首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

In this report the phytochemical profile of Nitraria. Retusa (N. Retusa) leaf extracts were identified and their ability to induce apoptosis in human chronic myelogenous erythroleukaemia (K562) was evaluated.

Methods

Apoptosis of the human chronic myelogenous erythroleukaemia (K562) was evidenced by investigating DNA fragmentation, PARP cleavage and caspases 3 and 8 inducing activities, in the presence of N. retusa extracts.

Results

Our study revealed that the tested extracts from N. Retusa contain many useful bioactive compounds. They induced in a time-dependent manner the apoptosis the tested cancerous our cell line. This result was confirmed by ladder DNA fragmentation profile and PARP cleavage, as well as a release in caspase-3 and caspase-8 level.

Conclusion

Our results indicate that the tested compounds have a significant antiproliferative effect which may be due to their involvement in the induction of the extrinsic apoptosic pathway.
  相似文献   

2.

Background

Acute ethanol administration leads to massive apoptotic neurodegeneration in the developing central nervous system. We studied whether taurine is neuroprotective in ethanol-induced apoptosis in the mouse cerebellum during the postnatal period.

Methods

The mice were divided into three groups: ethanol-treated, ethanol+taurine-treated and controls. Ethanol (20% solution) was administered subcutaneously at a total dose of 5 g/kg (2.5 g/kg at time 1 h and 2.5 g/kg at 3 h) to the ethanol and ethanol+taurine groups. The ethanol+taurine group also received two injections of taurine (1 g/kg each, at time zero and at 4 h). To estimate apoptosis, immunostaining for activated caspase-3 and TUNEL staining were made in the mid-sagittal sections containing lobules I-X of the cerebellar vermis at 12 or 8 hours after the first taurine injection. Changes in the blood taurine level were monitored at each hour by reverse-phase high-performance liquid chromatography (HPLC).

Results

Ethanol administration induced apoptosis of Purkinje cells on P4 in all cerebellar lobules, most extensively in lobules IX and X, and on P7 increased the number of activated caspase-3-immunoreactive and TUNEL-positive cells in the internal layer of the cerebellum. Administration of taurine significantly decreased the number of activated caspase-3-immunoreactive and TUNEL-positive cells in the internal layer of the cerebellum on P7, but had no effect on Purkinje cells in P4 mice. The high initial taurine concentration in blood of the ethanol+taurine group diminished dramatically during the experiment, not being different at 13 h from that in the controls.

Conclusions

We conclude that the neuroprotective action of taurine is not straightforward and seems to be different in different types of neurons and/or requires prolonged maintenance of the high taurine concentration in blood plasma.
  相似文献   

3.

Background

Schwannoma arising from peripheral nervous sheaths is a benign tumor.

Methods

To evaluate cell cytotoxicity, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction and terminal deoxynucleotidyltransferase UTP nick-end labeling (TUNEL) assays were used. A microRNA (miRNA) array was used to identify the miRNAs involved in curcumin-induced apoptosis. To examine miRNA expression, quantitative RT-PCR was used.

Results

In this study, curcumin exerted cellular cytotoxicity against RT4 schwannoma cells, with an increase in TUNEL-positive cells. Curcumin also activated the expression of apoptotic proteins, such as polyADP ribose polymerase, caspase-3, and caspase-9. The miRNA array revealed that seven miRNAs (miRNA 350, miRNA 17-2-3p, let 7e-3p, miRNA1224, miRNA 466b-1-3p, miRNA 18a-5p, and miRNA 322-5p) were downregulated following treatment with both 10 and 20 μM curcumin in RT4 cells, while four miRNAs (miRNA122-5p, miRNA 3473, miRNA182, and miRNA344a-3p) were upregulated. Interestingly, transfection with a miRNA 344a-3p mimic downregulated the mRNA expression of Bcl2 and upregulated that of Bax, Curcumin treatment in RT 4 cells also reduced the mRNA expression of Bcl2 and enhanced expression of Bax, Overexpression of miRNA344a-3p mimic combined with curcumin treatment activated the expression of apoptotic proteins, including procaspase-9 and cleaved caspase-3 while inhibition of miRNA 344a-3p using miR344a-3p inhibitor repressed cleaved caspase-3 and -9 in curcumin treated RT-4 cells compared to control.

