首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The spring workshop of the HUPO-PSI convened in Siena to further progress the data standards which are already making an impact on data exchange and deposition in the field of proteomics. Separate work groups pushed forward existing XML standards for the exchange of Molecular Interaction data (PSI-MI, MIF) and Mass Spectrometry data (PSI-MS, mzData) whilst significant progress was made on PSI-MS' mzIdent, which will allow the capture of data from analytical tools such as peak list search engines. A new focus for PSI (GPS, gel electrophoresis) was explored; as was the need for a common representation of protein modifications by all workers in the field of proteomics and beyond. All these efforts are contextualised by the work of the General Proteomics Standards workgroup; which in addition to the MIAPE reporting guidelines, is continually evolving an object model (PSI-OM) from which will be derived the general standard XML format for exchanging data between researchers, and for submission to repositories or journals.  相似文献   

3.
4.
The Proteomics Standards Initiative (PSI) aims to define community standards for data representation in proteomics and to facilitate data comparision, exchange and verification. To this end, a Level 1 Molecular Interaction XML data exchange format has been developed which has been accepted for publication and is freely available at the PSI website (http.//psidev.sf.net/). Several major protein interaction databases are already making data available in this format. A draft XML interchange format for mass spectrometry data has been written and is currently undergoing evaluation whilst work is ongoing to develop a proteomics data integration model, MIAPE.  相似文献   

5.
Taylor CF 《Proteomics》2006,6(Z2):39-44
Amongst other functions, the Human Proteome Organization's Proteomics Standards Initiative (HUPO PSI) facilitates the generation by the proteomics community of guidelines that specify the appropriate level of detail to provide when describing the various components of a proteomics experiment. These guidelines are codified as the MIAPE (Minimum Information About a Proteomics Experiment) specification, the first modules of which are now finalized. This primer describes the structure and scope of MIAPE, places it in context amongst reporting specifications for other domains, briefly discusses related informatics resources and closes by considering the ramifications for the proteomics community.  相似文献   

6.
The Annual 2014 Spring Workshop of the Proteomics Standards Initiative (PSI) of the Human Proteome Organization (HUPO) was held this year jointly with the metabolomics COordination of Standards in MetabOlomicS (COSMOS) group. The range of existing MS standards (mzML, mzIdentML, mzQuantML, mzTab, TraML) was reviewed and updated in the light of new methodologies and advances in technologies. Adaptations to meet the needs of the metabolomics community were incorporated and a new data format for NMR, nmrML, was presented. The molecular interactions workgroup began work on a new version of the existing XML data interchange format. PSI‐MI XML3.0 will enable the capture of more abstract data types such as protein complex topology derived from experimental data, allosteric binding, and dynamic interactions. Further information about the work of the HUPO‐PSI can be found at http://www.psidev.info .  相似文献   

