首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Human immunodeficiency virus type 1(HIV-1) gp41 membrane proximal external region(MPER) is targeted by broadly neutralizing antibodies(e.g. 2F5, 4E10, Z13 e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However,these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope(amino acids(aa) 662–667 in the MPER)but also several other residues(aa 652–655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.  相似文献   

2.
The membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 bears the epitopes of two broadly neutralizing antibodies (Abs), 2F5 and 4E10, making it a target for vaccine design. A third Ab, Fab Z13, had previously been mapped to an epitope that overlaps those of 2F5 and 4E10 but only weakly neutralizes a limited set of primary isolates. Here, libraries of Fab Z13 variants displayed on phage were engineered and affinity selected against an MPER peptide and recombinant gp41. A high-affinity variant, designated Z13e1, was isolated and found to be approximately 100-fold improved over the parental Fab not only in binding affinity for the MPER antigens but also in neutralization potency against sensitive HIV-1. Alanine scanning of MPER residues 664 to 680 revealed that N671 and D674 are crucial for peptide recognition as well as for the neutralization of HIV-1 by Z13e1. Ab competition studies and truncation of MPER peptides indicate that Z13e1 binds with high affinity to an epitope between and overlapping with those of 2F5 and 4E10, with the minimal peptide epitope WASLWNWFDITN. Still, Z13e1 remained about an order of magnitude less potent than 4E10 against several isolates of pseudotyped HIV-1. The sum of our molecular analyses with Z13e1 suggests that the segment on the MPER of gp41 between the 2F5 and 4E10 epitopes is exposed on the functional envelope trimer but that access to the specific Z13e1 epitope within this segment is limited. Thus, the ability of MPER-bearing immunogens to elicit potent HIV-1-neutralizing Abs may depend in part on recapitulating the particular constraints that the functional envelope trimer imposes on the segment of the MPER to which Z13e1 binds.  相似文献   

3.
Eliciting a broadly neutralizing antibody response against the HIV‐1 membrane‐proximal external region (MPER) mimicking the activity of 4E10 and 2F5 monoclonal antibodies remains a major challenge. In this study, two novel tetra‐branched peptide immunogens, 4E10‐ and 2F5‐MAP4, were designed and synthesized using a MAP system. Guinea pigs were immunized with either of these two synthetic immunogens emulsified in an oil‐phase adjuvant at 3‐week intervals. After four immunizations, epitope‐specific antibody responses were induced successfully, and moderate neutralizing activities against tier 1 (clades B, BC, AE) and tier 2 (clade C) HIV‐1 pseudoviruses were detectable in unfractionated sera and purified IgGs. The synthetic gp41 membrane‐proximal external region peptide mimetics, 4E10‐ and 2F5‐MAP4, assisted by an appropriate adjuvant, are promising prophylactic vaccine candidates potentially capable of eliciting broadly neutralizing antibody responses against HIV‐1. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The conserved membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 is a target of two broadly neutralizing human monoclonal antibodies, 2F5 and 4E10, and is an important lead for vaccine design. However, immunogens that bear MPER epitopes so far have not elicited neutralizing antibodies in laboratory animals. One explanation is that the immunogens fail to recreate the proper molecular environment in which the epitopes of 2F5 and 4E10 are presented on the virus. To explore this molecular environment, we used alanine-scanning mutagenesis across residues 660 to 680 in the MPER of a pseudotyped variant of HIV-1(JR-FL), designated HIV-1(JR2), and examined the ability of 2F5 and 4E10 to neutralize the Ala mutant viruses. The results show that the only changes to produce neutralization resistance to 2F5 occurred in residue D, K, or W of the core epitope (LELDKWANL). Likewise, 4E10 resistance arose by replacing one of three residues; two (W and F) were in the core epitope, and one (W) was seven residues C-terminal to these two (NWFDISNWLW). Importantly, no single substitution resulted in resistance of virus to both 2F5 and 4E10. Surprisingly, 8 out of 21 MPER Ala mutants were more sensitive than the parental pseudovirus to 2F5 and/or 4E10. At most, only small differences in neutralization sensitivity to anti-gp120 monoclonal antibody b12 and peptide T20 were observed with the MPER Ala mutant pseudoviruses. These data suggest that MPER substitutions can act locally and enhance the neutralizing activity of antibodies to this region and imply a distinct role of the MPER of gp41 during HIV-1 envelope-mediated fusion. Neutralization experiments showing synergy between and T20 and 4E10 against HIV-1 are also presented. The data presented may aid in the design of antigens that better present the MPER of gp41 to the immune system.  相似文献   

