首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Second derivative absorption spectra are reported for the aa3-cytochrome c oxidase from bovine cardiac mitochondria, the aa3-600 ubiquinol oxidase from Bacillus subtilis, the ba3-cytochrome c oxidase from Thermus thermophilis, and the aco-cytochrome c oxidase from Bacillus YN-2000. Together these enzymes provide a range of cofactor combinations that allow us to unequivocally identify the origin of the 450-nm absorption band of the terminal oxidases as the 6-coordinate low-spin heme, cytochrome a. The spectrum of the aco-cytochrome c oxidase further establishes that the split Soret band of cytochrome a, with features at 443 and 450 nm, is common to all forms of the enzyme containing ferrocytochrome a and does not depend on ligand occupancy at the other heme cofactor as previously suggested. To test the universality of this Soret band splitting for 6-coordinate low-spin heme A systems, we have reconstituted purified heme A with the apo forms of the heme binding proteins, hemopexin, histidine-proline-rich glycoprotein and the H64V/V68H double mutant of human myoglobin. All 3 proteins bound the heme A as a (bis)histidine complex, as judged by optical and resonance Raman spectroscopy. In the ferroheme A forms, none of these proteins displayed evidence of Soret band splitting. Heme A-(bis)imidazole in aqueous detergent solution likewise failed to display Soret band splitting. When the cyanide-inhibited mixed-valence form of the bovine enzyme was partially denatured by chemical or thermal means, the split Soret transition of cytochrome a collapsed into a single band at 443 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Cytochrome c oxidase is a redox-driven proton pump, which couples the reduction of oxygen to water to the translocation of protons across the membrane. The recently solved x-ray structures of cytochrome c oxidase permit molecular dynamics simulations of the underlying transport processes. To eventually establish the proton pump mechanism, we investigate the transport of the substrates, oxygen and protons, through the enzyme. Molecular dynamics simulations of oxygen diffusion through the protein reveal a well-defined pathway to the oxygen-binding site starting at a hydrophobic cavity near the membrane-exposed surface of subunit I, close to the interface to subunit III. A large number of water sites are predicted within the protein, which could play an essential role for the transfer of protons in cytochrome c oxidase. The water molecules form two channels along which protons can enter from the cytoplasmic (matrix) side of the protein and reach the binuclear center. A possible pumping mechanism is proposed that involves a shuttling motion of a glutamic acid side chain, which could then transfer a proton to a propionate group of heme α3. Proteins 30:100–107, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
    
Nitric oxide reductase (NOR) catalyzes the generation of nitrous oxide (N2O) via the reductive coupling of two nitric oxide (NO) molecules at a heme/non‐heme Fe center. We report herein on the structures of the reduced and ligand‐bound forms of cytochrome c‐dependent NOR (cNOR) from Pseudomonas aeruginosa at a resolution of 2.3–2.7 Å, to elucidate structure‐function relationships in NOR, and compare them to those of cytochrome c oxidase (CCO) that is evolutionarily related to NOR. Comprehensive crystallographic refinement of the CO‐bound form of cNOR suggested that a total of four atoms can be accommodated at the binuclear center. Consistent with this, binding of bulky acetaldoxime (CH3‐CH=N‐OH) to the binuclear center of cNOR was confirmed by the structural analysis. Active site reduction and ligand binding in cNOR induced only ~0.5 Å increase in the heme/non‐heme Fe distance, but no significant structural change in the protein. The highly localized structural change is consistent with the lack of proton‐pumping activity in cNOR, because redox‐coupled conformational changes are thought to be crucial for proton pumping in CCO. It also permits the rapid decomposition of cytotoxic NO in denitrification. In addition, the shorter heme/non‐heme Fe distance even in the bulky ligand‐bound form of cNOR (~4.5 Å) than the heme/Cu distance in CCO (~5 Å) suggests the ability of NOR to maintain two NO molecules within a short distance in the confined space of the active site, thereby facilitating N‐N coupling to produce a hyponitrite intermediate for the generation of N2O. Proteins 2014; 82:1258–1271. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
    
The respiratory chain of mitochondria and bacteria is made up of a set of membrane‐associated enzyme complexes which catalyse sequential, stepwise transfer of reducing equivalents from substrates to oxygen and convert redox energy into a transmembrane protonmotive force (PMF) by proton translocation from a negative (N) to a positive (P) aqueous phase separated by the coupling membrane. There are three basic mechanisms by which a membrane‐associated redox enzyme can generate a PMF. These are membrane anisotropic arrangement of the primary redox catalysis with: (i) vectorial electron transfer by redox metal centres from the P to the N side of the membrane; (ii) hydrogen transfer by movement of quinones across the membrane, from a reduction site at the N side to an oxidation site at the P side; (iii) a different type of mechanism based on co‐operative allosteric linkage between electron transfer at the metal redox centres and transmembrane electrogenic proton translocation by apoproteins. The results of advanced experimental and theoretical analyses and in particular X‐ray crystallography show that these three mechanisms contribute differently to the protonmotive activity of cytochrome c oxidase, ubiquinone‐cytochrome c oxidoreductase and NADH‐ubiquinone oxidoreductase of the respiratory chain. This review considers the main features, recent experimental advances and still unresolved problems in the molecular/atomic mechanism of coupling between the transfer of reducing equivalents and proton translocation in these three protonmotive redox complexes.  相似文献   