7.
The range of heterogeneous approaches available for quantifying protein abundance via mass spectrometry (MS)1 leads to considerable challenges in modeling, archiving, exchanging, or submitting experimental data sets as supplemental material to journals. To date, there has been no widely accepted format for capturing the evidence trail of how quantitative analysis has been performed by software, for transferring data between software packages, or for submitting to public databases. In the context of the Proteomics Standards Initiative, we have developed the mzQuantML data standard. The standard can represent quantitative data about regions in two-dimensional retention time versus mass/charge space (called features), peptides, and proteins and protein groups (where there is ambiguity regarding peptide-to-protein inference), and it offers limited support for small molecule (metabolomic) data. The format has structures for representing replicate MS runs, grouping of replicates (for example, as study variables), and capturing the parameters used by software packages to arrive at these values. The format has the capability to reference other standards such as mzML and mzIdentML, and thus the evidence trail for the MS workflow as a whole can now be described. Several software implementations are available, and we encourage other bioinformatics groups to use mzQuantML as an input, internal, or output format for quantitative software and for structuring local repositories. All project resources are available in the public domain from the HUPO Proteomics Standards Initiative http://www.psidev.info/mzquantml.The Proteomics Standards Initiative (PSI) has been working for ten years to improve the reporting and standardization of proteomics data. The PSI has published minimum reporting guidelines, called MIAPE (Minimum Information about a Proteomics Experiment) documents, for MS-based proteomics (1) and molecular interactions (2), as well as data standards for raw/processed MS data in mzML (3), peptide and protein identifications in mzIdentML (4), transitions for selected reaction monitoring analysis in TraML (5), and molecular interactions in PSI-MI format (6). Standards are particularly important for quantitative proteomics research, because the associated bioinformatics analysis is highly challenging as a result of the range of different experimental techniques for deriving abundance values for proteins using MS. The techniques can be broadly divided into those based on (i) differential labeling, in which a metabolic label or chemical tag is applied to cells, peptides, or proteins, samples are mixed, and intensity signals for peptide ions are compared within single MS runs; or (ii) label-free methods in which MS runs occur in parallel and bioinformatics methods are used to extract intensity signals, ensuring that like-for-like signals are compared between runs (7). In most label-based and label-free approaches, peptide ratios or abundance values must be summarized in order for one to arrive at relative protein abundance values, taking into account ambiguity in peptide-to-protein inference. Absolute protein abundance values can typically be derived only using internal standards spiked into samples of known abundance (8, 9). The PSI has recently developed a MIAPE-Quant document defining and describing the minimal information necessary in order to judge or repeat a quantitative proteomics experiment.Software packages tend to report peptide or protein abundance values in a bespoke format, often as tab or comma separated values, for import into spreadsheet software. In complementary work, the PSI has developed a standard format for capturing these final results in a standardized tab separated value format, called mzTab, suitable for post-processing and visualization in end-user tools such as Microsoft Excel or the R programming language. The final results of a quantitative analysis are sufficient for many purposes, such as performing statistical analysis to determine differential expression or cluster analysis to find co-expressed proteins. However, mzTab (or similar bespoke formats) was not designed to hold a trace of how the peptide and protein abundance values were calculated from MS data (i.e. metadata is lost that might be crucial for other tasks). For example, most quantitative software packages detect and quantify so-called “features” (representing all ions collected for a given peptide) in two-dimensional MS data, where the two dimensions are retention time from liquid chromatography (LC) and mass over charge (m/z). Without capturing the two-dimensional coordinates of the features, it is not possible to write visualization software showing exactly what the software has quantified; researchers have to trust that the software has accurately quantified all ions from isotopes of a given peptide, excluding any overlapping ions derived from other peptides. The history of proteomics research has been one in which studies of highly variable quality have been published. There is also little quality control or benchmarking performed on quantitative software (10), meaning it is difficult to make quality judgments on a set of peptide and protein abundance values. The PSI has recently developed mzML, which can capture raw or processed MS data in a vendor neutral format, and the mzIdentML standard, to capture search engine results and the important metadata (such as software parameters), such that peptide and protein identification data can be interpreted consistently. These two standards are now being used for data sharing and to support open source software development, so that informatics groups can focus on algorithmic development rather than file format conversions. Until now, there has been no widely used open source format or data standard for capturing metadata and data relating to the quantitation step of analysis pipelines. In this work, we report the mzQuantML standard from the PSI, which has recently completed the PSI standardization process (11), from which version 1.0 was released. We believe that quantitative proteomics research will benefit from improved capabilities for tracing what manipulations have happened to data at each stage of the analysis process. The mzQuantML standard has been designed to store quantitative values calculated for features, peptides, proteins, and/or protein groups (where there is ambiguity in protein inference), plus associated software parameters. It has also been designed to accommodate small molecule data to improve interoperability with metabolomics investigations. The format can represent experimental replicates and grouping of replicates, and it has been designed via an open and transparent process.  相似文献   

8.
The Human Proteome Organisation Proteomics Standards Initiative (HUPO‐PSI) was established in 2002 with the aim of defining community standards for data representation in proteomics and facilitating data comparison, exchange and verification. The 2013 annual spring workshop was hosted by the University of Liverpool, UK and concentrated on updating and refining the existing standards in the light of new methodologies and technologies. To control the inflation of file sizes, strategies for file compression, particularly for mzML files, were explored. Best practices for encoding information such as protein grouping and PTM localisation were refined and documented. Additional example files for the mzQuantML format were designed to provide support for selected reaction monitoring techniques. Enhancements to the PSI Common Query Interface (PSICQUIC) and PSI‐MI XML were discussed. Finally, the group engaged in discussion on how the existing work of the HUPO‐PSI can be leveraged by the Metabolomics Standards Initiative to improve the capture of metabolite data.  相似文献   

9.
The Human Proteome Organization's Proteomics Standards Initiative (PSI) promotes the development of exchange standards to improve data integration and interoperability. PSI specifies the suitable level of detail required when reporting a proteomics experiment (via the Minimum Information About a Proteomics Experiment), and provides extensible markup language (XML) exchange formats and dedicated controlled vocabularies (CVs) that must be combined to generate a standard compliant document. The framework presented here tackles the issue of checking that experimental data reported using a specific format, CVs and public bio‐ontologies (e.g. Gene Ontology, NCBI taxonomy) are compliant with the Minimum Information About a Proteomics Experiment recommendations. The semantic validator not only checks the XML syntax but it also enforces rules regarding the use of an ontology class or CV terms by checking that the terms exist in the resource and that they are used in the correct location of a document. Moreover, this framework is extremely fast, even on sizable data files, and flexible, as it can be adapted to any standard by customizing the parameters it requires: an XML Schema Definition, one or more CVs or ontologies, and a mapping file describing in a formal way how the semantic resources and the format are interrelated. As such, the validator provides a general solution to the common problem in data exchange: how to validate the correct usage of a data standard beyond simple XML Schema Definition validation. The framework source code and its various applications can be found at http://psidev.info/validator .  相似文献   