5.
The broadly neutralizing HIV-1 antibody 2F5 recognizes an epitope in the gp41 membrane proximal external region (MPER). The MPER adopts a helical conformation as free peptide, as post-fusogenic forms of gp41, and when bound to the 4E10 monoclonal antibody (Mab). However, when bound to 2F5, the epitope is an extended-loop. The antibody-peptide structure reveals binding between the heavy and light chains with most the long, hydrophobic CDRH3 not contacting peptide. However, mutagenesis identifies this loop as critical for binding, neutralization and for putative hydrophobic membrane interactions. Here, we examined length requirements of the 2F5 CDRH3 and plasticity regarding binding and neutralization. We generated 2F5 variants possessing either longer or shorter CDRH3s and assessed function. The CDRH3 tolerated elongations and reductions up to four residues, displaying a range of binding affinities and retaining some neutralizing capacity. 2F5 antibody variants selective recognition of conformationally distinctive MPER probes suggests a new role for the CDRH3 loop in destabilizing the helical MPER. Binding and neutralization were enhanced by targeted tryptophan substitutions recapitulating fully the activities of the wild-type 2F5 antibody in a shorter CDRH3 variant. MPER alanine scanning revealed binding contacts of this variant downstream of the 2F5 core epitope, into the 4E10 epitope region. This variant displayed increased reactivity to cardiolipin-beta-2-glycoprotein. Tyrosine replacements maintained neutralization while eliminating cardiolipin-beta-2-glycoprotein interaction. The data suggest a new mechanism of action, important for vaccine design, in which the 2F5 CDRH3 contacts and destabilizes the MPER helix downstream of its core epitope to allow induction of the extended-loop conformation.  相似文献   

6.
Failure to elicit broadly neutralizing (bNt) antibodies (Abs) against the membrane-proximal external region of HIV-1 gp41 (MPER) reflects the difficulty of mimicking its neutralization-competent structure (NCS). Here, we analyzed MPER antigenicity in the context of the plasma membrane and identified a role for the gp41 transmembrane domain (TM) in exposing the epitopes of three bNt monoclonal Abs (MAbs) (2F5, 4E10, and Z13e1). We transiently expressed DNA constructs encoding gp41 ectodomain fragments fused to either the TM of the platelet-derived growth factor receptor (PDGFR) or the gp41 TM and cytoplasmic tail domain (CT). Constructs encoding the MPER tethered to the gp41 TM followed by a 27-residue CT fragment (MPER-TM1) produced optimal MAb binding. Critical binding residues for the three Nt MAbs were identified using a panel of 24 MPER-TM1 mutants bearing single amino acid substitutions in the MPER; many were previously shown to affect MAb-mediated viral neutralization. Moreover, non-Nt mutants of MAbs 2F5 and 4E10 exhibited a reduction in binding to MPER-TM1 and yet maintained binding to synthetic MPER peptides, indicating that MPER-TM1 better approximates the MPER NCS than peptides. Replacement of the gp41 TM and CT of MPER-TM1 with the PDGFR TM reduced binding by MAb 4E10, but not 2F5, indicating that the gp41 TM plays a pivotal role in orienting the 4E10 epitope, and more globally, in affecting MPER exposure.  相似文献   

7.
The broadly neutralizing 2F5 and 4E10 monoclonal antibodies (MAbs) recognize epitopes within the membrane-proximal external region (MPER) that connects the human immunodeficiency virus type 1 (HIV-1) envelope gp41 ectodomain with the transmembrane anchor. By adopting different conformations that stably insert into the virion external membrane interface, such as helical structures, a conserved aromatic-rich sequence within the MPER is thought to participate in HIV-1-cell fusion. Recent experimental evidence suggests that the neutralizing activity of 2F5 and 4E10 might correlate with the MAbs' capacity to recognize epitopes inserted into the viral membrane, thereby impairing MPER fusogenic activity. To gain new insights into the molecular mechanism underlying viral neutralization by these antibodies, we have compared the capacities of 2F5 and 4E10 to block the membrane-disorganizing activity of MPER peptides inserted into the surface bilayer of solution-diffusing unilamellar vesicles. Both MAbs inhibited leakage of vesicular aqueous contents (membrane permeabilization) and intervesicular lipid mixing (membrane fusion) promoted by MPER-derived peptides. Thus, our data support the idea that antibody binding to a membrane-inserted epitope may interfere with the function of the MPER during gp41-induced fusion. Antibody insertion into a cholesterol-containing, uncharged virion-like membrane is mediated by specific epitope recognition, and moreover, partitioning-coupled folding into a helix reduces the efficiency of 2F5 MAb binding to its epitope in the membrane. We conclude that the capacity to interfere with the membrane activity of conserved MPER sequences is best correlated with the broad neutralization of the 4E10 MAb.  相似文献   

