首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, the cellular organization of the gill that harbors symbiotic bacteria is described in the thyasirid Thyasira falklandica collected from South Shetlands in Antarctic. Sections of the gills revealed that T. falklandica belongs to the gill type 3, as described by Dufour (Biol Bull, 208:200–212, 2005), with an elongated lateral zone along the frontal-abfrontal axis of the gill filaments. The ciliated and intermediary zones looked similar to those described in symbionts-bearing bivalves. The lateral zone is more complex in T. falklandica than in other Thyasiridae already described. Such a zone is composed of four different cell types. Bacteriocytes are abundant in the frontal and abfrontal positions, while the middle part of the lateral zone is occupied mostly by numerous granule cells devoid of bacteria. All along the lateral zone, TEM and SEM observations show some ciliated cells, which are regularly interspersed between bacteriocytes and/or granule cells. Such cells, according to the long double ciliary roots of their cilia, should have a sensory function. Intercalary cells, which have never been observed between bacteriocytes, are restricted to the middle part of the lateral zone where their expansions overlap the adjacent granule cells. Bacterial symbionts occur only extracellularly among long microvilli differentiated by the bacteriocytes. They are abundant, usually spherical in shape (around 0.7 μm length), and covered by the glycocalix from bacteriocyte microvilli. According to TEM views, the empty vesicles located in the periplasmic space should be sulfur storage, as known for other sulfur-oxidizing symbionts.  相似文献   

2.
Summary

Codakia orbicularis is a tropical lucinid harboring gill endosymbionts which are environmentally transmitted from a free living-symbiont form to the new host generation after metamorphosis. Structural changes occurring in the cellular organization from incomplete gill filaments in young aposymbiotic juveniles to full differentiated gill filaments containing bacterial endosymbionts in reared symbiotic juveniles, were analyzed for juveniles from 250 μm to 2 μm shell-length. Aposymbiotic juveniles possess differentiated gill filaments with ciliated, intermediary, and lateral zones similar to those described in wild juveniles, except for the bacteriocytes which are lacking. Granule cells, which progressively differentiate during the morphogenesis of the gill filament, do not appear as a consequence of symbiosis. Experimental colonization of aposymbiotic juveniles by the free-living symbiont form has been obtained through the addition of unsterilized sand collected from the natural habitat of C. orbicularis. Two days after exposure to crude sand, symbiosis-competent bacteria enter by endocytosis at the apical pole of undifferentiated cells which progressively differentiate into classical bacteriocytes similar to those found in the adult gill filaments. Undifferentiated cells of aposymbiotic gill filaments remain receptive to bacteria several months after metamorphosis, and become bacteriocytes when aposymbiotic juveniles get contact with the symbiont free-living form. Therefore, the environmental transmission of symbionts does not appear to be restrained to a defined period of time during post-larval development in C. orbicularis.  相似文献   

3.
A taxonomic study of two brown algal species, Elachista nigra Takamatsu and Elachista orbicularis (Ohta) Skinner (Elachistaceae), was performed on the basis of morphological observations of field‐collected and laboratory cultured specimens from Japan (including their type localities) and molecular phylogenetic analyses. The two species had been distinguished by developmental patterns of paraphysis‐ and plurizoidangium‐bearing erect filaments, such filaments of E. nigra developing from wide erect filaments and those of E. orbicularis developing directly from basal prostrate filaments. However, many specimens investigated in the present study showed forms intermediate between these two patterns. Molecular phylogenetic analyses (including five additional elachistacean species) based on the internal transcribed spacer (ITS)2 region of the nuclear ribosomal RNA (nrRNA) gene showed a close relationship between all samples of E. nigra and E. orbicularis, and that the developmental patterns of paraphysis‐ and plurizoidangium‐bearing erect filaments were homoplasious. On the basis of these morphological and molecular data, E. orbicularis was reduced to synonymy with E. nigra. The ITS2 sequences of E. nigra were significantly different between samples from the Sea of Japan and those from the Pacific Ocean with several insertion/deletion and substitution mutations.  相似文献   