10.
The Proteomics Standards Initiative (PSI) aims to define community standards for data representation in proteomics and to facilitate data comparison, exchange and verification. Progress has been made in the development of common standards for data exchange in the fields of both mass spectrometry and protein-protein interaction. A proteomics-specific extension is being created for the emerging American Society for Tests and Measurements mass spectrometry standard, which will be supported by manufacturers of both hardware and software. A data model for proteomics experimentation is under development and discussions on a public repository for published proteomics data are underway. The Protein-Protein Interactions group expects to publish the Level 1 PSI data exchange format for protein-protein interactions soon and discussions as to the content of Level 2 have been initiated.  相似文献   

11.
The plenary session of the Proteomics Standards Initiative (PSI) of the Human Proteome Organization at the Tenth annual HUPO World Congress updated the delegates on the ongoing activities of this group. The Molecular Interactions workgroup described the success of the PSICQUIC web service, which enables users to access multiple interaction resources with a single query. One user instance is the IMEx Consortium, which uses the service to enable users to access a non-redundant set of protein-protein interaction records. The mass spectrometry data formats, mzML for mass spectrometer output files and mzIdentML for the output of search engines, are now successfully established with increasing numbers of implementations. A format for the output of quantitative proteomics data, mzQuantML, and also TraML, for SRM/MRM transition lists, are both currently nearing completion. The corresponding MIAPE documents are being updated in line with advances in the field, as is the shared controlled vocabulary PSI-MS. In addition, the mzTab format was introduced, as a simpler way to report MS proteomics and metabolomics results. Finally, the ProteomeXchange Consortium, which will supply a single entry point for the submission of MS proteomics data to multiple data resources including PRIDE and PeptideAtlas, is currently being established.  相似文献   

12.
The global analysis of proteins is now feasible due to improvements in techniques such as two-dimensional gel electrophoresis (2-DE), mass spectrometry, yeast two-hybrid systems and the development of bioinformatics applications. The experiments form the basis of proteomics, and present significant challenges in data analysis, storage and querying. We argue that a standard format for proteome data is required to enable the storage, exchange and subsequent re-analysis of large datasets. We describe the criteria that must be met for the development of a standard for proteomics. We have developed a model to represent data from 2-DE experiments, including difference gel electrophoresis along with image analysis and statistical analysis across multiple gels. This part of proteomics analysis is not represented in current proposals for proteomics standards. We are working with the Proteomics Standards Initiative to develop a model encompassing biological sample origin, experimental protocols, a number of separation techniques and mass spectrometry. The standard format will facilitate the development of central repositories of data, enabling results to be verified or re-analysed, and the correlation of results produced by different research groups using a variety of laboratory techniques.  相似文献   

13.
Hermjakob H 《Proteomics》2006,6(Z2):34-38
Proteomics is a key field of modern biomolecular research, with many small and large scale efforts producing a wealth of proteomics data. However, the vast majority of this data is never exploited to its full potential. Even in publicly funded projects, often the raw data generated in a specific context is analysed, conclusions are drawn and published, but little attention is paid to systematic documentation, archiving, and public access to the data supporting the scientific results. It is often difficult to validate the results stated in a particular publication, and even simple global questions like "In which cellular contexts has my protein of interest been observed?" can currently not be answered with realistic effort, due to a lack of standardised reporting and collection of proteomics data. The Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organisation (HUPO), defines community standards for data representation in proteomics to facilitate systematic data capture, comparison, exchange and verification. In this article we provide an overview of PSI organisational structure, activities, and current results, as well as ways to get involved in the broad-based, open PSI process.  相似文献   

14.
The annual Spring Workshop of the HUPO‐PSI took place in Korea, where the Mass Spectrometry and Protein Separations groups joined forces to tackle the issue of the consistent reporting of quantitative proteomic data generated by mass‐spectrometry‐based technologies. A preliminary mzQuantML schema was drafted which, when completed and tested, will complement the existing mzIdentML schema for reporting protein identifications. The Molecular Interactions group concentrated on the implementations of the PSICQUIC (PSI Common Query InterfaCe) service that allows users to simultaneously query interaction data across multiple participating resources. Work was also undertaken to update the MIAPE guidelines, in response to feedback from the editors of a number of proteomic journals.  相似文献   