Conclusions

Our findings demonstrate that curcumin induces apoptosis in schwannoma cells via miRNA 344a-3p. Thus, curcumin may serve as a potent therapeutic agent for the treatment of schwannoma.
  相似文献   

4.

Background

Regulating cardiac differentiation to maintain normal heart development and function is very important. At present, biological functions of H19 in cardiac differentiation is not completely clear.

Methods

To explore the functional effect of H19 during cardiac differentiation. Expression levels of early cardiac-specific markers Nkx-2.5 and GATA4, cardiac contractile protein genes α-MHC and MLC-2v were determined by qRT-PCR and western lot. The levels of lncRNA H19 and miR-19b were detected by qRT-PCR. We further predicted the binding sequence of H19 and miR-19b by online softwares starBase v2.0 and TargetScan. The biological functions of H19 and Sox6 were evaluated by CCK-8 kit, cell cycle and apoptosis assay and caspase-3 activity.

Results

The expression levels of α-MHC, MLC-2v and H19 were upregulated, and miR-19b was downregulated significantly in mouse P19CL6 cells at the late stage of cardiac differentiation. Biological function analysis showed that knockdown of H19 promoted cell proliferation and inhibits cell apoptosis. H19 suppressed miR-19b expression and miR-19b targeted Sox6, which inhibited cell proliferation and promoted apoptosis in P19CL6 cells during late-stage cardiac differentiation. Importantly, Sox6 overexpression could reverse the positive effects of H19 knockdown on P19CL6 cells.

Conclusion

Downregulation of H19 promoted cell proliferation and inhibited cell apoptosis during late-stage cardiac differentiation by regulating the negative role of miR-19b in Sox6 expression, which suggested that the manipulation of H19 expression could serve as a potential strategy for heart disease.
  相似文献   

5.

Objectives

Copper oxide nanoparticles (CuO NPs) promoting anticancer activity may be due to the regulation of various classes of histone deacetylases (HDACs).

Results

Green-synthesized CuO NPs significantly arrested total HDAC level and also suppressed class I, II and IV HDACs mRNA expression in A549 cells. A549 cells treated with CuO NPs downregulated oncogenes and upregulated tumor suppressor protein expression. CuO NPs positively regulated both mitochondrial and death receptor-mediated apoptosis caspase cascade pathway in A549 cells.

Conclusion

Green-synthesized CuO NPs inhibited HDAC and therefore shown apoptosis mediated anticancer activity in A549 lung cancer cell line.
  相似文献   

6.

Background

Excessive apoptosis of airway epithelium is reported to induce airway remodeling and inhibited airway epithelium repair is highly associated with development of asthma and chronic obstructive pulmonary disease. Der p 2 is a major allergen derived from Dermatophagoides pteronyssinus and commonly causes airway hypersensitiveness and asthma; however, the connection between Der p 2 and epithelial apoptosis remains unclear. This study was aimed to explore whether Der p 2 induces apoptosis of airway epithelial cells and the underlying mechanisms.

Results

Our results showed that recombinant Der p 2 (rDP2) inhibited cell growth and induced apoptosis of human bronchial epithelial cell BEAS-2B. Further investigation revealed that rDP2 increased intracellular reactive oxygen species, level of cytosolic cytochrome c and cleavage of caspase-9 and caspase-3. rDP2 also induced activation of p38 mitogen-activated protein kinase (P38) and c-Jun N-terminal kinase (JNK), and triggered proapoptotic signals including decrease of Bcl-2, increase of Bax and Bak, and upregulation of Fas and Fas ligand. In parallel, rDP2 inhibited glycogen synthase kinase 3beta and consequently enhanced degradation of cellular (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP). Involvement of toll-like receptor (TLR)2 in rDP2-induced apoptosis was also demonstrated using specific small inhibitory RNA.

