首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 917 毫秒
1.
1. In temporary aquatic habitats, time is probably the dominant environmental factor affecting community composition, mainly by setting constraints on colonization success and the replacement of taxa over time. The mechanism and effect of a decreasing inundation period on community development, mostly in terms of truncation, are still poorly documented. The permanent and ephemeral components of temporary communities are expected to be differently influenced by the degree of persistence of the habitat. 2. To study the effect of time on invertebrate community assembly and dynamics in a short duration type of temporary aquatic habitat, we monitored 16 ephemeral rock pools which persisted from less than a week to about 1 month at two rock pool sites in semi‐arid south‐eastern Botswana. Data were collected every 2 days during a full inundation cycle. 3. All communities were initially assembled by permanent residents recolonizing the habitat from egg banks and were later joined by actively dispersing ephemeral taxa. Species replacements only occurred in two pools. Concurrent with a decrease in the densities of Branchipodopsis wolfi, population sizes of Leberis sp. and Culicidae (Aedes sp. and Anopheles sp.) increased in these pools. Although it was possible to distinguish two successive phases at one rock pool site, community assembly was generally a gradual process determined by dispersal strategies of the inhabitants. Additional rains after initial filling triggered dispersal by ephemeral taxa, mainly Micronecta youngiana and Hydroglyphus infirmus, and positively influenced colonization success. 4. Decreasing persistence shortens community development down to a critical point below which lack of time eliminates the possibility of species replacement. Based on these findings, we define ephemeral waters as aquatic habitats lacking species replacements. Other temporary water types have a relatively longer persistence, permitting successional replacement of species.  相似文献   

2.
Explaining the variance of local communities in a spatial‐environmental matrix is one of the core interests of ecology today. Recent progress in metacommunity theory has made a substantial contribution to this field, however good empirical data in support of available theories are still relatively scarce. In this study we sampled a cluster of 36 temporary rock pools four times during one season to assess invertebrate metacommunity structure and dynamics and to search for steering processes and variables. Both Mantel tests and redundancy models indicate that local abiotic factors were dominant over spatial factors in explaining community structure and both were acting independently. Spatial variables were only important for passive dispersers and significantly explained 11% of variation in this community component. Pools connected by temporary overflows hosted more similar communities of passive dispersers than unconnected ones while community dissimilarity significantly increased with inter‐pool distance. A negative curvilinear relation was discovered between taxon richness and isolation in passive dispersers, providing some support for existing theoretical models of Mouquet and Loreau. Of different metacommunity perspectives, a combination of species sorting and mass effects best explains the observed patterns. Additionally, priority effects and monopolization may buffer against the homogenising effects of dispersal and contribute to the distinctness of isolated communities. This is one of the first studies to present evidence for spatial patterns in aquatic communities on such a small spatial scale (a rock ledge of ±9000 m2). Bridging the gap between theory and observed patterns in natural systems is one of the main challenges for future metacommunity research. Small aquatic habitats such as pitcher plants and freshwater rock pools may well have an important role to play as model systems to study ecological processes in a natural spatially explicit environment.  相似文献   

3.
This paper reports patterns of similarity and overlap in species presence and patterns of linear distribution of intestinal helminths in 22 avocets from 4 populations. Avocets collected from ephemeral bodies of water in Alberta and Manitoba had communities composed largely of species that are avocet specialists plus some that are host generalists. The composition of helminth communities in these hosts was similar to that reported in earlier surveys of avocet helminths. There was little evidence for competition between helminth species in these communities. In contrast, avocets collected from permanent bodies of water in Alberta had communities composed largely of species that are specialists in various duck species, particularly lesser scaup. These helminths were superimposed on the normal community, fitting into linear gaps along the intestine but also overlapping the distributions of avocet specialists. These lesser scaup specialists exhibit interactive patterns amongst themselves and, to some extent, with avocet specialists. Helminth communities in avocets from ephemeral bodies of water have vacant niches and are largely isolationist in nature. Those in avocets from permanent bodies of water are saturated and are more interactive in nature.  相似文献   