15.
The Proteomics Standards Initiative (PSI) aims to define community standards for data representation in proteomics and to facilitate data comparison, exchange and verification. Rapid progress has been made in the development of common standards for data exchange in the fields of both mass spectrometry and protein-protein interactions since the first PSI meeting [1]. Both hardware and software manufacturers have agreed to work to ensure that a proteomics-specific extension is created for the emerging ASTM mass spectrometry standard and the data model for a proteomics experiment has advanced significantly. The Protein-Protein Interactions (PPI) group expects to publish the Level 1 PSI data exchange format for protein-protein interactions by early summer this year, and discussion as to the additional content of Level 2 has been initiated.  相似文献   

16.
Jones AR  Gibson F 《Proteomics》2007,7(Z1):35-40
The use of gel electrophoresis to separate and, in some instances, to quantify the abundance of large numbers of proteins from complex mixtures, has been well established for several decades. The quantity of publicly available data is still relatively modest due to a lack of community accepted data standards, tools to facilitate the data sharing process and controlled vocabularies to ensure that consistent terminology is used to describe the experimental methodology. It is becoming widely recognised that there are significant benefits in data sharing for proteomics, allowing results to be verified and new findings to be generated by re-analysis of published studies. We report on standards development by the Gel Analysis Workgroup of the Proteomics Standards Initiative. The workgroup develops reporting requirements, data formats and controlled vocabularies for experimental gel electrophoresis, and informatics performed on gel images. We present a tutorial on how such resources can be used and how the community should get involved with the on-going projects. Finally, we present a roadmap for future developments in this area.  相似文献   

17.
Over the last five years, the Human Proteome Organisation Proteomics Standards Initiative (HUPO PSI) has produced and released community-accepted XML interchange formats in the fields of mass spectrometry, molecular interactions and gel electrophoresis, have led the field in the discussion of the minimum information with which such data should be annotated and are now in the process of publishing much of this information. At this 4(th) Spring workshop, the emphasis was on consolidating this effort, refining and improving the existing models and in pushing these forward to align with more broadly encompassing efforts such as FuGE (Jones, A.R., Pizarro, A., Spellman, P., Miller, M., FuGE Working Group FuGE: Functional Genomics Experiment Object Model. OMICS 2006, 10, 179-184) and the Ontology for Biomedical Investigation (OBI). The effort to merge the existing mass spectrometry XML interchange formats, mzData and mzXML, into one single standard mzML yielded significant progress. Also the preliminary design of AnalysisXML was extended to include several new use cases and better support for quantification information. Finally the Molecular Interaction group discussed the development of a molecular interaction scoring system with accompanying gold standard data test sets.  相似文献   

18.
The plenary session of the Proteomics Standards Initiative (PSI) of the Human Proteome Organisation at the 7th annual HUPO world congress updated the delegates on the current status of the ongoing work of this group. The release of the new MS interchange format, mzML, was formally announced and delegates were also updated on the advances in the area of molecular interactions, protein separations, proteomics informatics and also on PEFF, a common sequence database format currently under review in the PSI documentation process. Community input on this initiative was requested. Finally, the impact these new data standards are having on the data submission process, which increasingly is an integral part of the publication process, was reviewed and discussed.  相似文献   

19.
PIMWalker™     
This article reports on PIMWalker, a free and interactive tool for visualising protein interaction networks. PIMWalker handles the unified molecular interaction (MI) format defined by members of the Proteomics Standards Initiative (the PSI MI format), and it is thus directly and easily usable by bench biologists. PIMWalker also comes with a documented, open-source Javatrade mark application programming interface allowing the bioinformatic programmer to easily extend the functions. AVAILABILITY: PIMWalker is available under a free license from http://pim.hybrigenics.com/pimwalker.  相似文献   

20.
Proteomics is transitioning from inventory mapping to the mapping of functional cellular contexts. This has been enabled by progress in technologies as well as conceptual strategies. Here, we review recent advances in this area with focus on cellular signalling pathways. We discuss genetics-based methods such as yeast two hybrid methods as well as biochemistry-based methods such as two-dimensional gel electrophoresis, quantitative proteomics, interaction proteomics, and phosphoproteomics. A central tenet is that by its ability to capture dynamic changes in protein expression, localisation and modification modern proteomics has become a powerful tool to map signal transduction pathways and deliver the functional information that will promote insights in cell biology and systems biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号