4.
A new species of marine endolithic cyanophyte, Hyella pyxis Lukas and Hoffman (Order: Pleurocapsales), differs from other species of Hyella in its cell and filament dimensions, the manner in which its branches are initiated and the presence of gloeocapsin in the sheaths of colonies from the intertidal zone. Hyella pyxis colonies consist of a small cluster of coccoid cells located at the substrate surface and long, conspicuously branched filaments composed of cells that are longer than they are wide. Branches are initiated by the reorientation of the distal end of a filament cell or by the elongation of a filament cell, usually at one of its distal corners. Chromatic adaptation was not observed perhaps accounting for the relatively shallow depth limit of this species. Hyella pyxis was found within mollusk shells from the continental margin of eastern Florida to a depth of 50 m and carbonate rocks in the intertidal zone on Bermuda.  相似文献   

5.
Two members of the family Nemastomataceae (Gigartinales, Rhodophyta) are described from subtidal habitats in Ghana. Nemastoma confusum sp. nov. is a plant of irregularly lobed, thick gelatinous blades with subacute marginal projections and surface proliferations. It is composed of a lax medulla and submoniliform cortical filaments with prominent intercalary gland cells. Carposporophytes are one to three spherical lobes of carposporangia borne on gonimoblast initials arising directly from auxiliary cells contacted by connecting filaments. A rudimentary involucre is formed around the gonimoblast by elongating vegetative cortical cells borne on the auxiliary cell. The genus Predaea is recorded for the first time from Africa, and P. feldmannii Boerg. is described in morphological detail together with some observations on its ecology in Ghana. Distinctive features of connecting filament formation, nutritive cell production and gonimoblast initiation and development are illustrated and compared to other species of the genus. A second species, P. masonii (Setch. & Gardn.) De Toni fil., is represented by a single specimen in the collections and appears to be distinct from P. feldmannii on cortical and gland cell features.  相似文献   

6.
Vegetative and reproductive morphology and ultrastructure were examined for the three genera of the freshwater red algal family Lemaneaceae: Lemanea (two species, seven populations), Paralemanea (two species, three populations) and Psilosiphon (one species, one population). Psilosiphon is readily distinguished from the other two genera in having an outer cortex composed of well-defined filaments interconnected with a dense medulla (both cell types being little vacuolated), spores cleaving off obliquely, putative spermatangia scattered on the thallus surface and reproduction by adventitious filaments. Based on the distinctness of this genus (and corroborated by molecular phylogenies in preparation), a new family is described, the Psilosiphonaceae. Lemanea and Paralemanea appear to be closely related, with an outer cortex that has cells of increasing size and vacuolation from the periphery to the interior and not in obvious rows, a central lumen that contains few ray cells but no medullary filaments, sexual reproduction with spermatangia in distinct clusters, and carpospores in chains, some of which can germinate in the thallus lumen. Lemanea and Paralemanea have distinguishing characteristics that the other genus does not: for Lemanea, hair cells, ray cells abutting the outer cortex and spermatangia in patches; for Paralemanea, no hair cells or ray cells appressed to the outer cortex, inner cortical filaments surrounding the central axis and spermatangia in rings.  相似文献   

7.
Thalli of four species of the charophycean green alga Coleochaete Bréb.; C. irregularis, C. soluta, C. orbicularis, and C. scutata, were examined using light and electron microscopy. The parenchymatous nature of the plant bodies of C. orbicularis and C. scutata became apparent when the degree of cellular association in these species was compared with that of parenchymatous land plant tissues, the pseudoparenchymatous thalli of C. soluta, and the branched filaments of C. irregularis. Coleochaete soluta was shown to be morphologically and phylogenetically transitional between the more primitive branched filamentous species (C. irregularis) and the more advanced discoid species (C. orbicularis and C. scutata). The branching patterns observed in C. soluta suggested a possible pathway for the evolutionary development of land plant parenchyma from branched, filamentous charophycean green algae.  相似文献   

8.
Some Liagora and Izziella distributed in Taiwan display a wide range of morphological variation and can be difficult to distinguish. To clarify species concepts, we applied DNA sequence analyses and examined carposporophyte development in detail. These studies revealed two new species, which are described herein as Izziella hommersandii sp. nov. and Izziella kuroshioensis sp. nov. I. kuroshioensis superficially resembles Izziella formosana and Izziella orientalis in that its involucral filaments subtend rather than surround the lower portion of the gonimoblast mass (= Izziella type) and a fusion cell is formed from cells of the carpogonial branch, but it can be separated by differences in the cell numbers and branching pattern of the involucral filaments, as well as thallus morphology. In contrast to other species that also bear short lateral branchlets, I. hommersandii is unique in possessing a mixture of short and long involucral filaments, a phenomenon not reported before. The length of the involucral filaments is species specific among species of Izziella and contrasts to the behavior of the involucral filaments after fertilization in species such as “Liagorasetchellii [= Titanophycus setchellii comb. nov.], in which the filaments completely envelop the gonimoblast. In addition, the cells of the carpogonial branch in Titanophycus do not fuse after fertilization to form a fusion cell. Thus, a combination of characters with respect to the behavior of the carpogonial branch and the involucral filaments after fertilization is very useful for delineating species boundaries in Izziella and for separating Titanophycus from Izziella and Liagora.  相似文献   