4.
1. Dispersal ability influences the distribution and abundance of organisms, but empirical investigations of the relationship between dispersal ability and the composition of ecological assemblages are scarce. Here, we compare between-site variation in the species richness and community composition of actively and passively dispersing pond invertebrates.
2. Coleoptera (active dispersers) and microcrustacea (passive dispersers) were sampled over a season from 16 ponds within a 4-km radius in south-west England. Species richness and community composition were related to environmental variables using regression and Canonical Correspondence Analysis (CCA), respectively.
3. Coleopteran species richness was significantly and positively correlated with pond permanence and maximum area, whereas microcrustacean species richness was relatively equal across sites and did not correlate with environmental variables. The frequency of species' occurrence between sites was the same for both groups, which suggests that active and passive dispersers exhibited the same degree of dispersal.
4. Between-site variation in community composition was non-random for both groups, with pond permanence and area, together, explaining similar proportions of between-site variation for Coleoptera. Permanence was correlated most strongly with microcrustacean community composition and a high proportion (25%) of microcrustacean species were more numerous in smaller, more ephemeral ponds.
5. These data suggest that, at small spatial scales, Coleoptera which can undertake multiple dispersal events, are more likely to colonise large, more permanent ponds than passively dispersing microcrustacea. For microcrustacea, other traits (in this case those permitting existence in ephemeral habitats) may over-ride the influences of dispersal in driving between-site variation in species composition.  相似文献   

5.
H. Smith  P.J. Wood  J. Gunn 《Hydrobiologia》2003,510(1-3):53-66
The macroinvertebrate fauna of five karst (limestone) springbrook systems with contrasting physical habitat and discharge patterns were investigated to examine the role of flow permanence and habitat structure on macroinvertebrate community composition. Clear physical differences were identified between perennial and intermittent springs and individual sampling stations. However, flow permanence, water temperature and the input of leaf litter exerted a greater influence on the aquatic invertebrate community than habitat structure. Perennial sites were characterised by a greater abundance of macroinvertebrates and greater Ephemeroptera, Plecoptera and Trichoptera (EPT) richness than intermittent sites. The fauna of all of the springbrook systems examined were dominated by relatively common and ubiquitous taxa (e.g. Gammarus pulex) although a number of taxa displaying life cycle adaptations to ephemeral aquatic habitats (e.g. Limnephilus auricula and Stenophylax permistus) were recorded at intermittent sites.  相似文献   

6.
Managing and restoring faunal diversity across large areas requires an understanding of the roles of connectivity and dispersal in driving community patterns. We sought to determine the influence of connectivity, water regime, water source, geographical location, and dispersal traits on patterns of aquatic invertebrate diversity across a continent‐wide arid biome. We compiled data on freshwater invertebrate assemblages from sites spanning the breadth of arid Australia. Univariate analyses (analysis of variance and rarefaction) revealed that alpha and gamma diversity across sites decreased as latitude increased. Multivariate analyses (ordination and analysis of similarity) revealed that community composition had considerable fidelity to geographic regions. Hydrological connectivity was strongly associated with riverine community composition although water rarely flowed (often less than annually). Hydrologically isolated sites (springs and rockholes) supported communities that were markedly dissimilar to hydrologically connected sites, and to each other. We investigated the influence of dispersal on diversity patterns by examining distance decay relationships for each of four dispersal trait groups (obligate aquatic and passive, weak, and strong aerial dispersers) on the basis of geodesic (shortest path) distances between pairs of sites and Mantel tests. We did not detect clear differences between dispersal traits and distance decay relationships at the continental scale, even for the two groups with the lowest dispersal ability (obligate aquatics and passive dispersers). Our results suggest that the loss of hydrological connectivity from water developments in arid lands (for example, the impoundment of intermittent rivers) is likely to affect macroinvertebrates. However, the exact flow mechanisms underlying such changes remain to be determined.  相似文献   

7.
8.
9.
Ephemeral wetlands commonly experience events that would be drastic disturbances in permanent aquatic ecosystems, such as the elimination of all water. It is well known that survival in these harsh habitats requires flexibility in response to natural perturbations, but scientists have rarely investigated if this flexibility translates to anthropogenic stresses. Therefore, we evaluated aquatic crustacean communities in ephemeral wetlands in response to environmental and anthropogenic constraints. We sampled crustacean communities from 73 ephemeral wetlands across 5 states of the North American high plains. Neither habitat size, habitat depth, nor whether a wetland was natural or artificially created had any recognizable effect on the crustacean community. Moreover, natural communities have great flexibility, which seems to impart resilience under some anthropogenic forces. Communities of artificial waterbodies (roadside ditches and stock ponds) were indistinguishable from those in naturally formed wetlands. Cattle grazing, which in some ways resembles effects of native vertebrate grazers, was generally associated with increased invertebrate densities and richness. In contrast, tilling for row-crop agriculture decreased invertebrate density and richness. Overall, current conservation strategies in ephemeral wetlands may need to be revised to include artificial habitats as viable, important habitats, and cattle grazing as an essential ecosystem component in areas now lacking large native grazers, such as bison.  相似文献   