Conclusions

Our findings indicate that rDP2 suppresses cell growth and trigger apoptosis of BEAS-2B cells, which may attribute to induction of both intrinsic and extrinsic pathway via TLR2 and P38/JNK signaling and c-FLIP degradation. It suggests that Der p 2 may aggravate respiratory disorders through enhancement of apoptosis and the consequent airway injury.
  相似文献   

7.

Background

The adhesion of Plasmodium falciparum parasitized red blood cell (PRBC) to human endothelial cells (EC) induces inflammatory processes, coagulation cascades, oxidative stress and apoptosis. These pathological processes are suspected to be responsible for the blood-brain-barrier and other organs' endothelial dysfunctions observed in fatal cases of malaria. Atorvastatin, a drug that belongs to the lowering cholesterol molecule family of statins, has been shown to ameliorate endothelial functions and is widely used in patients with cardiovascular disorders.

Methods

The effect of this compound on PRBC induced endothelial impairments was assessed using endothelial co-culture models.

Results

Atorvastatin pre-treatment of EC was found to reduce the expression of adhesion molecules and P. falciparum cytoadherence, to protect cells against PRBC-induced apoptosis and to enhance endothelial monolayer integrity during co-incubation with parasites.

Conclusions

These results might suggest a potential interest use of atorvastatin as a protective treatment to interfere with the pathophysiological cascades leading to severe malaria.
  相似文献   

8.

Background

RAC3 coactivator overexpression has been implicated in tumorigenesis, contributing to inhibition of apoptosis and autophagy. Both mechanisms are involved in resistance to treatment with chemotherapeutic agents. The aim of this study was to investigate its role in chemoresistance of colorectal cancer.

Methods

The sensitivity to 5-fluorouracil and oxaliplatin in colon cancer cells HT-29, HCT 116 and Lovo cell lines, expressing high or low natural levels of RAC3, was investigated using viability assays.

Results

In HCT 116 cells, we found that although 5-fluorouracil was a poor inducer of apoptosis, autophagy was strongly induced, while oxaliplatin has shown a similar ability to induce both of them. However, in HCT 116 cells expressing a short hairpin RNA for RAC3, we found an increased sensitivity to both drugs if it is compared with control cells. 5-Fluorouracil and oxaliplatin treatment lead to an enhanced caspase 3-dependent apoptosis and produce an increase of autophagy. In addition, both process have shown to be trigged faster than in control cells, starting earlier after stimulation.

Conclusions

Our results suggest that RAC3 expression levels influence the sensitivity to chemotherapeutic drugs. Therefore, the knowledge of RAC3 expression levels in tumoral samples could be an important contribution to design new improved therapeutic strategies in the future.
  相似文献   

9.

Background

Gliomas are commonly malignant tumors that arise in the human central nervous system and have a low overall five-year survival rate. Previous studies reported that several members of Rab GTPase family are involved in the development of glioma, and abnormal expression of Rab small GTPases is known to cause aberrant tumor cell behavior. In this study, we characterized the roles of Rab21 (Rab GTPase 21), a member of Rab GTPase family, in glioma cells.

Methods

The study involved downregulation of Rab21 in two glioma cell lines (T98G and U87) through transfection with specific-siRNA. Experiments using the MTT assay, cell cycle analysis, apoptosis assay, real-time PCR and western blot were performed to establish the expression levels of related genes.

Results

The results show that downregulation of Rab21 can significantly inhibit cell growth and remarkably induce cell apoptosis in T98G and U87 cell lines. Silencing Rab21 resulted in significantly increased expression of apoptosis-related proteins (caspase7, Bim and Bax) in glioma cells.