8.
A component to the problem of inducing broad neutralizing HIV-1 gp41 membrane proximal external region (MPER) antibodies is the need to focus the antibody response to the transiently exposed MPER pre-hairpin intermediate neutralization epitope. Here we describe a HIV-1 envelope (Env) gp140 oligomer prime followed by MPER peptide-liposomes boost strategy for eliciting serum antibody responses in rhesus macaques that bind to a gp41 fusion intermediate protein. This Env-liposome immunization strategy induced antibodies to the 2F5 neutralizing epitope 664DKW residues, and these antibodies preferentially bound to a gp41 fusion intermediate construct as well as to MPER scaffolds stabilized in the 2F5-bound conformation. However, no serum lipid binding activity was observed nor was serum neutralizing activity for HIV-1 pseudoviruses present. Nonetheless, the Env-liposome prime-boost immunization strategy induced antibodies that recognized a gp41 fusion intermediate protein and was successful in focusing the antibody response to the desired epitope.  相似文献   

9.
The membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 is a target of broadly neutralizing monoclonal antibodies (MAbs) 2F5, 4E10, and Z13. Here we engrafted the MPER into the V1/2 region of HIV-1 gp120 to investigate the ability of the engineered antigens to elicit virus-neutralizing antibodies (NAbs). To promote the correct folding and presentation of the helical 4E10 epitope, we flanked the epitope with helical domains and manipulated the helix by sequential deletion of residues preceding the epitope. Binding of the recombinant proteins to MAb 4E10 increased four- to fivefold with the deletion of one or two residues, but it returned to the wild-type level when three residues were deleted, suggesting rotation of the 4E10 epitope along the helix. Immunization of mice and rabbits by electroporation-mediated DNA priming and protein boosting with these constructs elicited high levels of gp120-specific antibodies. A consistent NAb response against the neutralization-resistant, homologous JR-FL virus was detected in rabbits but not in mice. Analysis of the neutralizing activity revealed that the NAbs do not target the MPER or the V1, V2, or V3 region. Through this study, we learned the following. (i) The 4E10 epitope can be manipulated using a "rotate-the-helix" strategy that alters the helix register. However, presentation of this epitope in the immunogenic V1/2 region did not render it immunogenic in mice or rabbits. (ii) DNA vaccination with monomeric gp120-based antigens can elicit a consistent NAb response against the homologous neutralization-resistant virus by targeting epitopes outside the V1, V2, and V3 regions.  相似文献   