10.
Ponds are common and abundant landscape features in temperate environments, particularly on floodplains where lateral connectivity with riverine systems persists. Despite their widespread occurrence and importance to regional diversity, research on the ecology and hydrology of temperate ephemeral and perennial floodplain ponds lags behind that of other shallow waterbodies. This study examines the aquatic macroinvertebrate diversity of 34 ponds (20 perennial and 14 ephemeral) on two unregulated riverine floodplain meadows in Leicestershire, UK. Perennial ponds supported nearly twice the diversity of ephemeral ponds. Despite frequent inundation of floodwater and connectivity with other floodplain waterbodies, ephemeral ponds supported distinct invertebrate communities when compared to perennial ponds. When the relative importance of physical, chemical, biological and spatial characteristics was examined, physical and chemical characteristics were found to account for more variation in community composition than biological or spatial variables. The results suggest that niche characteristics rather than neutral colonisation processes dominate the structure of invertebrate communities of floodplain ponds. The maintenance of pond networks with varying hydroperiod lengths and environmental characteristics should be encouraged as part of conservation management strategies to provide heterogeneous environmental conditions to support and enhance aquatic biodiversity at a landscape scale.  相似文献   

11.
12.
13.
In temporary aquatic habitats, permanence and the severe disturbance associated with desiccation are strong selective agents expected to lead to differentiation in life history strategies in populations experiencing different disturbance regimes. Besides optimal timing of hatching of dormant life stages, maturation and reproduction, pool inhabitants also benefit from the acquisition of reliable cues for the quality of the ambient environment. We investigated whether hatching patterns, life history characteristics and egg bank size of Branchipodopsis fairy shrimp (Branchiopoda, Anostraca) inhabiting a cluster of temporary rock pools in South Africa reflect variation in habitat stability and hatching cues. Long-term hydrological variation was used to select pools along a gradient of habitat stability. Initial conductivity was a good indicator for the length of inundations. No hatching occurred under elevated conductivities, which may present a mechanism to avoid abortive hatching. Egg bank size was unaffected by habitat size or habitat stability but instead was related to cover by a protective sheet of dry aquatic vegetation, which presumably counteracts egg bank erosion by wind when pools are dry. Life history but not hatching phenology reflected some aspects of habitat stability. Fairy shrimp populations in ephemeral pools started reproduction earlier than populations in more stable habitats. Additional common garden or transplant experiments, however, will be required to assess the relative importance of environmental and genetic components in explaining the observed variation and acquire more insight into the trade-offs that lie at the base of the evolution of life history strategies along the pond permanence gradient.  相似文献   

14.
1. Hydroregime (duration, frequency and predictability of the aquatic phase) is a key feature of temporary aquatic habitats that not only moulds community structure and diversity (species sorting) but also life history characteristics of the inhabitants (natural selection). However, since hydroregime is a complex multidimensional entity that cannot be estimated from short term observations, morphometric variables are commonly used as proxies for hydroregime, making it impossible to separate effects of habitat size and hydroregime on biota.
2. We have used a simple hydrological model, validated with recent (average r 2 = 96%) and historic water level observations (average r 2 = 81%), to accurately reconstruct hydroregime based on historical rainfall and evaporation data in a cluster of 36 temporary rock pools in central South Africa.
3. Using the model output, we demonstrated that both hydroregime and habitat size had unique and shared effects on temporary pool biota and that these effects depended on the dispersal modes of the taxa. Model-generated hydrological data explained more variation in community patterns than short-term observations of hydroperiod. Hydroregime was more important for passive dispersers than for active dispersers that can migrate when pools dry up. Basin morphometry was a relatively poor predictor of pool hydroregime. We concluded that simple modelling may greatly improve the resolution of studies linking hydroregime to biological variables.
4. An accurate account of hydrological variation provides a firm foundation to understand community and population structure and dynamics in temporary aquatic habitats. Since many of these habitats have been destroyed or degraded in recent decades, our findings and tools may contribute to the development of reliable conservation guidelines.  相似文献   

15.
Anthropogenic alterations of natural hydrology are common in wetlands and often increase water permanence, converting ephemeral habitats into permanent ones. Since aquatic organisms segregate strongly along hydroperiod gradients, added water permanence caused by canals can dramatically change the structure of aquatic communities. We examined the impact of canals on the abundance and structure of wetland communities in South Florida, USA. We sampled fishes and macroinvertebrates from marsh transects originating at canals in the central and southern Everglades. Density of all aquatic organisms sampled increased in the immediate proximity of canals, but was accompanied by few compositional changes based on analysis of relative abundance. Large fish ( >8 cm), small fish ( <8 cm) and macroinvertebrates ( >5 mm) increased in density within 5 m of canals. This pattern was most pronounced in the dry season, suggesting that canals may serve as dry-down refugia. Increases in aquatic animal density closely matched gradients of phosphorus enrichment that decreased with distance from canals. Thus, the most apparent impact of canals on adjacent marsh communities was as conduits for nutrients that stimulated local productivity; any impact of their role as sources of increased sources of predators was not apparent. The effect of predation close to canals was overcompensated by increased secondary productivity and/or immigration toward areas adjacent to canals in the dry season. Alternatively, the consumptive effect of predatory fishes using canals as dry-season refuges is very small or spread over the expanse of marshes with open access to canals. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

