首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
The O‐acyl isopeptide method was developed for the efficient preparation of difficult sequence‐containing peptide. Furthermore, development of the O‐acyl isodipeptide unit for Fmoc chemistry simplified its synthetic procedure by solid‐phase peptide synthesis. Here, we report a novel isodipeptide unit for Boc chemistry, and the unit was successfully applied to the synthesis of amyloid β peptide. Combination of Boc chemistry and the isodipeptide unit would be an effective method for the synthesis of many difficult peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
A novel strategy for a more efficient synthesis of difficult sequence‐containing peptides, the S‐acyl isopeptide method, was developed and successfully applied. A model pentapeptide Ac–Val–Val–Cys–Val–Val–NH2 was synthesized via its water‐soluble S‐acyl isopeptide using an S‐acyl isodipeptide unit, Boc–Cys(Fmoc–Val)–OH. An S‐acyl isopeptide possessing excellent water solubility could be readily and quantitatively converted to the native peptide via an SN intramolecular acyl migration reaction at pH 7.4. Thus, the S‐acyl isopeptide method provides a useful tool in peptide chemistry. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
DKP formation is a serious side reaction during the solid‐phase synthesis of peptide acids containing either Pro or Gly at the C‐terminus. This side reaction not only leads to a lower overall yield, but also to the presence in the reaction crude of several deletion peptides lacking the first amino acids. For the preparation of protected peptides using the Fmoc/tBu strategy, the use of a ClTrt‐Cl‐resin with a limited incorporation of the C‐terminal amino acid is the method of choice. The use of resins with higher loading levels leads to more impure peptide crudes. The use of HPLC‐ESMS is a useful method for analysing complex samples, such as those formed when C‐terminal Pro peptides are prepared by non‐optimized solid‐phase strategies. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
O‐Acyl isopeptides, in which the N‐acyl linkage on the hydroxyamino acid residue (e.g. Ser and Thr) is replaced by an O‐acyl linkage, generally suppress unfavorable aggregation properties derived from the corresponding parent peptides. Here, we report the synthesis of an O‐acyl isopeptide of 34‐mer pyroGlu‐ADan (2), a component of amyloid deposits in hereditary familial Danish dementia, by using native chemical ligation. Native chemical ligation of pyroGlu1‐ADan(1‐21)‐SCH2CH2SO3?Na+ (3) and Cys22O‐acyl isopeptide (4), in which the amino group of the Ser29 residue at the isopeptide moiety was protected by an allyloxycarbonyl group, proceeded well in an aqueous solvent to yield a ligated O‐acyl isopeptide (5). Subsequent disulfide bond formation and deprotection of the allyloxycarbonyl group followed by HPLC purification gave 2 with a reasonable overall yield. 2 was converted to the parent peptide 1 via an O‐to‐N acyl migration reaction. The sequential method, namely (i) native chemical ligation of the O‐acyl isopeptide, (ii) HPLC purification as the O‐acyl isopeptide form, and (iii) O‐to‐N acyl migration into the desired polypeptide, would be helpful to solve problems with HPLC purification of hydrophobic polypeptides in the process of chemical protein synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
A head‐to‐tail cyclization of a protected linear hexapeptide with a C‐terminal O‐acyl isopeptide proceeded to give a cyclic O‐acyl isopeptide without epimerization. The cyclic O‐acyl isopeptide possessed different secondary structures compared with the native cyclic peptide. The isopeptide was then efficiently converted to the desired cyclic peptide via an O‐to‐N acyl migration reaction using a silica gel‐anchored base. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Synthetic collagen peptides containing larger numbers of Gly‐Pro‐Hyp repeats are difficult to purify by standard chromatographic procedures. Therefore, efficient strategies are required for the synthesis of higher molecular weight collagen‐type peptides. Applying the Fmoc/tBu chemistry, a comparative analysis of the standard stepwise chain elongation procedure on solid support with the procedure based on the use of the synthons Fmoc‐Gly‐Pro‐Hyp(tBu)‐OH and Fmoc‐Pro‐Hyp‐Gly‐OH was performed. The crude products resulting from the stepwise elongation procedure and from the use of Fmoc‐Gly‐Pro‐Hyp(tBu)‐OH clearly revealed large amounts of microheterogeneities that result from incomplete imino acid acylation as well as from diketopiperazine formation with cleavage of Gly‐Pro units from the growing peptide chain. Conversely, by the use of the Fmoc‐Pro‐Hyp‐Gly‐OH synthon, the quality of the crude products was significantly improved; moreover, protection of the Hyp side chain hydroxyl function is not required using the Fmoc/tBu strategy. With this optimized synthetic procedure, relatively large collagen‐type peptides were obtained in satisfactory yields as highly homogeneous compounds. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The three‐dimensional solution structure of harzianin HC IX, a peptaibol antibiotic isolated from the fungus Trichoderma harzianum, was determined using CD, homonuclear, and heteronuclear two‐dimensional nmr spectroscopy combined with molecular modeling. This 14‐residue peptide, Ac Aib1 Asn2 Leu3 Aib4 Pro5 Ala6 Ile7 Aib8 Pro9 Iva10 Leu11 Aib12 Pro13 Leuol14 (Aib, α‐aminoisobutyric acid; Iva, isovaline; Leuol, leucinol), is a main representative of a short‐sequence peptaibol class characterized by an acetylated N‐terminus, a C‐terminal amino alcohol, and the presence of three Aib‐L ‐Pro motifs at positions 4–5, 8–9, and 12–13, separated by two dipeptide units. In spite of a lower number of residues, compared to the 18/20‐residue peptaibols such as alamethicin, harzianin HC IX exhibits remarkable membrane‐perturbing properties. It interacts with phospholipid bilayers, increasing their permeability and forming voltage‐gated ion channels through a mechanism slightly differing from that proposed for alamethicin. Sequence‐specific 1H‐ and 13C‐nmr assignments and conformational nmr parameters (3JNHCαH coupling constants, quantitative nuclear Overhauser enhancement data, temperature coefficients of amide and carbonyl groups, NH–ND exchange rates) were obtained in methanol solution. Sixty structures were calculated based on 98 interproton distance restraints and 6 Φ dihedral angle restraints, using high temperature restrained molecular dynamics and energy minimization. Thirty‐seven out of the sixty generated structures were consistent with the nmr data and were convergent. The peptide backbone consists in a ribbon of overlapping β‐turns twisted into a continuous spiral from Asn2 to Leuol14 and forming a 26 Å long helix‐like structure. This structure is slightly amphipathic, with the three Aib–Pro motifs aligned on the less hydrophobic face of the spiral where the Asn2 side chain is also present, while the more hydrophobic bulky side chains of leucines, isoleucine, isovaline, and leucinol are located on the concave side. The repetitive (Xaa–Yaa–Aib–Pro) tetrapeptide subunit, making up the peptide sequence, is characterized by four sets of (Φ,Ψ) torsional angles, with the following mean values: Φi = −90°, Ψi = −27°; Φi+1 = −98°, Ψi+1 = −17°; Φi+2 = −49°, Ψi+2 = −50°; Φi+3 = −78°, Ψi+3 = +3°. We term this particular structure, specifically occurring in the case of (Xaa–Yaa–Aib–Pro)n sequences, the (Xaa–Yaa–Aib–Pro)‐β‐bend ribbon spiral. It is stabilized by 4 → 1 intramolecular hydrogen bonds and differs from both the canonical 310‐helix made of a succession of type III β‐turns and from the β‐bend ribbon spiral that has been described in the case of (Aib–Pro)n peptide segments. © 1999 John Wiley & Sons, Inc. Biopoly 50: 71–85, 1999  相似文献   

11.
12.
S‐Acyl cysteine peptides containing α‐, β‐ or γ‐amino acid residues undergo long‐range S‐ to N‐acyl transfer to give analogs of native tripeptides and tetrapeptides containing additional carbon atoms in the chain. The ease of intramolecular SN‐acyl transfer relative to intermolecular transacylation is favored increasingly for 9 < 12 < 13 ~ 10‐membered cyclic transition states; the observed order is explained on conformational and intermolecular interaction considerations. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
14.
An efficient method of peptide thioester synthesis is described. The reaction is based on an N‐4,5‐dimethoxy‐2‐mercaptobenzyl (Dmmb) auxiliary‐assisted NS acyl shift reaction after assembling a peptide chain by Fmoc‐solid phase peptide synthesis. The Dmmb‐assisted NS acyl shift reaction proceeded efficiently under mildly acidic conditions, and the peptide thioester was obtained by treating the resulting S‐peptide with sodium 2‐mercaptoethanesulfonate. No detectable epimerization of the amino acid residue adjacent to the thioester moiety in the case of Leu was found. The reactions were also amenable to the on‐resin preparation of peptide thioesters. The utility was demonstrated by the synthesis of a 41‐mer peptide thioester, a phosphorylated peptide thioester and a 33‐mer peptide thioester containing a trimethylated lysine residue. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Clostridium histolyticum collagenase causes extensive degradation of collagen in connective tissue that results in gas gangrene. The C‐terminal collagen‐binding domain (CBD) of these enzymes is the minimal segment required to bind to a collagen fibril. CBD binds unidirectionally to the undertwisted C‐terminus of triple helical collagen. Here, we examine whether CBD could also target undertwisted regions even in the middle of the triple helix. Collageneous peptides with an additional undertwisted region were synthesized by introducing a Gly → Ala substitution [(POG)xPOA(POG)y]3, where x + y = 9 and x > 3). 1H–15N heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) titration studies with 15N‐labeled CBD demonstrated that the minicollagen binds to a 10 Å wide 25 Å long cleft. Six collagenous peptides each labeled with a nitroxide radical were then titrated with 15N‐labeled CBD. CBD binds to either the Gly → Ala substitution site or to the C‐terminus of each minicollagen. Small‐angle X‐ray scattering measurements revealed that CBD prefers to bind the Gly → Ala site to the C‐terminus. The HSQC NMR spectra of 15N‐labeled minicollagen and minicollagen with undertwisted regions were unaffected by the titration of unlabeled CBD. The results imply that CBD binds to the undertwisted region of the minicollagen but does not actively unwind the triple helix.  相似文献   

16.
