首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cysteine‐rich secretory proteins (CRISPs) are mainly found in the mammalian male reproductive tract and reported to be involved at different stages of fertilization. CRISPs have been shown to interact with prostate secretory protein of 94 amino acids (PSP94) from diverse sources, and the binding of these evolutionarily conserved proteins across species is proposed to be of functional significance. Of the three mammalian CRISPs, PSP94–CRISP3 interaction is well characterized, and specific binding sites have been identified; whereas, CRISP2 has been shown to interact with PSP94 in vitro. Interestingly, human CRISP3 and CRISP2 proteins are closely related showing 71.4% identity. In this study, we identified CRISP2 as a potential binding protein of PSP94 from human sperm. Further, we generated antisera capable of specifically detecting CRISP2 and not CRISP3. In this direction, specific peptides corresponding to the least conserved ion channel regulatory region were synthesized, and polyclonal antibodies were generated against the peptide in rabbits. The binding characteristics of the anti‐CRISP2 peptide antibody were evaluated using competitive ELISA. Immunoblotting experiments also confirmed that the peptide was able to generate antibodies capable of detecting the mature CRISP2 protein present in human sperm lysate. Furthermore, this anti‐CRISP2 peptide antibody also detected the presence of native CRISP2 on sperm.Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Cysteine-rich secretory protein (CRISP) 2 (previously TPX1) is a testis-enriched member of the CRISP family, and has been localized to both the sperm acrosome and tail. Like all members of the mammalian CRISP family, its expression pattern is strongly suggestive of a role in male fertility, but functional support for this hypothesis remains limited. In order to determine the biochemical pathways within which CRISP2 is a component, the putative mature form of CRISP2 was used as bait in a yeast two-hybrid screen of a mouse testis expression library. One of the most frequently identified interacting partners was mitogen-activated protein kinase kinase kinase 11 (MAP3K11). Sequencing and deletion experiments showed that the carboxyl-most 20 amino acids of MAP3K11 interacted with the CRISP domain of CRISP2. This interaction was confirmed using pull-down experiments and the cellular context was supported by the localization of CRISP2 and MAP3K11 to the acrosome of the developing spermatids and epididymal spermatozoa. Interestingly, mouse epididymal sperm contained an approximately 60-kDa variant of MAP3K11, which may have been a result of proteolytic cleavage of the longer 93-kDa form seen in many tissues. These data raise the possibility that CRISP2 is a MAP3K11-modifying protein or, alternatively, that MAP3K11 acts to phosphorylate CRISP2 during acrosome development.  相似文献   

3.
Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. Epididymal protein CRISP1, a member of the Cysteine-RIch Secretory Protein (CRISP) family, was identified by our laboratory and postulated to participate in both sperm–zona pellucida (ZP) interaction and gamete fusion by binding to egg-complementary sites. To elucidate the functional role of CRISP1 in vivo, we disrupted the Crisp1 gene and evaluated the effect on animal fertility and several sperm parameters. Male and female Crisp1−/− animals exhibited no differences in fertility compared to controls. Sperm motility and the ability to undergo a spontaneous or progesterone-induced acrosome reaction were neither affected in Crisp1−/− mice. However, the level of protein tyrosine phosphorylation during capacitation was clearly lower in mutant sperm than in controls. In vitro fertilization assays showed that Crisp1−/− sperm also exhibited a significantly reduced ability to penetrate both ZP-intact and ZP-free eggs. Moreover, when ZP-free eggs were simultaneously inseminated with Crisp1+/+ and Crisp1−/− sperm in a competition assay, the mutant sperm exhibited a greater disadvantage in their fusion ability. Finally, the finding that the fusion ability of Crisp1−/− sperm was further inhibited by the presence of CRISP1 or CRISP2 during gamete co-incubation, supports that another CRISP cooperates with CRISP1 during fertilization and might compensate for its lack in the mutant mice. Together, these results indicate that CRISP proteins are players in the mammalian fertilization process. To our knowledge this is the first knockout mice generated for a CRISP protein. The information obtained might have important functional implications for other members of the widely distributed and evolutionarily conserved CRISP family.  相似文献   