Conclusions

We inferred that Rab21 silencing can induce apoptosis and inhibit proliferation in human glioma cells, indicating that Rab21 might act as an oncogene and serve as a novel target for glioma therapy.
  相似文献   

10.

Background

The role of the cytoskeleton in regulating mitochondrial distribution in dividing mammalian cells is poorly understood. We previously demonstrated that mitochondria are transported to the cleavage furrow during cytokinesis in a microtubule-dependent manner. However, the exact subset of spindle microtubules and molecular machinery involved remains unknown.

Methods

We employed quantitative imaging techniques and structured illumination microscopy to analyse the spatial and temporal relationship of mitochondria with microtubules and actin of the contractile ring during cytokinesis in HeLa cells.

Results

Superresolution microscopy revealed that mitochondria were associated with astral microtubules of the mitotic spindle in cytokinetic cells. Dominant-negative mutants of KIF5B, the heavy chain of kinesin-1 motor, and of Miro-1 disrupted mitochondrial transport to the furrow. Live imaging revealed that mitochondrial enrichment at the cell equator occurred simultaneously with the appearance of the contractile ring in cytokinesis. Inhibiting RhoA activity and contractile ring assembly with C3 transferase, caused mitochondrial mislocalisation during division.

Conclusions

Taken together, the data suggest a model in which mitochondria are transported by a microtubule-mediated mechanism involving equatorial astral microtubules, Miro-1, and KIF5B to the nascent actomyosin contractile ring in cytokinesis.
  相似文献   

11.

Objectives

To demonstrate that miR-9 inhibits autophagy by down-regulating Beclin1 and thus enhances the sensitivity of A549 cells to cisplatin.

Results

MiR-9 inhibited Beclin1 expression by binding to its 3′UTR. The inhibition decreased the cisplatin-induced autophagy in A549 cells, evidenced by the decreased expression of LC3II and GFP-LC3 puncta and the increased expression of P62. Upregulation of miR-9 level enhanced the sensibility of A549 cells to cisplatin and increased the cisplatin-induced apoptosis. Overexpression of Beclin1 reversed above effects of miR-9 mimics, cisplatin-induced autophagy was increased and apoptosis was decreased.

Conclusions

MiR-9 inhibits autophagy via targeting Beclin1 3′UTR and thus enhances cisplatin sensitivity in A549 cells.
  相似文献   

12.

Background

Short-term exposure to high concentrations of ozone has been shown to increase airway hyper-responsiveness (AHR). Because the changes in AHR and airway inflammation and structure after chronic ozone exposure need to be determined, the goal of this study was to investigate these effects in a murine model of allergic airway disease.

Methods

We exposed BALB/c mice to 2 ppm ozone for 4, 8, and 12 weeks. We measured the enhanced pause (Penh) to methacholine and performed cell differentials in bronchoalveolar lavage fluid. We quantified the levels of IL-4 and IFN-γ in the supernatants of the bronchoalveolar lavage fluids using enzyme immunoassays, and examined the airway architecture under light and electron microscopy.

Results

The groups exposed to ozone for 4, 8, and 12 weeks demonstrated decreased Penh at methacholine concentrations of 12.5, 25, and 50 mg/ml, with a dose-response curve to the right of that for the filtered-air group. Neutrophils and eosinophils increased in the group exposed to ozone for 4 weeks compared to those in the filtered-air group. The ratio of IL-4 to INF-γ increased significantly after exposure to ozone for 8 and 12 weeks compared to the ratio for the filtered-air group. The numbers of goblet cells, myofibroblasts, and smooth muscle cells showed time-dependent increases in lung tissue sections from the groups exposed to ozone for 4, 8, and 12 weeks.

Conclusion

These findings demonstrate that the increase in AHR associated with the allergic airway does not persist during chronic ozone exposure, indicating that airway remodeling and adaptation following repeated exposure to air pollutants can provide protection against AHR.
  相似文献   

13.