17.
The multiphosphorylated tryptic peptide αs1‐casein(59–79) has been shown to be antigenic with anti‐casein antibodies. In an approach to determine the amino acyl residues critical for antibody binding we undertook an epitope analysis of the peptide using overlapping synthetic peptides. With αs1‐casein(59–79) as the adsorbed antigen in a competitive ELISA only two of five overlapping synthetic peptides at 1 mM significantly inhibited binding of the anti‐casein antibodies. Peptides Glu‐Ser(P)‐Ile‐Ser(P)‐Ser(P)‐Ser(P)‐Glu‐Glu and Ile‐Val‐Pro‐Asn‐Ser(P)‐Val‐Glu‐Glu inhibited antibody binding by 20.0±3.6% and 60.3±7.9%, respectively. The epitope of Glu63‐Ser(P)‐Ile‐Ser(P)‐Ser(P)‐Ser(P)‐Glu‐Glu70 was further localised to the phosphoseryl cluster as the peptide Ser(P)‐Ser(P)‐Ser(P) significantly inhibited binding of the anti‐casein antibodies to αs1‐casein(59–79) by 29.5±7.4%. Substitution of Ser(P)75 with Ser75 in the second inhibitory peptide Ile‐Val‐Pro‐Asn‐Ser(P)75‐Val‐Glu‐Glu also abolished inhibition of antibody binding to αs1‐casein (59–79) demonstrating that Ser(P)75 is also a critical residue for recognition by the antibodies. These data show that the phosphorylated residues in the cluster sequence ‐Ser(P)66‐Ser(P)‐Ser(P)68 and in the sequence ‐Pro73‐Asn‐Ser(P)‐Val‐Glu77‐ are critical for antibody binding to αs1‐casein(59–79) and further demonstrate that a highly phosphorylated segment of a protein can be antigenic. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The natural amino acids are primarily helix breakers at the low assignment temperatures characteristic of many studies, but recent genomic analyses of thermophilic proteins suggest that at high temperatures, some breakers may become strong helix formers. Moreover, the breaker/former inventory has not been previously characterized at the physiologically relevant temperature of 37°C. The versatility of 13C?O NMR chemical shifts as helicity reporters allows construction of two mutant peptide series, tailored to expand the range of temperature assignments for helical propensities and derived from the core hosts tL‐Ala9XxxAla9tL and tL‐AlaNva4XxxNva4Ala9tL, Nva = norvaline. For three limiting guests Xxx, the helix former Nva and the breakers Gly and Pro, we report wXxx[T] assignments at seven temperatures from 2 to 80°C, validating our reasoning and paving the way for assignment of a definitive wXxx[T] data‐base. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 311–320, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
20.
An analogue of the human granulocyte–macrophage colony‐stimulating factor (hGM‐CSF), hGM‐CSF(13–27)–Gly–(75–87) was synthesized by solid phase methodology. This analogue was designed to comprise helices A and C of the native growth factor, linked by a glycine bridge. Helices A and C form half of a four‐helix bundle motif in the crystal structure of the native factor and are involved in the interaction with α‐ and β‐chains of the heterodimeric receptor. A conformational analysis of the synthetic analogue by CD, two‐dimensional nmr spectroscopy, and molecular dynamics calculations is reported. The analogue is in a random structure in water and assumes a partially α‐helical conformation in a 1 : 1 trifluoroethanol/water mixture. The helix content in this medium is ∼ 70%. By 2D‐nmr spectroscopy, two helical segments were identified in the sequences corresponding to helices A and C. In addition to medium‐ and short‐range NOESY connectivities, a long‐range cross peak was found between the Cβ proton of Val16 and NH proton of His87 (using the numbering of the native protein). Experimentally derived interproton distances were used as restraints in molecular dynamics calculations, utilizing the x‐ray coordinates as the initial structure. The final structure is characterized by two helical segments in close spatial proximity, connected by a loop region. This structure is similar to that of the corresponding domain in the x‐ray structure of the native growth factor in which helices A and C are oriented in an antiparallel fashion. The N‐terminal residues Gly–Pro of helix C are involved in an irregular turn connecting the two helical segments. As a consequence, helix C is appreciably shifted and slightly rotated with respect to helix A compared to the x‐ray structure of the native growth factor. These small differences in the topology of the two helices could explain the lower biological activity of this analogue with respect to that of the native growth factor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 545–554, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号