5.
目的:从酮古龙酸菌Y25中扩增细胞色素c基因,在大肠杆菌中表达、成熟并进行生物活性分析。方法:从酮古龙酸菌Y25基因组中PCR扩增细胞色素c基因,构建pET22b表达载体;从大肠杆菌BL21(DE3)中扩增细胞色素c成熟基因簇ccmABCDEFGH,连接到带有山梨糖脱氢酶组成型启动子的pBBR1MCS2-P200载体中;将构建的2个质粒共转化大肠杆菌BL21(DE3),经IPTG诱导表达后进行血红素染色检测;通过氧化还原光谱法对Ni柱亲和纯化的重组蛋白进行活性分析。结果:扩增得到1404 bp的细胞色素c基因及6481 bp的ccmABCDEFGH基因簇;重组菌株经IPTG诱导表达后行SDS-PAGE分析,可见相对分子质量为50×103的表达条带;血红素染色显示重组蛋白结合有血红素;经氧化还原光谱扫描,显示亲和层析纯化得到的目的蛋白有细胞色素c特征吸收峰。结论:从酮古龙酸菌Y25中扩增得到了细胞色素c基因,在大肠杆菌中进行了表达和成熟,表达蛋白具有细胞色素c生物活性。  相似文献   

6.
目的:从酮古龙酸菌SCB329中分离细胞色素c(Cytc)相关基因,在大肠杆菌中进行表达并验证。方法:根据酮古龙酸菌SCB329基因组序列设计引物,通过PCR从SCB329基因组中扩增cytc基因,酶切后连接pET22b表达载体,转化至大肠杆菌DH5α后提取质粒,经PCR、质粒双酶切及测序鉴定后,转入大肠杆菌BL21(DE3),并对表达条件进行考察;用Chelating Sepharose珠粒对可溶性的Cytc-His融合蛋白进行纯化;经光谱扫描和血红素染色等方法对表达蛋白定性分析。结果:PCR扩增的cytc基因长513 bp;重组菌在IPTG浓度为0.025 mmol/L的条件下,于28℃诱导10 h后,SDS-PAGE分析可见表达条带,相对分子质量约为18×103;Ni柱亲和层析纯化得到目的蛋白,纯化蛋白经光谱扫描呈现Cytc特征峰,血红素染色呈现阳性结果。结论:从酮古龙酸菌SCB329中分离得到一种cytc基因,并表达纯化了融合蛋白Cytc-His,纯化蛋白呈现Cytc特性,为研究酮古龙酸菌中产酸关键酶的电子传递机制奠定了基础。  相似文献   

7.
Evidence for the oxidation of CO-liganded cytochromea3 by ferricyanide has been published recently. These observations conflict with the long-held belief that ferricyanide is thermodynamically incapable of oxidizing the CO complex. The present paper examines the facts on which the earlier idea was based. It is concluded that the earlier evidence did not establish that ferricyanide was incompetent as an oxidant for CO-liganded cytochormea3.  相似文献   

8.
    
The cytochrome c maturation process is carried out in the bacterial periplasm, where some specialized thiol‐disulfide oxidoreductases work in close synergy for the correct reduction of oxidized apocytochrome before covalent heme attachment. We present a structural and functional characterization of the soluble periplasmic domain of CcmG from the opportunistic pathogen P. aeruginosa (Pa‐CcmG), a component of the protein machinery involved in cyt c maturation in gram‐negative bacteria. X‐ray crystallography reveals that Pa‐CcmG is a TRX‐like protein; high‐resolution crystal structures show that the oxidized and the reduced forms of the enzyme are identical except for the active‐site disulfide. The standard redox potential was calculated to be E0′ = ?0.213 V at pH 7.0; the pKa of the active site thiols were pKa = 6.13 ± 0.05 for the N‐terminal Cys74 and pKa = 10.5 ± 0.17 for the C‐terminal Cys77. Experiments were carried out to characterize and isolate the mixed disulfide complex between Pa‐CcmG and Pa‐CcmH (the other redox active component of System I in P. aeruginosa). Our data indicate that the target disulfide of this TRX‐like protein is not the intramolecular disulfide of oxidized Pa‐CcmH, but the intermolecular disulfide formed between Cys28 of Pa‐CcmH and DTNB used for the in vitro experiments. This observation suggests that, in vivo, the physiological substrate of Pa‐CcmG may be the mixed‐disulfide complex between Pa‐CcmH and apo‐cyt. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
醌蛋白是以吡咯喹啉醌(PQQ)及其结构类似物为辅酶的一类氧化还原酶。醌血红素蛋白是以PQQ和一个或多个血红素作为辅助因子的醌蛋白,包括醌血红素蛋白醇脱氢酶和醌血红素蛋白胺脱氢酶。简要综述了醌血红素蛋白的结构特点,在分子内从PQQ到血红素的电子传递,以及醌血红素蛋白与蛋白之间的分子间的电子传递。  相似文献   