9.
10.
Carpopeltis maillardii has been regarded as a widely distributed species in the Indo-Pacific region. In this study, we analyzed the genetic diversity of C. maillardii and related species collected from Taiwan and the Indian Ocean based on rbcL sequences, in order to elucidate species boundaries, diversity, and biogeographic patterns. Our analyses show that C. maillardii specimens are only distantly related to the genus Carpopeltis (type: C. phyllophora) but instead form a clade together with species of Yonagunia. We therefore propose the new combination Yonagunia maillardii comb. nov. In addition, two new species (Yonagunia palmata sp. nov. and Yonagunia taiwani-borealis sp. nov.) are described from Taiwan. The close relationship of Yonagunia to Grateloupia is corroborated by detailed observations of the female reproductive structures, which demonstrate that the development of auxiliary cell ampullae before and after diploidization is similar to that of Grateloupia sensu stricto. Namely, the ampullae are composed of only two orders of unbranched filaments in which only a few ampullar cells are incorporated into a basal fusion cell after diploidization of the auxiliary cell and the pericarp consists almost entirely of secondary medullary filaments. Of all Yonagunia species, Y. maillardii has the widest distribution in the Indo-Pacific, and can be identified in the field by its relatively thin, feathery, and highly branched morphology. Most other species, including those that occur in Taiwan, are seemingly more range-restricted. Our phylogenetic analyses resulted in a well-resolved phylogeny of Yonagunia, with an origin estimated in the Eocene–Oligocene, and diversification of species mainly in the Miocene.  相似文献   

11.
The red alga Cubiculosporum koronicarpis gen. et sp. nov. is described from material collected during 1968 in the Philippines. The species differs substantially in regard to its carposporophyte development from other red algae in the order Gigartinales, and a new family is created based on its unique combination of reproductive features. A single, short, connecting filament is formed between the fertilized carpogonium and a nearby auxiliary cell. The latter produces several ramifying gonimoblast filaments towards the interior of the thallus. No fusion cell is formed and the gonimoblast filaments grow inward among the cells of the central axis, form secondary connections to them, and give rise to outwardly directed carposporangial filaments that develop within peripheral chambers formed between elongating inner cortical cells. The alga is a low, clump-forming species of well-washed intertidal reef platforms at the one Philippine locality where it has been found. There it contributed a uniform but very minor amount to the wet weight of the standing crops that were studied during two separate seasons of the year.  相似文献   

12.
Trophozoites of Giardia duodenalis group obtained from fragments or scratched of hamster's mucosa were examined by transmission electron microscopy. The fine structure of the trophozoites are presented and compared with those described for other animals. Some of the trophozoites present the cytoplasm full of glycogen, rough endoplasmic reticulum-like structures and homogeneous inclusions not enclosed by membranes, recognized as lipid drops, which had not been observed in Giardia from other animals. The adhesive disk is composed of a layer of microtubules, from which fibrous ribbons extend into the cytoplasm; these ribbons are linked by layer of cross-bridge filaments that shows an intermediary dense band, described for the first time in this paper. The authors regard this band as the result of the cross-bridge filaments slinding in the medium region between adjacent fibrous ribbons, and suggest a contractile activity for them. The role of the adhesive disk on the trophozoite mechanism of attachment to host mucosa is also discussed.  相似文献   