16.
Assessments of wetland condition are generally based on measures of variables related to plants or large animals (birds, fish), and catchment or landscape features. This approach ignores the considerable biodiversity and functional values of small aquatic organisms. The aim of this study was to assess the correspondence between landscape-based indices of wetland condition and the community composition of both aquatic invertebrates and diatoms across a broad range of wetlands in the West Coast region of New Zealand. Aquatic invertebrates and diatoms were sampled from 29 lowland wetlands subject to varying degrees of catchment modification. Wetland condition was assessed independently using two methods: a field-based method to give the Wetland Condition Index, and a GIS-based method that gave an Index of Ecological Integrity. Strong relationships existed between community composition and pH, so we partitioned the community data into groups according to wetland pH. We found only weak relationships between wetland condition scores and invertebrate and diatom communities within each pH group. In most cases, data describing the nutrient status of the water had the strongest influence on invertebrate and diatom communities. Lack of strong associations between measured wetland condition indices and either diatom or invertebrate community composition suggests that neither index was dominated by variables directly influencing the aquatic component of wetland biota. The challenges now are to identify the critical variables, and to develop complementary wetland scoring systems that better reflect the status of small aquatic organisms.  相似文献   

17.
Differences in the dynamics of ecological processes between Mediterranean and colder temperate aquatic systems could imply different patterns in faunal communities in terms of composition and biodiversity (i.e. species richness and rarity). In order to identify some of these patterns the crustacean and aquatic insect composition and biodiversity of four water body types, classified according to their salinity and water permanence, were compared. Moreover, the relationships between species richness and water, pond and landscape variables were analysed. A total number of 91 water bodies located throughout Catalunya (NE Iberian Peninsula) were sampled. Three species assemblages were observed: one for permanent freshwaters, another for temporary freshwaters, and a third one for saline waters (SW), since permanent and temporary saline water bodies had similar composition. Differences in salinity were associated with proportion of crustaceans versus insects and with singularity. Thus, saline ponds had a higher proportion of crustaceans, and lower values of singularity. Conductivity was significantly related to total (crustaceans plus insects) richness, and also related to insect richness. The main difference between the models obtained for crustacean species richness and insect species richness is the significance of landscape variables in the latter, and this fact could be related to the different dispersion types of these two faunal groups: active for insects versus passive for crustaceans. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: R. Céréghino, J. Biggs, B. Oertli & S. Declerck The ecology of European ponds: defining the characteristics of a neglected freshwater habitat  相似文献   

18.
19.
  1. Drying intermittent stream networks often have permanent water refuges that are important for recolonisation. These habitats may be hotspots for interactions between fishes and invertebrates as they become isolated, but densities and diversity of fishes in these refuges can be highly variable across time and space.
  2. Insect emergence from streams provides energy and nutrient subsidies to riparian habitats. The magnitude of such subsidies may be influenced by in-stream predators such as fishes.
  3. We examined whether benthic macroinvertebrate communities, emerging adult insects, and algal biomass in permanent grassland stream pools differed among sites with naturally varying densities of fishes. We also manipulated fish densities in a mesocosm experiment to address how fishes might affect colonisation during recovery from hydrologic disturbance.
  4. Fish biomass had a negative impact on invertebrate abundance, but not biomass or taxa richness, in natural pools. Total fish biomass was not correlated with total insect emergence in natural pools, but orangethroat darter (Etheostoma spectabile) biomass was inversely correlated with emerging Chironomidae biomass and individual midge body size. The interaction in our models between predatory fish biomass and date suggested that fishes may also delay insect emergence from natural pools, altering the timing of aquatic–terrestrial subsidies.
  5. There was an increase over time in algal biomass (chlorophyll-a) in mesocosms, but this did not differ among fish density treatments. Regardless, fish presence in mesocosms reduced the abundance of colonising insects and total invertebrate biomass. Mesocosm invertebrate communities in treatments without fishes were characterised by more Chironomidae, Culicidae, and Corduliidae.
  6. Results suggest that fishes influence invertebrates in habitats that represent important refuges during hydrologic disturbance, hot spots for subsidy exports to riparian food webs, and source areas for colonists during recovery from hydrologic disturbance. Fish effects in these systems include decreasing invertebrate abundance, shifting community structure, and altering patterns of invertebrate emergence and colonisation.
  相似文献   

20.
The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation–environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools. Handling editor: S. M. Thomaz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号