10.
The broadly neutralizing monoclonal antibody (MAb) 4E10 recognizes a linear epitope in the C terminus of the membrane-proximal external region (MPER) of gp41. This epitope is particularly attractive for vaccine design because it is highly conserved among human immunodeficiency virus type 1 (HIV-1) strains and neutralization escape in vivo has not been observed. Multiple env genes were cloned from an HIV-1 subtype C virus isolated from a 7-year-old perinatally infected child who had anti-MPER neutralizing antibodies. One clone (TM20.13) was resistant to 4E10 neutralization as a result of an F673L substitution in the MPER. Frequency analysis showed that F673L was present in 33% of the viral variants and in all cases was linked to the presence of an intact 2F5 epitope. Two other envelope clones were sensitive to 4E10 neutralization, but TM20.5 was 10-fold less sensitive than TM20.6. Substitutions at positions 674 and 677 within the MPER rendered TM20.5 more sensitive to 4E10 but had no effect on TM20.6. Using chimeric and mutant constructs of these two variants, we further demonstrated that the lentivirus lytic peptide-2 domain in the cytoplasmic tail affected the accessibility of the 4E10 epitope, as well as virus infectivity. Collectively, these genetic changes in the face of a neutralizing antibody response to the MPER strongly suggested immune escape from antibody responses targeting this region.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 4E10 binds to a linear, highly conserved epitope within the membrane-proximal external region of the HIV-1 envelope glycoprotein gp41. We have delineated the peptide epitope of the broadly neutralizing 4E10 antibody to gp41 residues 671 to 683, using peptides with different lengths encompassing the previously suggested core epitope (NWFDIT). Peptide binding to the 4E10 antibody was assessed by competition enzyme-linked immunosorbent assay, and the K(d) values of selected peptides were determined using surface plasmon resonance. An Ala scan of the epitope indicated that several residues, W672, F673, and T676, are essential (>1,000-fold decrease in binding upon replacement with alanine) for 4E10 recognition. In addition, five other residues, N671, D674, I675, W680, and L679, make significant contributions to 4E10 binding. In general, the Ala scan results agree well with the recently reported crystal structure of 4E10 in complex with a 13-mer peptide and with our circular dichroism analyses. Neutralization competition assays confirmed that the peptide NWFDITNWLWYIKKKK-NH(2) could effectively inhibit 4E10 neutralization. Finally, to limit the conformational flexibility of the peptides, helix-promoting 2-aminoisobutyric acid residues and helix-inducing tethers were incorporated. Several peptides have significantly improved affinity (>1,000-fold) over the starting peptide and, when used as immunogens, may be more likely to elicit 4E10-like neutralizing antibodies. Hence, this study represents the first stage toward iterative development of a vaccine based on the 4E10 epitope.  相似文献   

12.
De novo design of peptides and proteins has recently surfaced as an approach for investigating protein structure and function. This approach vitally tests our knowledge of protein folding and function, while also laying the groundwork for the fabrication of proteins with properties not precedented in nature. The success relies heavily on the ability to design relatively short peptides that can espouse stable secondary structures. To this end, substitution with α,β‐didehydroamino acids, especially α,β‐didehydrophenylalanine (ΔzPhe), comes in use for spawning well‐defined structural motifs. Introduction of ΔPhe induces β‐bends in small and 310‐helices in longer peptide sequences. The present work aims to investigate the effect of nature and the number of amino acids interspersed between two ΔPhe residues in two model undecapeptides, Ac‐Gly‐Ala‐ΔPhe‐Ile‐Val‐ΔPhe‐Ile‐Val‐ΔPhe‐Ala‐Gly‐NH2 (I) and Boc‐Val‐ΔPhe‐Phe‐Ala‐Phe‐ΔPhe‐Phe‐Leu‐Ala‐ΔPhe‐Gly‐OMe (II). Peptide I was synthesized using solid‐phase chemistry and characterized using circular dichroism spectroscopy. Peptide II was synthesized using solution‐phase chemistry and characterized using circular dichroism and nuclear magnetic resonance spectroscopy. Peptide I was designed to examine the effect of incorporating β‐strand‐favoring residues like valine and isoleucine as spacers between two ΔPhe residues on the final conformation of the resulting peptide. Circular dichroism studies on this peptide have shown the existence of a 310‐helical conformation. Peptide II possesses three amino acids as spacers between ΔPhe residues and has been reported to adopt a mixed 310/α‐helical conformation using circular dichroism and nuclear magnetic resonance spectroscopy studies. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Although human immunodeficiency type 1 (HIV-1) infection induces strong antibody responses to the viral envelope glycoprotein (Env) only a few of these antibodies possess the capacity to neutralize a broad range of strains. The induction of such antibodies represents an important goal in the development of a preventive vaccine against the infection. Among the broadly neutralizing monoclonal antibodies discovered so far, three (2F5, Z13 and 4E10) target the short and hidden membrane proximal external region (MPER) of the gp41 transmembrane protein. Antibody responses to MPER are rarely observed in HIV-infected individuals or after immunization with Env immunogens. To initiate antibody responses to MPER in its membrane-embedded native conformation, we generated expression plasmids encoding the membrane-anchored ectodomain of gp41 with N-terminal deletions of various sizes. Following transfection of these plasmids, the MPER domains are displayed on the cell surface and incorporated into HIV virus like particles (VLP). Transfected cells displaying MPER mutants bound as efficiently to both 2F5 and 4E10 as cells transfected with a plasmid encoding full-length Env. Mice immunized with VLPs containing the MPER mutants produced MPER-specific antibodies, the levels of which could be increased by the trimerization of the displayed proteins as well as by a DNA prime-VLP boost immunization strategy. Although 2F5 competed for binding to MPER with antibodies in sera of some of the immunized mice, neutralizing activity could not be detected. Whether this is due to inefficient binding of the induced antibodies to MPER in the context of wild type Env or whether the overall MPER-specific antibody response induced by the MPER display mutants is too low to reveal neutralizing activity, remains to be determined.  相似文献   

