin but not to anamorelin. These results suggest that the C-terminal part of ghrelin has an important role in the biological activity in vivo. We also found that ghrelin stimulated GH release mainly via a vagal nerve pathway but anamorelin augmented GH release possibly by directly acting on brain in rats.  相似文献   

5.
Growth hormone (GH) release is under the direct control of hypothalamic releasing hormones, some being also produced peripherally. The role of these hypothalamic factors has been understood by in vitro studies together with such in vivo approaches as stalk sectioning. Secretion of GH is stimulated by GH-releasing hormone (GHRH) and ghrelin (acting via the GH secretagogue [GHS] receptor [GHSR]), and inhibited by somatostatin (SRIF). Other peptides/proteins influence GH secretion, at least in some species. The cellular mechanism by which the releasing hormones affect GH secretion from the somatotrope requires specific signal transduction systems (cAMP and/or calcium influx and/or mobilization of intracellular calcium) and/ or tyrosine kinase(s) and/or nitric oxide (NO)/cGMP. At the subcellular level, GH release (at least in response to GHS) is accomplished by the following. The GH-containing secretory granules are moved close to the cell surface. There is then transient fusion of the secretory granules with the fusion pores in the multiple secretory pits in the somatotrope cell surface.  相似文献   

6.
7.
Growth hormone (GH) secretion and serum insulin-like growth factor-I (IGF-I) decline with aging. This study addresses the role played by the hypothalamic regulators in the aging GH decline and investigates the mechanisms through which growth hormone secretagogues (GHS) activate GH secretion in the aging rats. Two groups of male Wistar rats were studied: young-adult (3 mo) and old (24 mo). Hypothalamic growth hormone-releasing hormone (GHRH) mRNA and immunoreactive (IR) GHRH dramatically decreased (P < 0.01 and P < 0.001) in the old rats, as did median eminence IR-GHRH. Decreases of hypothalamic IR-somatostatin (SS; P < 0.001) and SS mRNA (P < 0.01), and median eminence IR-SS were found in old rats as were GHS receptor and IGF-I mRNA (P < 0.01 and P < 0.05). Hypothalamic IGF-I receptor mRNA and protein were unmodified. Both young and old pituitary cells, cultured alone or cocultured with fetal hypothalamic cells, responded to ghrelin. Only in the presence of fetal hypothalamic cells did ghrelin elevate the age-related decrease of GH secretion to within normal adult range. In old rats, growth hormone-releasing peptide-6 returned the levels of GH and IGF-I secretion and liver IGF-I mRNA, and partially restored the lower pituitary IR-GH and GH mRNA levels to those of young untreated rats. These results suggest that the aging GH decline may result from decreased GHRH function rather than from increased SS action. The reduction of hypothalamic GHS-R gene expression might impair the action of ghrelin on GH release. The role of IGF-I is not altered. The aging GH/IGF-I axis decline could be rejuvenated by GHS treatment.  相似文献   

8.
Ghrelin is an endogenous ligand for the growth hormone (GH) secretagogue (GHS) receptor (GHS-R) and a potent stimulant for GH secretion even in infantile rats before puberty. Although the ventromedial nucleus of the hypothalamus (VMH) might be a site of action for ghrelin to induce GH release, the electrophysiological effect of ghrelin on VMH neurons in infantile rats remains to be elucidated. Thus, the purpose of the present study was to investigate the effect of ghrelin on VMH neurons using hypothalamic slices of infantile rats. Ghrelin excited a majority of VMH neurons in a concentration-dependent manner. VMH neurons that were excited by GH releasing peptide-6 (GHRP-6), a synthetic GHS, were also excited by ghrelin and vice versa. Repeated application of ghrelin to the same VMH neuron decreased progressively the excitatory responses depending on the number of times it was administered. The excitatory effect of ghrelin on VMH neurons in normal artificial cerebrospinal fluid (ACSF) persisted in low Ca2+-high Mg2+ ACSF. The present results indicate that (1) ghrelin excites a majority of VMH neurons dose-dependently and postsynaptically and (2) the excitatory effects of ghrelin are mimicked by GHRP-6 and desensitized by repeated applications of ghrelin.  相似文献   