4.
CRISP2, originally known as Tpx-1, is a cysteine-rich secretory protein specifically expressed in male haploid germ cells. Although likely to be involved in gamete interaction, evidence for a functional role of CRISP2 in fertilization still remains poor. In the present study, we used a mouse model to examine the subcellular localization of CRISP2 in sperm and its involvement in the different stages of fertilization. Results from indirect immunofluorescence and protein extraction experiments indicated that mouse CRISP2 is an intraacrosomal component that remains associated with sperm after capacitation and the acrosome reaction (AR). In vitro fertilization assays using zona pellucida-intact mouse eggs showed that an antibody against the protein significantly decreased the percentage of penetrated eggs, with a coincident accumulation of perivitelline sperm. The failure to inhibit zona pellucida penetration excludes a detrimental effect of the antibody on sperm motility or the AR, supporting a specific participation of CRISP2 at the sperm-egg fusion step. In agreement with this evidence, recombinant mouse CRISP2 (recCRISP2) specifically bound to the fusogenic area of mouse eggs, as previously reported for rat CRISP1, an epididymal protein involved in gamete fusion. In vitro competition investigations showed that incubation of mouse zona-free eggs with a fixed concentration of recCRISP2 and increasing amounts of rat CRISP1 reduced the binding of recCRISP2 to the egg, suggesting that the proteins interact with common complementary sites on the egg surface. Our findings indicate that testicular CRISP2, as observed for epididymal CRISP1, is involved in sperm-egg fusion through its binding to complementary sites on the egg surface, supporting the idea of functional cooperation between homologous molecules to ensure the success of fertilization.  相似文献   

5.
Iba1 is a 17-kDa EF-hand protein highly expressed in the cytoplasm of elongating spermatids in testis. Using Iba1 as a bait, we performed yeast Two-hybrid screening and isolated a heat-shock protein Hsp40, DjB1, from cDNA library of mouse testis. To characterize DjB1 that is encoded by Dnajb1 gene, we carried out immunoblot analyses, in situ hybridization, and immunohistochemistry. Immunoblot analyses showed that DjB1was constitutively expressed in mouse testis and that its expression level was not changed by heat shock. Dnajb1 mRNA was exclusively expressed in spermatocytes and round spermatids in mouse testis, and Dnajb1 protein DjB1 was predominantly expressed in the cytoplasm of spermatocytes, round spermatids, and elongating spermatids. In mature mouse spermatozoa, DjB1 was localized in the middle and the end pieces of flagella as well as in association with the head (acrosomal region). Association of DjB1 with the acrosomal region in sperm head was also observed in rat spermatozoa. These data suggested that DjB1, which was constitutively expressed in postmeiotic spermatogenic cells in testis, was integrated into spermatozoa as at least two components, that is, sperm head and tail of rodent spermatozoa.  相似文献   

6.
7.
Actin polymerization and development of hyperactivated (HA) motility are two processes that take place during sperm capacitation. In previous studies, we demonstrated that the increase in F-actin during capacitation depends upon inactivation of the actin severing protein, gelsolin, by its binding to phosphatydilinositol-4, 5-bisphosphate (PIP2). Here, we showed for the first time the involvement of PIP2/gelsolin in human sperm motility before and during capacitation. Activation of gelsolin by causing its release from PIP2 inhibited sperm motility, which could be restored by adding PIP2 to the cells. Reduction of PIP2 synthesis inhibited actin polymerization and motility, and increasing PIP2 synthesis enhanced these activities. Furthermore, sperm demonstrating low motility contained low levels of PIP2 and F-actin. During capacitation there was an increase in PIP2 and F-actin levels in the sperm head and a decrease in the tail. In sperm with high motility, gelsolin was mainly localized to the sperm head before capacitation, whereas in low motility sperm, most of the gelsolin was localized to the tail before capacitation and translocated to the head during capacitation. We also showed that phosphorylation of gelsolin on tyrosine-438 depends on its binding to PIP2. Activation of phospholipase C by Ca2+-ionophore or by activating the epidermal-growth-factor-receptor inhibits tyrosine phosphorylation of gelsolin. In conclusion, the data indicate that the increase of PIP2 and/or F-actin in the head during capacitation enhances gelsolin translocation to the head. As a result the decrease of gelsolin in the tail allows keeping high level of F-actin in the tail, which is essential for the development of HA motility.  相似文献   