Background

Endophytes have proven to be an invaluable resource of chemically diverse secondary metabolites that act as excellent lead compounds for anticancer drug discovery. Here we report the promising cytotoxic effects of Cladosporol A (HPLC purified >98%) isolated from endophytic fungus Cladosporium cladosporioides collected from Datura innoxia. Cladosporol A was subjected to in vitro cytotoxicity assay against NCI60 panel of human cancer cells using MTT assay. We further investigated the molecular mechanism(s) of Cladosporol A induced cell death in human breast (MCF-7) cancer cells. Mechanistically early events of cell death were studied using DAPI, Annexin V-FITC staining assay. Furthermore, immunofluorescence studies were carried to see the involvement of intrinsic pathway leading to mitochondrial dysfunction, cytochrome c release, Bax/Bcl-2 regulation and flowcytometrically measured membrane potential loss of mitochondria in human breast (MCF-7) cancer cells after Cladosporol A treatment. The interplay between apoptosis and autophagy was studied by microtubule dynamics, expression of pro-apoptotic protein p21 and autophagic markers monodansylcadaverine staining and LC3b expression.

Results

Among NCI60 human cancer cell line panel Cladosporol A showed least IC50 value against human breast (MCF-7) cancer cells. The early events of apoptosis were characterized by phosphatidylserine exposure. It disrupts microtubule dynamics and also induces expression of pro-apoptotic protein p21. Moreover treatment of Cladosporol A significantly induced MMP loss, release of cytochrome c, Bcl-2 down regulation, Bax upregulation as well as increased monodansylcadaverine (MDC) staining and leads to LC3-I to LC3-II conversion.

Conclusion

Our experimental data suggests that Cladosporol A depolymerize microtubules, sensitize programmed cell death via ROS mediated autophagic flux leading to mitophagic cell death.

Graphical abstract

The proposed mechanism of Cladosporol A -triggered apoptotic as well as autophagic death of human breast cancer (MCF-7) cells. The figure shows that Cladosporol A induced apoptosis through ROS mediated mitochondrial pathway and increased p21 protein expression in MCF-7 cells in vitro.
  相似文献   

14.

Purpose

Atopic dermatitis (AD) is a chronically relapsing, pruritic, eczematous skin disorder accompanying allergic inflammation. AD is triggered by oxidative stress and immune imbalance. The effect of oral arjunolic acid (AA) on 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis in mice was investigated.

Methods

Repeated epicutaneous application of DNCB to the ear and shaved dorsal skin of mice was performed to induce AD-like symptoms and skin lesions: 250mg/kg AA was given orally for three weeks to assess its anti-pruritic effects. Serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, IL-10, immunoglobulin (Ig)E and caspase-3 were assessed by ELISA.

Results

We found that AA alleviated DNCB-induced AD-like symptoms as quantified by skin lesions, dermatitis score, ear thickness and scratching behavior. Levels of reactive oxygen species in the AA group were significantly inhibited compared with those in the DNCB group. In parallel, AA blocked a DNCBinduced reduction in serum levels of IL-4 and IL-10 associated with an attenuation of DNCB-induced increases in serum TNF-α, IL-6, IgE and caspase-3.

Conclusions

The results indicate that AA suppresses DNCB-induced AD in mice via redox balance and immune modulation, and could be a safe clinical treatment for AD.
  相似文献   

15.

Background

The discovery of molecular markers associated with various breast cancer subtypes has greatly improved the treatment and outcome of breast cancer patients. Unfortunately, breast cancer cells acquire resistance to various therapies. Mounting evidence suggests that resistance is rooted in the deregulation of the G1 phase regulatory machinery.