13.
The ultrastructure of wax glands (integumentary, stigmatic, and peristigmatic glands) was investigated in larvae, cysts, and adult females and males of species belonging to the genera Porphyrophora, Sphaeraspis, and Eurhizococcus. The general organization and cytological characteristics are similar for all glands studied. Each gland is composed of a single layer of 8 to 40 cells. The glandular cells are characterized by a very large quantity of smooth endoplasmic reticulum which forms dense zones throughout the cytoplasm, but is always placed near the collecting canals in the presence of mitochondria. Each cell has a central canal reservoir which penetrates it deeply and gives rise to a large number of lateral collecting canals, formed by the invagination of the apical plasma membrane. The canals open into a subcuticular cavity forming a common reservoir in which the secretion is accumulated. This reservoir is covered by a modified cuticle formed from the endocuticle and the epicuticle. The endocuticle is composed of a network of fine tubular structures and has many filaments on its surface. The epicuticle is perforated by numerous pores. There is no cuticular duct. The secretion crosses the cuticle in three successive steps. First, it passes through the filaments, then through fine tubular structures of the endocuticle, and finally through the epicuticular pores.  相似文献   

14.
Verification of morphological diagnostic features and the establishment of three epitypes for three species of Phacus Dujardin—Phacus pleuronectes (O. F. Müll.) Dujardin, Phacus orbicularis Hübner, and Phacus hamelii Allorge et Lefèvre—was performed based on literature studies and analysis of morphological (cell shape, cell size, and periplast ornamentation) as well as molecular (18S rDNA) characters. Periplast ornamentation was recognized as a main diagnostic character, distinguishing P. orbicularis from P. pleuronectes and P. hamelii. Phacus orbicularis has struts running perpendicular to the longitudinal axis of the strips, while P. pleuronectes and P. hamelii do not. On the SSU rDNA tree, obtained by the Bayesian method, P. orbicularis, P. pleuronectes, and P. hamelii belong to three distinct clades. Some of the phylogenetic relationships are not resolved, but there are at least three Phacus species (P. hamatus, P. platyaulax, P. longicauda; for taxonomic authors, see Introduction) that are more closely related to P. orbicularis than is P. pleuronectes. Phacus hamelii is more closely related to P. ranula and the assemblage of several species of Phacus, which have small cells, than to P. orbicularis or P. pleuronectes.  相似文献   

15.
The genus Pseudulvella Wille 1909 includes epiphytic, freshwater, or marine disk‐shaped green microalgae that form quadriflagellate zoospores. No ultrastructural or molecular studies have been conducted on the genus, and its evolutionary relationships remain unclear. The purpose of the present study is to describe the life history, ultrastructural features, and phylogenetic affiliations of Pseudulvella americana (Snow) Wille, the type species of the genus. Thalli of this microalga were prostrate and composed of radiating branched filaments that coalesced to form a disk. Vegetative cells had a pyrenoid encircled by starch plates and traversed by one or two convoluted cytoplasmic channels. They had well‐defined cell walls without plasmodesmata. Asexual reproduction was by means of tetraflagellate zoospores formed in numbers of two to eight from central cells of the thallus. The flagellar apparatus of zoospores was cruciate, with four basal bodies and four microtubular roots. The paired basal bodies lay directly opposite (DO) one another. The microtubular root system had a 5‐2‐5‐2 alternation pattern, where the “s” roots contained five microtubules in a four‐over‐one configuration. A tetralobate nonstriated distal fiber connected all four basal bodies. A wedge‐shaped proximal sheath subtended each of the basal bodies. The ultrastructural features of the zoospores were those of members of the order Chaetopeltidales. Phylogenetic analyses based on SSU rDNA placed P. americana sister to Chaetopeltis orbicularis in a well‐supported Chaetopeltidales clade. Such a combination of features confirmed that this alga is a member of the order Chaetopeltidales.  相似文献   

16.
The fine structure of the interommatidial exocrine glands, found in the compound eyes of the water strider Aquarius remigis, is described using light, scanning, and transmission electron microscopy. The glandular pores of the glands are specialized into minute “nail-headed” structures (NS), which are described for the first time in arthropod compound eyes. Each NS is composed of two components: a rod-like stalk and a cup-like depression. The TEM study shows that the glands are class 3 epidermal glands as defined by Noirot and Quennedey (1974, 1991). Each gland consists of 3 cells: a gland cell, an intermediary cell, and a duct (canal) cell. The gland cell contains abundant electron-lucent vesicles, while the intermediary cell contains a large number of osmiophilic secretory granules. These two cells might secrete different substances which mix together in the dilated sac-like portion of the conducting canal before final release. The possible functions of the secretions released from these glands are discussed.  相似文献   