14.
HIV-1 gp41 envelope antibodies, which are frequently induced in HIV-1-infected individuals, are predominantly nonneutralizing. The rare and difficult-to-induce neutralizing antibodies (2F5 and 4E10) that target gp41 membrane-proximal epitopes (MPER) are polyspecific and require lipid binding for HIV-1 neutralization. These results raise the questions of how prevalent polyreactivity is among gp41 antibodies and how the binding properties of gp41-nonneutralizing antibodies differ from those of antibodies that are broadly neutralizing. In this study, we have characterized a panel of human gp41 antibodies with binding specificities within the immunodominant cluster I (gp41 amino acids [aa] 579 to 613) or cluster II (gp41 aa 644 to 667) for reactivity to autoantigens, to the gp140 protein, and with MPER peptide-lipid conjugates. We report that while none of the gp41 cluster I antibodies studied were polyspecific, all three gp41 cluster II antibodies bound either to lipids or autoantigens, thus showing the propensity of cluster II antibodies to manifest polyreactivity. All cluster II gp41 monoclonal antibodies (MAbs), including those that were lipid reactive, failed to bind to gp41 MPER peptide-lipid complexes. Cluster II antibodies bound strongly with nanomolar binding affinity (dissociation constant [K(d)]) to oligomeric gp140 proteins, and thus, they recognize conformational epitopes on gp41 that are distinct from those of neutralizing gp41 antibodies. These results demonstrate that lipid-reactive gp41 cluster II antibodies are nonneutralizing due to their inability to bind to the relevant neutralizing epitopes on gp41.  相似文献   

15.
On the prereceptor-engaged HIV-1 envelope glycoprotein (Env) spike, epitope access by the membrane-proximal external region (MPER)-directed broadly neutralizing antibodies 2F5 and 4E10 remains unresolved. Data on binding to cell surface Env and entry data using primary isolates suggest inaccessibility of the 2F5 and 4E10 epitopes on the viral spike prior to receptor engagement, but trimer gel shift analysis and slow kinetics of shedding induced by 2F5 and 4E10 indicate otherwise. Therefore, it remains unclear if the epitopes themselves are formed in their antibody-bound state (or at least sampled) prior to receptor/coreceptor engagement or if receptor interactions both expose and form the MPER epitopes, presumably in the putative prefusion transitional intermediate. Here, we performed antibody-virus "washout experiments" using both lab-adapted and a panel of clade B primary isolates to analyze MPER accessibility. The neutralization activity of 2F5 and 4E10 against lab-adapted viruses and sensitive and moderately resistant viruses was largely unaffected by relatively rapid antibody-virus washing, suggesting direct interaction with the "static" spike. However, for more neutralization-resistant viruses, the 2F5 and 4E10 antibodies could neutralize only under the "no antibody-virus wash" conditions, implying that the MPER epitopes were not accessible prior to receptor engagement. Accessibility in the washout conditions could be precisely predicted by the relative resistance to neutralization in a standard neutralization format. These data are consistent with a model in which the local MPER antibody epitope conformations may be sampled on the native spike but are occluded to antibody by local steric or distal quaternary constraints adopted by highly resistant HIV-1 isolates.  相似文献   