8.
Successful fertilization is tightly regulated by capacitation and decapacitation processes. Without appropriate decapacitation regulation, sperm would undergo a spontaneous acrosome reaction which leads to loss of fertilization ability. Seminal plasma is known to negatively regulate sperm capacitation. However, the suppressive mechanisms still remain unclear. In this study, we demonstrate the decapacitation mechanism of mouse seminal vesicle autoantigen (SVA) might target membrane sphingomyelin (SPM) and regulate plasma membrane Ca2+‐ATPase (PMCA) activity. The SVA was shown to suppress sperm capacitation induced by a broad panel of capacitation factors (bovine serum albumin (BSA), PAF, and cyclodextrin (CD)). Furthermore, SVA significantly decreased [Ca2+]i and NaHCO3‐induced [cAMP]i. Cyclic AMP agonists bypassed the SVA's suppressive ability. Importantly, the SVA may regulate PMCA activity which was evidenced by the fact that the SVA decreased the [Ca2+]i and intracellular pH (pHi) of sperm; meanwhile, a PMCA inhibitor (carboxyeosin) could reverse SVA's suppression of [Ca2+]i. The potential target of the SVA on membrane SPM/lipid rafts was highlighted by the high binding affinity of SPM–SVA (with a Kd of ~3 µM) which was close to the IC50 of SVA's suppressive activity. Additionally, treatment of mink lung epithelial cells with the SVA enhanced plasminogen activator inhibitor (PAI)‐1 expression stimulated by tumor growth factor (TGF)‐β and CD. These observations supported the membrane lipid‐raft targeting of SVA. In summary, in this paper, we demonstrate that the decapacitation mechanism of the SVA might target membrane sphingolipid SPM and regulate PMCA activity to lower [Ca2+]i, thereby decreasing the [cAMP]i level and preventing sperm pre‐capacitation. J. Cell. Biochem. 111: 1188–1198, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Summary In a survey of sperm antigens in the rat, a new intra-acrosomal antigen was found using a monoclonal antibody MC41 raised against rat epididymal spermatozoa. The MC41 was immunoglobulin G1 and recognized spermatozoa from rat, mouse and hamster. Indirect immunofluorescence with MC41 specifically stained the crescent region of the anterior acrosome of the sperm head. Immuno-gold electron microscopy demonstrated that the antigen was localized within the acrosomal matrix. Immunoblot study showed that MC41 recognized a band of approximately 165000 dalton in the extract of rat sperm from the cauda epididymidis. Immunohistochemistry with MC41 demonstrated that the antigen was first detected in approximately step-2 spermatids, and distributed over the entire cytoplasmic region of spermatids from step 2 to early step 19. The head region became strongly stained in late step-19 spermatids and then in mature spermatozoa. Distinct immunostaining was not found in the developing acrosome of spermatids throughout spermiogenesis. These results suggest that the MC41 antigen is a unique intra-acrosomal antigen which is accumulated into the acrosome during the terminal step of spermiogenesis.  相似文献   

10.
11.
Capacitation confers on the spermatozoa the competence to fertilize the oocyte. At the molecular level, a cyclic adenosine monophosphate (cAMP) dependent protein tyrosine phosphorylation pathway operates in capacitated spermatozoa, thus resulting in tyrosine phosphorylation of specific proteins. Identification of these tyrosine‐phosphorylated proteins and their function with respect to hyperactivation and acrosome reaction, would unravel the molecular basis of capacitation. With this in view, 21 phosphotyrosine proteins have been identified in capacitated hamster spermatozoa out of which 11 did not identify with any known sperm protein. So, in the present study attempts have been made to ascertain the role of one of these eleven proteins namely glycerol‐3‐phosphate dehydrogenase 2 (GPD2) in hamster sperm capacitation. GPD2 is phosphorylated only in capacitated hamster spermatozoa and is noncanonically localized in the acrosome and principal piece in human, mouse, rat, and hamster spermatozoa, though in somatic cells it is localized in the mitochondria. This noncanonical localization may imply a role of GPD2 in acrosome reaction and hyperactivation. Further, enzymatic activity of GPD2 during capacitation correlates positively with hyperactivation and acrosome reaction thus demonstrating that GPD2 may be required for sperm capacitation.  相似文献   

12.
Recently, we cloned and sequenced a sperm-specific antigen, designated as Contraceptive Vaccinogen (rCV), from human testis (Naz et al., 2001). The present study was conducted to examine its proteomic homologue and function in murine sperm, in order to find out whether or not the mouse can provide a suitable model for examining its immunocontraceptive effects. This was examined by using purified antibodies (Ab) raised against the recombinant (r) human CV antigen of approximately 44 kD. In the Western blot procedure, rCV antibodies recognized a specific protein band of approximately 64 +/- 5 kD in murine testis and murine sperm extracts, the band similar to that found in human testis and human sperm. In the immunoprecipitation procedure, rCV Ab immunoprecipitated a protein band of similar size from murine sperm and murine testis extracts. The immunocytochemical (ICT), immunoscanning electronmicroscopic (ISEM) and the immunobead binding technique (IBT) revealed the subcellular localization of CV antigen on the surface of acrosome and tail regions of the noncapacitated and capacitated murine sperm cell. In functional bioassays, rCV Ab inhibited the acrosome reaction as well as sperm-egg binding in vitro. These data indicate that the CV antigen is expressed in murine sperm and has a biological role in sperm function and sperm-egg binding. In vitro inhibition of capacitation/acrosome reaction and sperm-zona binding suggest that the mouse can provide a suitable model to examine the immunocontraceptive effects of CV antigen in actively-immunized animals.  相似文献   