9.
Ghrelin is a gut-brain peptide synthesized mainly in the oxyntic mucosal cells of the stomach, and has potent growth hormone (GH)-releasing and orexigenic activities. Recently, two forms of ghrelin, ghrelin-C8 and -C10, were identified in the Mozambique tilapia (Oreochromis mossambicus). The present study describes in vitro and in vivo effects of these endogenous ghrelins on the GH/insulin-like growth factor-I (IGF-I) axis. Ghrelin-C8 (100 nM) stimulated GH release from primary cultures of pituitary cells after 4 and 8 h of incubation, whereas no effect was seen on prolactin (PRL) release. Stimulatory effects of ghrelin-C8 and -C10 (100 nM) on GH release during 6 h of incubation were blocked by pre-incubation with GHS receptor antagonist, [D-Lys(3)]-GHRP-6 (10 microM). Intraperitoneal injection of ghrelin-C8 (1 ng/g body weight) and -C10 (0.1 and 1 ng/g body weight) significantly increased plasma GH levels after 5 h. Significant increases were observed also in hepatic expression of IGF-I and GH receptor (GHR) mRNA following injections of both forms of ghrelin (0.1 and 1 ng/g body weight), although there was no effect on plasma levels of IGF-I. In the next experiment, both forms of ghrelin (1 ng/g body weight) significantly increased plasma IGF-I levels 10 h after the injection. No significant effect of either ghrelin was observed on plasma PRL levels. Both forms of GHS receptor (GHSR-1a and -1b) were found in the pituitary, clearly indicating that tilapia ghrelins stimulate primarily GH release through the GHS receptor. Stimulation of hepatic expression of IGF-I and GHR suggests metabolic roles of ghrelin in tilapia.  相似文献   

10.
Endocrine and non-endocrine actions of ghrelin   总被引:5,自引:0,他引:5  
Ghrelin is a 28-amino-acid peptide predominantly produced by the stomach. Substantially lower amounts were detected in bowel, pancreas, kidneys, the immune system, placenta, testes, pituitary, and hypothalamus. Ghrelin displays strong growth hormone (GH)-releasing action mediated by the activation of the so-called GH secretagogue (GHS) receptor (GHS-R) type 1a. GHS-R are concentrated in the hypothalamus-pituitary unit but are also distributed in other central and peripheral tissues. Apart from the potent GH-releasing action, ghrelin has other actions including stimulation of lactotroph and corticotroph function, influence on the pituitary gonadal axis, stimulation of appetite, control of energy balance, influence on sleep and behavior, control of gastric motility and acid secretion, influence on exocrine and endocrine pancreatic function as well as on glucose metabolism, cardiovascular actions and modulation of proliferation of neoplastic cells, as well as of the immune system. The discovery of ghrelin opened many new perspectives of research in neuroendocrinology and metabolism, and even also in other fields of internal medicine as gastroenterology, immunology, oncology and cardiology. The possibility that ghrelin and/or GHS analogs, acting as either agonists or antagonists on different activities, might have clinical impact is obviously suggested and is receiving great attention.  相似文献   

11.
Recently, ghrelin (Ghr), a new peptide which specifically stimulates growth hormone (GH) release from the pituitary, was identified in the rat and human stomach. Ghrelin has been shown to stimulate GH release by acting through a growth hormone secretagogue (GHS) receptor in the rat. The present study describes the in vitro effect of rat Ghr on the release of GH and two forms of prolactin (PRL(177) and PRL(188)) in the tilapia, Oreochromis mossambicus. Rat Ghr stimulated the release of GH in a dose-related manner after 8 and 24 hr of incubation. Rat Ghr also significantly stimulated the release of PRL(177) and PRL(188) in a dose-related manner after 24 hr. Rat Ghr had no effect on the pituitary content of GH or PRL(188), but significantly increased PRL(177) content. These results show for the first time that rat Ghr significantly stimulates GH and PRL release in teleosts, and suggest that Ghr and a GHS receptor are present in fish.  相似文献   