16.
Recent studies have demonstrated that the membrane-proximal external region(MPER)of human immunodeficiency virus 1(HIV-1)glycoprotein 41 contains a series of epitopes for human monoclonal antibodies,including 2F5,Z13e1,4E10,and10E8,which were isolated from HIV-1-infected individuals and show broad neutralizing activities.This suggests that MPER is a good target for the development of effective HIV-1 vaccines.However,many studies have shown that it is difficult to induce antibodies with similar broad neutralizing activities using MPER-based peptide antigens.Here,we report that 10E8-like neutralizing antibodies with effective anti-HIV-1 activity were readily induced using a precisely designed conformational immunogenic peptide containing the 10E8-specific epitope.This immunogenic peptide(designated T10HE)contains a 15-mer MPER-derived 10E8-specific epitope fused to T-helper-cell epitopes from tetanus toxin(tt),which showed a significantly stabilized-helix structure after a series of modifications,including substitution with an(S)--(2-pentenyl)alanine containing an olefin-bearing tether and ruthenium-catalyzed olefin metathesis,compared with the unmodified T10E peptide.The stabilized-helix structure of T10HE did not affect its capacity to bind the 10E8 antibody,as evaluated with an enzyme linked immunosorbent assay(ELISA)and surface plasmon resonance binding assay(SPR assay).The efficacies of the T10HE and T10E epitope vaccines were evaluated after a standard vaccination procedure in which the experimental mice were primed with either the T10HE or T10E immunogen and boosted with HIV-1 JRFL pseudoviruses.Higher titers of 10E8-like antibodies were induced by T10HE than that by T10E.More importantly,the antibodies induced by T10HE showed enhanced antiviral potency against HIV-1 strains with both X4 and R5 tropism and a greater degree of broad neutralizing activity than the antibodies induced by T10E.These results indicate that a 10E8-epitope-based structure-specific peptide immunogen can elicit neutralizing antibodies when used as a vaccine prime.  相似文献   