13.
Mammalian spermatozoa must undergo capacitation before acquiring the ability to fertilize the oocyte. This process is believed to be initiated following the release of surface-associated decapacitation factors that are elaborated by both the epididymis and the male accessory organs. Herein, we report the identification of a number of proteins that are actively released from the surface of mouse spermatozoa during capacitation in vitro. As anticipated, the addition of these factors back to suspensions of mouse spermatozoa was shown to suppress several correlates of the capacitation process. Specifically, they induced a significant, dose-dependent inhibition of the ability of spermatozoa to undergo a progesterone-induced acrosome reaction and to bind to the zona pellucida in vitro. Inhibition of these functions was associated with the suppression of tyrosine phosphorylation in the sperm plasma membrane but had no effect on the phosphorylation of internal proteins in either the sperm head or tail. This inhibitory activity was attributed to a subset of the isolated proteins compromising at least four putative decapacitation factors. These proteins were identified via tandem-mass spectrometry amino acid sequence analysis as plasma membrane fatty acid binding protein, cysteine-rich secretory protein 1 (CRISP1), phosphatidylethanolamine binding protein 1 (PBP), and an unnamed protein product that we have termed decapacitation factor 10 (DF10). Of these proteins, PBP was identified as a primary candidate for a decapacitation factor.  相似文献   

14.
15.
The objective was to determine the association of mRNA expression of cystine rich secretary protein 2 (CRISP2), chaperonin containing T-complex protein 1, subunit 8 (CCT8), and phosphatidylethanolamine-binding protein 1 (PEBP1), in sperm of Holstein bulls with Sire Conception Rate (SCR) scores between −4 and +4. These proteins were involved in sperm capacitation and sperm-egg fusion. Samples of sperm obtained on a single day from Holstein bulls (N = 34) in a commercial AI centre were used to evaluate relative mRNA expression of CRISP2, CCT8, and PEBP1. The mRNA abundance of CRISP2 was positively correlated (r = 0.88; P < 0.002), CCT8 was negatively correlated (r = −0.87; P < 0.002), and PEBP1 was positively correlated (r = 0.83; P < 0.006) with SCR-scores. The means of CRISP2 mRNA abundance was greater among positive SCR-score bulls (2.5 to 8 fold), the means of CCT8 mRNA abundance was greater among the negative SCR-score bulls (9.5 to 3.5 fold), and the means of PEBP1 mRNA abundance was greater for the positive SCR-score bulls (5.4 to 7.7 fold). In multivariate regression models predicting SCR-scores, mRNA abundance of CCT8 was significantly associated with SCR-score in all models. In the presence of CRISP2 mRNA abundance in the model, the SCR score's predictability of PEBP1 was insignificant. However, in the absence of CRISP2 mRNA abundance in the model, the SCR-score's predictability of PEBP1 was significant. In multivariate regression models, CRISP2 and CCT8 mRNA expression in sperm accounted for 95% of the variance in Holstein bull's SCR-scores. In conclusion, Holstein bulls with greater CRISP2 and lower CCT8 mRNA expression in sperm had higher probabilities of siring calves.  相似文献   