12.
Growth hormone (GH) secretagogues (GHS) are synthetic peptidyl and non-peptidyl molecules which possess strong, dose-dependent and reproducible GH releasing effects as well as significant prolactin (PRL) and adrenocorticotropic hormone (ACTH) releasing effects. The neuroendocrine activities of GHS are mediated by specific receptors mainly present at the pituitary and hypothalamic level but also elsewhere in the central nervous system. GHS release GH via actions at the pituitary and (mainly) the hypothalamic level, probably acting on GH releasing hormone (GHRH) secreting neurons and/or as functional somatostatin antagonists. GHS release more GH than GHRH and the coadministration of these peptides has a synergistic effect but these effects need the integrity of the hypothalamo-pituitary unit. The GH releasing effect of GHS is generally gender-independent and undergoes marked age-related variations reflecting age-related changes in the neural control of anterior pituitary function. The PRL releasing activity of GHS probably comes from direct pituitary action, which indeed is slight and independent of both age and gender. The acute stimulatory effect of GHS on ACTH/cortisol secretion is similar to that of corticotropin releasing hormone (CRH) and arginine vasopressin (AVP). In physiological conditions, the ACTH releasing activity of GHS is mediated by central mechanisms, at least partially, independent of both CRH and AVP but probably involving GABAergic mechanisms. The ACTH releasing activity of GHS is gender-independent and undergoes peculiar age-related variations showing a trend towards increase in ageing. GHS possess specific receptors also at the peripheral levels in endocrine and non-endocrine human tissues. Cardiac receptors are specific for peptidyl GHS and probably mediate GH-independent cardiotropic activities both in animals and in humans.  相似文献   

13.
Ghrelin expression in fetal, infant, and adult human lung.   总被引:8,自引:0,他引:8  
Ghrelin is a recently identified hormone with potent growth hormone (GH)-releasing activity. It is produced by rat and human gastric endocrine cells and by the pituitary, hypothalamus, placenta, and by gastroenteropancreatic tumors. No evidence of ghrelin production by foregut-derived organs other than stomach has been provided to date. The aim of the present study was to investigate ghrelin expression by human fetal (20 cases), infant (13 cases), and adult (seven cases) lungs by immunohistochemistry, in situ hybridization, and RT-PCR. Expression of the GH secretagogue receptor, the endogenous receptor for ghrelin, was also investigated by RT-PCR. Ghrelin protein was found in the endocrine cells of the fetal lung in decreasing amounts from embryonic to late fetal periods. Its expression was maintained in newborns and children under 2 years but was virtually absent in older individuals. Scattered positive cells were also found in the trachea and the esophagus. Ghrelin mRNA was detected in adult lung by the more sensitive RT-PCR technique. GHS receptor mRNA was detected in nine cases of infant and adult lungs, possibly indicating the existence of local autocrine circuits. We conclude that the fetal lung is an additional source of circulating ghrelin, whose functions at the respiratory tract level remain to be clarified.  相似文献   

14.
15.
Ohinata K  Kobayashi K  Yoshikawa M 《Peptides》2006,27(7):1632-1637
Ghrelin, a 28 amino acid peptide identified as an endogenous ligand for growth hormone secretagogue (GHS) receptor, stimulates food intake and growth hormone (GH) secretion. We designed low molecular weight peptides with affinity for the GHS receptor based on the primary structure of ghrelin. We found that [Trp3, Arg5]-ghrelin(1-5) (GSWFR), a novel pentapeptide composed of all L-amino acids, had affinity for the GHS receptor (IC50 = 10 microM). GSWFR stimulated GH secretion after intravenous or oral administration. Centrally administered GSWFR increased food intake in non-fasted mice. The orexigenic action of GSWFR was inhibited by a GHS receptor antagonist, [D-Lys3]-GH-releasing peptide-6, suggesting that GSWFR stimulated food intake through the GHS receptor. The orexigenic action of GSWFR was also inhibited by a neuropeptide Y (NPY) Y1 receptor antagonist, BIBO3304. These results suggest that the GSWFR-induced feeding is mediated by the NPY Y1 receptor.  相似文献   

16.
Ghrelin, an endogenous ligand of the growth hormone (GH) secretagogue (GHS) receptor, stimulates GH release, appetite, and weight gain in humans and rodents. Synthetic GHSs modulate sleep electroencephalogram (EEG) and nocturnal hormone secretion. We studied the effect of 4 x 50 microg of ghrelin administered hourly as intravenous boluses between 2200 and 0100 on sleep EEG and the secretion of plasma GH, ACTH, cortisol, prolactin, and leptin in humans (n = 7). After ghrelin administration, slow-wave sleep was increased during the total night and accumulated delta-wave activity was enhanced during the second half of the night. Rapid-eye-movement (REM) sleep was reduced during the second third of the night, whereas all other sleep EEG variables remained unchanged. Furthermore, GH and prolactin plasma levels were enhanced throughout the night, and cortisol levels increased during the first part of the night (2200-0300). The response of GH to ghrelin was most distinct after the first injection and lowest after the fourth injection. In contrast, cortisol showed an inverse pattern of response. Leptin levels did not differ between groups. Our data show a distinct action of exogenous ghrelin on sleep EEG and nocturnal hormone secretion. We suggest that ghrelin is an endogenous sleep-promoting factor. This role appears to be complementary to the already described effects of the peptide in the regulation of energy balance. Furthermore, ghrelin appears to be a common stimulus of the somatotropic and hypothalamo-pituitary-adrenocortical systems. It appears that ghrelin is a sleep-promoting factor in humans.  相似文献   