17.
The binding of neutralizing antibodies 2F5 and 4E10 to human immunodeficiency virus type 1 (HIV-1) gp41 involves both the viral membrane and gp41 membrane proximal external region (MPER) epitopes. In this study, we have used several biophysical tools to examine the secondary structure, orientation, and depth of immersion of gp41 MPER peptides in liposomes and to determine how the orientation of the MPER with lipids affects the binding kinetics of monoclonal antibodies (MAbs) 2F5 and 4E10. The binding of 2F5 and 4E10 both to their respective nominal epitopes and to a biepitope (includes 2F5 and 4E10 epitopes) MPER peptide-liposome conjugate was best described by a two-step encounter-docking model. Analysis of the binding kinetics and the effect of temperature on the binding stability of 2F5 and 4E10 to MPER peptide-liposome conjugates revealed that the docking of 4E10 was relatively slower and thermodynamically less favorable. The results of fluorescence-quenching and fluorescence resonance energy transfer experiments showed that the 2F5 epitope was more solvent exposed, whereas the 4E10 epitope was immersed in the polar-apolar interfacial region of the lipid bilayer. A circular dichroism spectroscopic study demonstrated that the nominal epitope and biepitope MPER peptides adopted ordered structures with differing helical contents when anchored to liposomes. Furthermore, anchoring of MPER peptides to the membrane via a hydrophobic anchor sequence was required for efficient MAb docking. These results support the model that the ability of 2F5 and 4E10 to bind to membrane lipid is required for stable docking to membrane-embedded MPER residues. These data have important implications for the design and use of peptide-liposome conjugates as immunogens for the induction of MPER-neutralizing antibodies.The two broadly neutralizing human monoclonal antibodies (MAbs) 2F5 and 4E10 target conserved core amino acid residues that lie in the membrane proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 (6, 9, 18, 25, 29). Structural studies of 2F5 and 4E10 in complex with their nominal epitope peptides led to the proposition that the long hydrophobic heavy chain CDR3 (CDR H3) loop might be involved in binding to the virion membrane due to the lack of direct contact of the tip of the CDR H3 loop with their bound epitopes (6, 25). MAbs 2F5 and 4E10 indeed were found to have enhanced binding to gp41 MPER in the presence of membrane (12, 25). Subsequent studies have revealed the lipid reactivity of both the 2F5 and 4E10 MAbs (2, 14, 23, 27), emphasizing the need to understand how MAbs 2F5 and 4E10 recognize their epitopes in the context of a membrane-gp41 MPER interface.It has been hypothesized that the ability of MAbs 2F5 and 4E10 to interact with membrane lipids is required for binding to the membrane-bound gp41 MPER region and subsequent HIV-1 neutralization (2, 14, 15). The binding of both the 2F5 and 4E10 MAbs to their epitope peptides presented on synthetic liposomes was remarkably different from that of epitope peptides alone and was best described by a two-step “encounter-docking” model (2). In this model, neutralizing MPER MAbs make an initial encounter complex, and such an interaction is associated with faster association and dissociation rates. The formation of the encounter complex induces the formation of the final “docked” complex, which is associated with slower dissociation rates and provides the stability of the overall interaction. A more recent study has also observed the same mode of interaction for MAb 4E10 when it binds to MPER peptide in liposomal form (31). The studies of Sun et al. revealed that critical residues of the 4E10 epitope may be buried in the viral membrane and that interaction of 4E10 with lipids is important in extracting the immersed residues from the lipid bilayer. Although 2F5 binding was not described in the study, the model shows that the N-terminal helix of the “L”-shaped MPER structure projects away from the membrane and that residues K665 and W666 of the core 2F5 epitope (residues DKW) are placed on the surface and in the interfacial region, respectively, of the membrane lipid (31). Thus, as for MAb 4E10, stable docking of 2F5 would also require some level of conformational rearrangement of MPER to release critical residues within the core epitope. This is consistent with binding kinetics data that showed that the final docking of MAbs 2F5 and 4E10 to MPER peptide-lipid conjugates might require conformational rearrangements (2). It is also likely that the CD4 and coreceptor-mediated triggering of HIV-1 Env (10, 28) that leads to the formation of the fusion intermediate conformation might also expose critical residues for MPER MAb binding. Both the 4E10 and 2F5 MAbs bound strongly to a recombinant trimeric gp41 intermediate design and either bound weakly or failed to bind, respectively, to the trimeric gp140 (11) and a putative prefusion-state trimeric MPER (22). However, the orientation of the MPER sequence in a viral-lipid-bound form is not known and, thus, it is possible that in the early stages of the triggered intermediate state, MPER residues may be lying in the plane of the membrane head groups and interaction of MPER MAbs with lipids and extraction of critical residues may be essential for stable docking (31).In order to gain further understanding of the binding mechanism involved in the interaction of MAbs 2F5 and 4E10 with their epitopes presented in the membrane environment, we have constructed three different novel gp41 MPER peptide-liposome conjugates, including a 2F5 nominal epitope peptide, a 4E10 nominal epitope peptide, and a peptide having sequences of epitopes for both the 2F5 and 4E10 MAbs. Unlike our previously designed constructs (2), the MPER peptides used in the current study were anchored to the liposomes by a hydrophobic sequence (YKRWIILGLNKIVRMYS), named GTH1, placed at their carboxyl termini. Using these second-generation peptide-liposome conjugates, we addressed the following questions. (i) How do MAbs 2F5 and 4E10 bind to the different peptide-liposome conjugates? (ii) How do the kinetics of MAb binding vary with temperature? (iii) How are the peptides oriented in the liposomal membrane in each construct? (iv) How does antibody binding correlate with differences in the membrane orientation of peptides? (v) Is there any difference in the secondary structures adopted by the peptides in the peptide-liposome complex?Our study of antibody interactions with their membrane-anchored epitope peptides indicates that both the 2F5 and 4E10 MAbs bind to their nominal epitope peptide-liposome conjugates with high affinity. The results of tryptophan fluorescence-quenching and fluorescence resonance energy transfer (FRET) experiments showed that the nominal 2F5 peptide is exposed on the surface of the membrane close to the polar head group, whereas the nominal 4E10 peptide is immersed in the interfacial region of the lipid bilayer. Circular dichroism (CD) spectroscopic studies revealed that the nominal epitope and biepitope peptides adopted ordered structures when anchored to the liposomal membrane. The membrane orientation data and secondary structural features of MPER peptides correlated well with antibody binding characteristics, thus suggesting that membrane-anchored MPER peptide conformations are a physiologic component of the native 2F5 and 4E10 binding epitopes in HIV-1 virions.  相似文献   