16.
Sulfoglycolipid immobilizing protein 1 (SLIP1) is an evolutionally conserved sperm head plasma membrane protein (Mr = 68 kDa) that binds to sulfogalactosylglycerolipid (SGG), the major sulfoglycolipid present in mammalian sperm. The purpose of this study was to characterize the initial localization and the immunoaggregated relocalization of SLIP1 on the mouse sperm head. Direct immunofluorescence (DF) of live sperm using FITC-antiSLIP1 Fab fragments and FITC-antiSLIP1 IgG indicated that SLIP1 was present in the postacrosomal region of the sperm head, although the intensity of immunostaining by FITC-antiSLIP1 IgG was greatest at the border between the postacrosomal region and the acrosome. Unlike that observed with FITC-antiSLIP1 Fab, DF using FITC-antiSLIP1 IgG indicated that SLIP1 was also present in the anterior tip of the sperm head convex ridge. Results from electron microscopic studies, using antiSLIP1 IgG followed by protein A-gold on live mouse sperm, were similar to the DF findings. In contrast, indirect immunofluorescence (IIF) of live mouse sperm using antiSLIP1 IgG and FITC-secondary antibody IgG detected SLIP1 in the sperm head convex ridge only. The IIF and DF results strongly suggest that these bivalent antibodies could induce the sperm antigen relocalization on live sperm heads. SLIP1 redistribution may be dependent on availability of excess SGG, the SLIP1 binding ligand, based on the observation that purified exogenous biotinylated SLIP1 bound to live mouse sperm at both the postacrosomal and convex ridge regions of the mouse sperm head. Immunoaggregation induced by the primary antiSLIP1 IgG or antiSLIP1 Fab with secondary antibody IgG did not cause the acrosome reaction, suggesting that SLIP1 is not involved in sperm signal transduction. Furthermore, postacrosomal SLIP1 was shown to be involved in zona binding, since sperm pretreated with antiSLIP1 Fab fragments (100 μg/ml) bound to the egg zona pellucida in vitro at ∼35% of control levels. Mol. Reprod. Dev. 48:518–528, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
The gene for proprotein convertase subtilisin/kexin-like 4 (PCSK4, previously known as PC4) is primarily transcribed in testicular spermatogenic cells. Its inactivation in mouse causes severe male subfertility. To better understand the reproductive function of PCSK4, we examined its subcellular localization in the testicular epithelium via immunohistochemistry, and on intact sperm via indirect immunofluorescence and immunoelectron microscopy. PCSK4 was detected in the acrosomal granules of round spermatids, in the acrosomal ridges of elongated spermatids, and on the sperm plasma membrane overlying the acrosome. We also investigated PCSK4 relevance for sperm acquisition of fertilizing ability by comparing wild-type and PCSK4-null sperm for their abilities in capacitation, acrosome reaction, and egg binding in vitro. PCSK4-null sperm underwent capacitation at a faster rate; they were induced to acrosome react by lower concentrations of zona pellucida; and their egg-binding ability was only half that of wild-type sperm. These sperm physiologic anomalies likely contribute to the severe subfertility of PCSK4-deficient male mice.  相似文献   

18.
Under in vitro conditions, incubation with 0.3% bovine serum albumin (BSA) and 1.8 mM CaCl2 induces mouse sperm capacitation and increases the consequential acrosome-reaction. The effect of mouse uterine 24p3 protein on such stimulated sperm has been investigated to understand the biological function of the 24p3 protein. Variations in the intracellular pH (pHi), calcium concentration, cAMP levels and tyrosine phosphorylation in cytosol were determined and on in vitro mouse fertilization was evaluated. The presence of 24p3 protein reduced the response of sperm to BSA and calcium by suppressing the elevation of intracellular pH, calcium uptake, cAMP accumulation and protein tyrosine phosphorylation of BSA/calcium-stimulated sperm and showed inhibitory effect on mouse in vitro fertilization. The results indicated the inhibition of the BSA-stimulated sperm acrosome reaction by 24p3 protein then suppressed sperm fertilization. We suggested that the 24p3 protein acts as an in vitro inhibitor of the acrosome reaction in BSA stimulated sperm and this might be an anti-fertilization factor in vitro.  相似文献   

19.
20.
Carcinoembryonic antigen (CEA) family, a subgroup of the immunoglobulin (Ig) superfamily, is divided into two sub‐families: the CEA‐related cell adhesion molecules (CEACAM) and the pregnancy‐specific glycoproteins. The isoform CEACAM2 is expressed in mouse testis; in this study, we identified a novel isoform of Ceacam2, Ceacam2‐Long (Ceacam2‐L). CEACAM2‐L is different from CEACAM2 in that it has much longer cytoplasmic tail region. Ceacam2‐L starts to appear faintly in mouse testis after 3 weeks of postnatal development, and its expression level increased after 5 weeks. Immunoblot analysis confirmed the expression of CEACAM2‐L in the seminiferous epithelium of mouse testis. Immunohistochemical data showed that CEACAM2‐L was not observed on spermatogonia, spermatocytes, round spermatids, or Sertoli cells, but was seen at the plasma membrane of elongating spermatids in contact with extended cytoplasmic processes of Sertoli cells. CEACAM2‐L was not detected at the head region of elongating spermatids, where the apical ectoplasmic specialization is constructed. These data suggest that CEACAM2‐L might be a novel adhesion molecule contributing to cell‐to‐cell adhesion between elongating spermatids and Sertoli cells within the seminiferous epithelium. Mol. Reprod. Dev. 79: 843–852, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号