17.
A new red alga, Dasya enomotoi, is described from Japan. This species is characterized by having a large thallus consisting of an elongated axis and many, radially arranged, polysiphonous branches both of which are heavily corticated and densely covered with numerous, soft monosiphonous filaments. It is distinguished from several similar species by the combination of the following: (i) indistinct pericentral cells in transverse sections except near the apices, (ii) the presence of enlarged, inner cortical cells, (iii) radially arranged adventitious monosiphonous filaments, (iv) three‐celled carpogonial branches, (v) six (sometimes five) tetrasporangia in each fertile segment of the stichidia, and (vi) three tetrasporangial cover cells that are not elongated longitudinally and usually not divided transversely. This species may have been identified as D. villosa Harvey by previous investigators in Japan.  相似文献   

18.
19.
Minor-vein anatomy, sugar content, sugar synthesis, and translocation were studied in mature leaves of nine members of the Scrophulariaceae to determine if there is a correlation between companion-cell type and class of sugar translocated. Three types of companion cell were found: intermediary cells with extensive plasmodesmatal connections to the bundle sheath; transfer cells with wall ingrowths and few plasmodesmata; and ordinary companion cells with few plasmodesmata and no wall ingrowths. Alonsoa warscewiczii Regal., Verbascum chaixi Vill., and Mimulus cardinalis Dougl. ex. Benth. have intermediary cells and ordinary companion cells in the minor veins. These plants synthesize large amounts of raffinose and stachyose as well as sucrose. Nemesia strumosa Benth., and Rhodochiton atrosanguineum Zucc. have both intermediary cells and transfer cells and make proportionately less raffinose oligosaccharide than the species above. In N. strumosa, a single sieve element may abut both an intermediary cell and a transfer cell. The minor veins of Asarina scandens (Cav.) Penn. have transfer cells and what appear to be modified intermediary cells that have fewer plasmodesmata than other species, and occasional wall ingrowths. Asarina scandens synthesizes little raffinose or stachyose. Cymbalaria muralis P. Gaertn et al. and Linaria maroccana Hook.f. have only transfer cells and Digitalis grandiflora Mill. has only ordinary companion cells; these species make a trace of galactinol and raffinose, but no stachyose. Translocation experiments indicate that there is long-distance movement of raffinose oligosaccharide in these plants, even when it is synthesized in very small quantities in the leaves. We conclude that intermediary cells are as distinct a cell type as the transfer cell. In contrast to transfer cells, which are specialized for uptake of solute from the apoplast, intermediary cells are specialized for symplastic transfer of photoassimilate from the mesophyll and for synthesis of raffinose oligosaccharide. This supports our contention that raffinose oligosaccharide synthesis and symplastic phloem loading are mechanistically linked (Turgeon and Gowan 1990, Plant Physiol. 94, 1244–1249). Minor-vein anatomy and sugar synthesis may be useful characters in determining the phylogenetic relationships of plants in this family.We thank Andrea Wolfe and Wayne Elisens for helpful discussions on the taxonomy of the Scrophulariaceae. This research was supported by National Science Foundation grant DCB-9104159, U.S. Department of Agriculture Competetive Grant 92-37306-7819, and Hatch funds.  相似文献   

20.
Plication of staminal filaments is an important diagnostic character for Tillandsia subgenus Anoplophytum (ca. 45 species). The monophyletic integrity of subgenus Anoplophytum has recently been questioned, and we conducted an anatomical investigation of plicate staminal filaments to better characterize this putative synapomorphy. Developmental studies show that the filament plications, or folds, become visible during or soon after anthesis. Serial sections of preplication filaments and filaments in sequential stages of plication were prepared and observed with light microscopy. A uniform sequence of parenchyma cell collapse begins three to four cell layers out from the vascular bundle and proceeds centrifugally to the epidermis. Eventually the epidermal cells collapse, leaving only the vascular bundle and a few surrounding parenchyma cells intact. Above and below the zone of plication, all parenchyma and epidermal cells in the filament remain intact. Species traditionally placed in subgenera Tillandsia and Allardtia have been found with plicate staminal filaments that are anatomically and develop-mentally identical to those studied from subgenus Anoplophytum. Alone, staminal filament plication does not appear to be a good diagnostic character for subgenus Anoplophytum, and doubts concerning the monophylesis of this subgenus are reinforced. The functional significance of stamen filament plication remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号