17.
A new class of growth hormone (GH) secretagogues (GHS) has been developed. In rats, the GHS hexarelin exerts cardioprotective effects. In humans, GHS increase growth velocity in children with short stature/GH deficiency. In adults, a combined infusion of GH releasing peptide-2 and thyrotropin releasing hormone increases circulating concentrations of GH as well as that of insulin-like growth factor-I. In healthy volunteers, oral GHS administration reverses diet-induced catabolism, and in healthy obese men, oral GHS treatment increases fat-free mass. However, little is known about the possible direct effects of GHS and there are few long-term studies. Therefore, it is not yet possible to fully evaluate the use of GHS.  相似文献   

18.
Ghrelin is a brain-gut peptide known for its growth hormone (GH)-releasing and appetite-inducing activities. This natural GH secretagogue (GHS) was originally purified from rat stomach, but it is expressed widely in different tissues where it may have endocrine and paracrine effects. The central effects of ghrelin on adrenocorticotropic hormone (ACTH) cells, ACTH release and subsequent corticosterone release from adrenal glands remains to be clarified. The aim of this study was to specifically determine the morphological features of ACTH-producing pituicytes and blood concentration of ACTH and corticosterone after central administration of ghrelin. Five doses of rat ghrelin or PBS (n=10 per group) were injected every 24 h (1 microg of ghrelin in 5 muL PBS), into the lateral cerebral ventricle of male rats. Results showed that ghrelin increased (p<0.05) absolute and relative pituitary weights compared to controls (58% and 41% respectively). Morphometric parameters, i.e. the volume of the ACTH cells, nuclear volume, and volume density were all increased (p<0.05), by 17%, 6% and 13%, respectively, 2 h after the last ghrelin treatment. Ghrelin increased circulating concentrations of ACTH and corticosterone (p<0.05) by 62% and 66%, respectively. The data provide clear documentation that intracerebroventricular ghrelin stimulates ACTH cell hypertrophy and proliferation, and promotes ACTH and corticosterone release. Determining the role of ghrelin in physiological stress responses and whether control of the peptide's activity would be useful for prevention and/or treatment of stress-induced diseases remain important research goals.  相似文献   

19.
Ghrelin, a novel peptide purified from stomach, is the endogenous ligand for the growth hormone secretagogue receptor and has potent growth hormone-releasing activity. The Ser3 residue of ghrelin is modified by n-octanoic acid, a modification necessary for hormonal activity. We established two ghrelin-specific radioimmunoassays; one recognizes the octanoyl-modified portion and another the C-terminal portion of ghrelin. Using these radioimmunoassay systems, we found that two major molecular forms exist-ghrelin and des-n-octanoyl ghrelin. While ghrelin activates growth-hormone secretagogue (GHS) receptor-expressing cells, the nonmodified des-n-octanyl form of ghrelin, designated as des-acyl ghrelin, does not. In addition to these findings, our radioimmunoassay systems also revealed high concentrations of ghrelin in the stomach and small intestine.  相似文献   

20.
Growth hormone (GH) secretagogues (GHSs), which stimulate GH secretion, are synthetic compounds that act through the GHS receptor (GHS-R) which has been recently cloned. We raised an antiserum in a rabbit against a synthetic peptide corresponding to amino acid residues 248-260 of the third intracellular loop of the rat GHS-R. A competitive immunoassay showed that the antiserum had a specific affinity for the target peptide. To confirm the specificity of the antiserum, the GHS-R cDNA was stably expressed in COS-7 cells. In Western blot analysis, the band was detected at 44 kDa in the extracts from COS-7 cells expressing GHS-R (COS-7/tf3-2) but not in those from wild-type COS-7 cells. Furthermore, while COS-7/tf3-2 cells were strongly immunostained for GHS-R, no GHS-R-like immunoreactivity was observed in wild-type COS-7 cells. Immunoreactive bands were also observed at approximately 46 kDa in the extracts from rat hypothalamus, pituitary and stomach by Western blot analysis. These studies are the first to show the existence of GHS-R protein in the stomach. The antiserum for the GHS-R is sensitive and specific, and it would be useful for clarifying the roles of GHS/ghrelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号