10.
By the addition of actithiazic acid, or acidomycin (ACM), to culture media, the accumulation of desthiobiotin by various microorganisms was enhanced from two-fold to about seventyfold, while that of biotin was markedly reduced. Especially, Bacillus sphaericus accumulated 350 μg per ml of biotin-vitamers assayed with Saccharomyces cerevisiae. ACM was not incorporated into the desthiobiotin molecule by resting cells of B. sphaericus. The amount of biotin-vitamers assayed with S. cerevisiae which was synthesized from pimelic acid by the resting cells grown with ACM was twice as great as that synthesized by the cells grown without ACM. From these results, the mechanism of the controlling action of ACM on biotin biosynthesis was discussed.  相似文献   

11.
Mitochondrial cytochrome c oxidase (CcO) transfers electrons from cytochrome c (Cyt.c) to O2 to generate H2O, a process coupled to proton pumping. To elucidate the mechanism of electron transfer, we determined the structure of the mammalian Cyt.c–CcO complex at 2.0‐Å resolution and identified an electron transfer pathway from Cyt.c to CcO. The specific interaction between Cyt.c and CcO is stabilized by a few electrostatic interactions between side chains within a small contact surface area. Between the two proteins are three water layers with a long inter‐molecular span, one of which lies between the other two layers without significant direct interaction with either protein. Cyt.c undergoes large structural fluctuations, using the interacting regions with CcO as a fulcrum. These features of the protein–protein interaction at the docking interface represent the first known example of a new class of protein–protein interaction, which we term “soft and specific”. This interaction is likely to contribute to the rapid association/dissociation of the Cyt.c–CcO complex, which facilitates the sequential supply of four electrons for the O2 reduction reaction.  相似文献   

12.
    
Two azide ions were identified, one between the Fe and Cu atoms in the O2‐reduction site and the other at the transmembrane surface of the enzyme, in the crystal structure of the azide‐bound form of bovine heart cytochrome c oxidase at 2.9 Å resolution. Two geometries, a μ‐1,3 type geometry between the Fe and Cu atoms and a terminal geometry on the Fe atom, are equally possible for an azide ion in the O2‐­reduction site. The other azide molecule was hydrogen bonded to an amide group of an asparagine and a hydroxyl group of tyrosine in a μ‐1,1 type geometry. The antisymmetric infrared bands arising from these azide ions, which show essentially identical intensity [Yoshikawa & Caughey (1992), J. Biol. Chem. 267 , 9757–9766], strongly suggest terminal binding of the azide to Fe. The electron density of all three imidazole ligands to CuB was clearly seen in the electron‐density map of the azide‐bound form of bovine heart enzyme, in contrast to the crystal structure of the azide‐bound form of the bacterial enzyme [Iwata et al. (1995), Nature (London), 376 , 660–669], which lacks one of the three imidazole ligands to CuB.  相似文献   

13.
In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemes b. The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on heme b ligand mutants of cytochrome bc1 in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functional in vivo. This reveals that cytochrome bc1 can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemes b in this cytochrome and in other membranous cytochromes b act as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential.  相似文献   

14.
    
The molybdenum‐ and iron‐containing enzyme sulfite oxidase catalyzes the physiologically vital oxidation of sulfite to sulfate. Sulfite oxidase contains three domains: an N‐terminal cytochrome b5 domain, a central domain harboring the molybdenum cofactor (Moco) and a C‐terminal dimerization domain. Oxidation of the substrate sulfite is coupled to the transfer of two electrons to the molybdenum cofactor. Subsequently, these electrons are passed on, one at a time, to the b5 heme of sulfite oxidase and from there to the soluble electron carrier cytochrome c. The crystal structure of the oxidized human sulfite oxidase cytochrome b5 domain has been determined at 1.2 Å resolution and has been refined to a crystallographic R factor of 0.107 (Rfree = 0.137). A comparison of this structure with other b5‐type cytochromes reveals distinct structural features present in the sulfite oxidase b5 domain which promote optimal electron transport between the Moco of sulfite oxidase and the heme of cytochrome c.  相似文献   