18.
Alzheimer disease is a neurodegenerative disease affecting an increasing number of patients worldwide. Current therapeutic strategies are directed to molecules capable to block the aggregation of the β‐amyloid(1‐42) (Aβ) peptide and its shorter naturally occurring peptide fragments into toxic oligomers and amyloid fibrils. Aβ‐specific antibodies have been recently developed as powerful antiaggregation tools. The identification and functional characterization of the epitope structures of Aβ antibodies contributes to the elucidation of their mechanism of action in the human organism. In previous studies, the Aβ(4‐10) peptide has been identified as an epitope for the polyclonal anti‐Aβ(1‐42) antibody that has been shown capable to reduce amyloid deposition in a transgenic Alzheimer disease mouse model. To determine the functional significance of the amino acid residues involved in binding to the antibody, we report here the effects of alanine single‐site mutations within the Aβ‐epitope sequence on the antigen‐antibody interaction. Specific identification of the essential affinity preserving mutant peptides was obtained by exposing a Sepharose‐immobilized antibody column to an equimolar mixture of mutant peptides, followed by analysis of bound peptides using high‐resolution MALDI‐Fourier transform‐Ion Cyclotron Resonance mass spectrometry. For the polyclonal antibody, affinity was preserved in the H6A, D7A, S8A, and G9A mutants but was lost in the F4, R5, and Y10 mutants, indicating these residues as essential amino acids for binding. Enzyme‐linked immunosorbent assays confirmed the binding differences of the mutant peptides to the polyclonal antibody. In contrast, the mass spectrometric analysis of the mutant Aβ(4‐10) peptides upon affinity binding to a monoclonal anti‐Aβ(1‐17) antibody showed complete loss of binding by Ala‐site mutation of any residue of the Aβ(4‐10) epitope. Surface plasmon resonance affinity determination of wild‐type Aβ(1‐17) to the monoclonal Aβ antibody provided a binding constant KD in the low nanomolar range. These results provide valuable information in the elucidation of the binding mechanism and the development of Aβ‐specific antibodies with improved therapeutic efficacy.  相似文献   

19.
Broadly cross neutralizing antibodies (NAbs) are generated in a group of HIV-1 infected individuals during the natural infection, but little is known about their prevalence in patients infected with viral subtypes from different geographical regions. We tested here the neutralizing efficiency of plasma antibodies from 80 HIV-1 infected antiretroviral drug naive patients against a panel of subtype-B and C tier 2 viruses. We detected cross-neutralizing antibodies in approximately 19–27% of the plasma, however the subtype-C specific neutralization efficiency predominated (p = 0.004). The neutralizing activity was shown to be exclusively mediated by the immunoglobulin G (IgG) fraction in the representative plasma samples. Epitope mapping of three, the most cross-neutralizing plasma (CNP) AIIMS206, AIIMS239 and AIIMS249 with consensus-C overlapping envelope peptides revealed ten different binding specificities with only V3 and IDR being common. The V3 and IDR were highly antigenic regions but no correlation between their reciprocal Max50 binding titers and neutralization was observed. In addition, the neutralizing activity of CNP was not substantially reduced by V3 and gp41 peptides except a modest contribution of MPER peptide. The MPER was rarely recognized by plasma antibodies though antibody depletion and competition experiments demonstrated MPER dependent neutralization in two out of three CNP. Interestingly, the binding specificity of one of the CNP (AIIMS206) overlapped with broadly neutralizing mAb 2F5 epitope. Overall, the data suggest that, despite the low immunogenicity of HIV-1 MPER, the antibodies directed to this region may serve as crucial reagents for HIV-1 vaccine design.  相似文献   

20.
The aim of this study was to characterize the conformational neutralizing epitopes of the major capsid protein of human papillomavirus type 31. Analysis of the epitopes was performed by competitive epitope mapping using 15 anti‐HPV31 and by reactivity analysis using a HPV31 mutant with an insertion of a seven‐amino acid motif within the FG loop of the capsid protein. Fine mapping of neutralizing conformational epitopes on HPV L1 was analyzed by a new approach using a system displaying a combinatorial library of constrained peptides exposed on E. coli flagella. The findings demonstrate that the HPV31 FG loop is dense in neutralizing epitopes and suggest that HPV31 MAbs bind to overlapping but distinct epitopes on the central part of the FG loop, in agreement with the exposure of the FG loop on the surface of HPV VLPs, and thus confirming that neutralizing antibodies are mainly located on the tip of capsomeres. In addition, we identified a crossreacting and partially crossneutralizing conformational epitope on the relatively well conserved N‐terminal part of the FG loop. Moreover, our findings support the hypothesis that there is no correlation between neutralization and the ability of MAbs to inhibit VLP binding to heparan sulfate, and confirm that the blocking of virus attachment to the extracellular matrix is an important mechanism of neutralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号