15.
Isolated reaction centers of Rhodopseudomonas viridis with the two high-potential hemes reduced were illuminated at 5 K. Difference spectra show a bleaching of the heme c-556 alpha bands and a red shift of the Soret band. These effects are reversed by warming to around 80 K. They are not induced by near infra-red light absorbed by the chlorine pigments of the reaction centers and they are not associated with electron transfer from P to QA. It is concluded that, following direct excitation, heme c-556 becomes five-coordinated. We find no evidence of a significant photooxidation of heme c-559 under the same conditions.  相似文献   

16.
    
The putative copper‐delivery protein BsSco from Bacillus subtilis is a member of the Sco family of cytochrome c oxidase assembly proteins. BsSco is a membrane protein and the soluble domain has been cloned and expressed in Escherichia coli as a fusion with glutathione‐S‐­transferase. The fusion protein was isolated from the cell lysate using a glutathione‐affinity column and the soluble domain of BsSco was released by treatment with thrombin. Sufficient amounts of the soluble domain have been obtained for crystallization. Crystals obtained by hanging‐drop vapour diffusion diffract to a resolution of 2.3 Å at a synchrotron source. The space group is P6 and the unit‐cell parameters are a = 67.74, b = 67.74, c = 189.58 Å.  相似文献   

17.
Novel experimental evidence is presented further supporting the hypothesis that, starting with resting oxidized cytochrome c oxidase, the internal electron transfer to the oxygen binding site is kinetically controlled. The reduction of the enzyme was followed spectroscopically and in the presence of NO or CO, used as trapping ligands for reduced cytochrome a3; ruthenium hexamine was used as a spectroscopically silent electron donor. Consistent with the high combination rate constant for reduced cytochrome a3, NO proved to be a very efficient trapping ligand, while CO did not. The results are discussed in view of two alternative (thermodynamic and kinetic) hypotheses of control of electron transfer to the binuclear (cyt.a3-CuB) center. Fulfilling the prediction of the kinetic control hypothesis: i) the reduction of cytochrome a3 and ligation are synchronous and proceed at the intrinsic rate of cytochrome a3 reduction, ii) the measured rate of formation of the nitrosyl derivative is independent of the concentration of both the reductant and NO.  相似文献   

18.
棕色固氮菌中电子载体Fld直接向固氮酶铁蛋白传递电子。Fld_(ox)至Fld_R是双电子二步还原反应,极谱半波电位分别为-210、-550 mV。Fld_(ox)至Fld_(SR)的中点电位为-280 mV,Fld_(SR)至Fld_R为-500mV。铁蛋白中点电位为-256mV,加MgATP后为-390 mV。Fld_R与铁蛋白ox组成的电池电动势为244mV,电子传递可自发进行,反应的J△G~o为-23KJ/摩尔,铁蛋白被Fld_R还原的K_a=1.3×120~4,加入MgATP后△G~o为-10.6KJ/摩尔,K_a=72。因此,未加入MgATP时电子传递反应更易进行。  相似文献   

19.
    
The X‐ray crystallographic structure of nitric oxide‐treated bovine heart cytochrome c oxidase (CcO) in the fully reduced state has been determined at 50 K under light illumination. In this structure, nitric oxide (NO) is bound to the CcO oxygen‐reduction site, which consists of haem and a Cu atom (the haem a3–CuB site). Electron density for the NO molecule was observed close to CuB. The refined structure indicates that NO is bound to CuB in a side‐on manner.  相似文献   

20.
The aerobic respiratory chain of the thermohalophilic bacterium Rhodothermus marinus has been extensively studied. In this study the isolation and characterization of a third oxygen reductase expressed in this organism are described. This newly isolated enzyme is a typical member of the type B family of haem-copper oxygen reductases, showing 43% amino acid sequence identity and 63% similarity with the ba3 oxygen reductase from Thermus thermophilus. It constitutes two subunits with apparent molecular masses of 42 and 38 kDa. It contains a low-spin B-type haem and a high-spin A-type haem. A stoichiometry of 1B: 1A haem per protein was obtained by spectral integration of UV-visible spectra. Metal analysis showed the presence of two iron and three copper ions, which is in agreement with the existence of a CuA centre. Taking advantage of having two spectroscopically distinct haems, the redox behaviour of the ba3 oxygen reductase was analysed and discussed in the framework of a model with interacting centres. Both haems, B and A, present two transitions, have unusually low reduction potentials of -65 mV and an interaction potential of -52.5 mV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号