Methods

To address whether deregulation of the G1 phase regulatory machinery contributes to radiotherapy resistance, the MCF10A immortalized human mammary epithelial cell line, ER-PR-Her2+ and ER-PR-Her2- breast cancer cell lines were irradiated. Colony formation assays measured radioresistance, while immunocytochemistry, Western blots, and flow cytometry measured the cell cycle, DNA replication, mitosis, apoptosis, and DNA breaks.

Results

Molecular markers common to all cell lines were overexpressed, including cyclin A1 and cyclin D1, which impinge on CDK2 and CDK4 activities, respectively. We addressed their potential role in radioresistance by generating cell lines stably expressing small hairpin RNAs (shRNA) against CDK2 and CDK4. None of the cell lines knocked down for CDK2 displayed radiosensitization. In contrast, all cell lines knocked down for CDK4 were significantly radiosensitized, and a CDK4/CDK6 inhibitor sensitized MDA-MB-468 to radiation induced apoptosis. Our data showed that silencing CDK4 significantly increases radiation induced cell apoptosis in cell lines without significantly altering cell cycle progression, or DNA repair after irradiation. Our results indicate lower levels of phospho-Bad at ser136 upon CDK4 silencing and ionizing radiation, which has been shown to signal apoptosis.

Conclusion

Based on our data we conclude that knockdown of CDK4 activity sensitizes breast cancer cells to radiation by activating apoptosis pathways.
  相似文献   

16.

Background

MicroRNAs play important roles in regulation of the cardiovascular system. The purpose of this study was to investigate microRNA-320 (miR-320) expression in myocardial ischemia-reperfusion (I/R) injury and the roles of miR-320 in cardiomyocyte apoptosis by targeting AKIP1 (A kinase interacting protein 1).

Methods

The level of miR-320 was detected using quantitative real-time polymerase chain reaction (qRT-PCR), and cardiomyocyte apoptosis was detected via terminal dUTP nick end-labeling assay. Cardiomyocyte apoptosis and the mitochondrial membrane potential were evaluated via flow cytometry. Bioinformatics tools were used to identify the target gene of miR-320. The expression levels of AKIP1 mRNA and protein were detected via qRT-PCR and Western blot, respectively.

Results

Both the level of miR-320 and the rate of cardiomyocyte apoptosis were substantially higher in the I/R group and H9c2 cells subjected to H/R than in the corresponding controls. Overexpression of miR-320 significantly promoted cardiomyocyte apoptosis and increased the loss of the mitochondrial membrane potential, whereas downregulation of miR-320 had an opposite effect. Luciferase reporter assay showed that miR-320 directly targets AKIP1. Moreover, knock down and overexpression of AKIP1 had similar effects on the H9c2 cells subjected to H/R.

Conclusions

miR-320 plays an important role in regulating cardiomyocyte apoptosis induced by I/R injury by targeting AKIP1 and inducing the mitochondrial apoptotic pathway.
  相似文献   

17.

Objectives

To investigate the biological functions of microRNA-144-3p with respect to proliferation and apoptosis of human salivary adenoid carcinoma cell lines via mTOR.

Results

After transfection of microRNA-144-3p agomir, cell viability assays confirmed that the salivary adenoid carcinoma cell (SACC) proliferation was inhibited and apoptosis was induced. Dual luciferase reporter assay validated that the mammalian target of rapamycin (mTOR) was a direct target of miR-144-3p. Western blot, immunofluorescent analysis and a xenograft mouse model of adenoid cystic carcinoma indicated that miR-144-3p was a tumor suppressor and repressed mTOR expression and signaling in SACCs.

Conclusions

MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells by downregulating mTOR expression in vitro and in vivo.
  相似文献   

18.

Background

A gasotransmitter hydrogen sulfide (H2S) plays an important physiological and pathological role in cardiovascular system. Ischemic post-conditioning (PC) provides cardioprotection in the young hearts but not in the aged hearts. Exogenous H2S restores PC-induced cardioprotection by inhibition of mitochondrial permeability transition pore opening and oxidative stress and increase of autophagy in the aged hearts. However, whether H2S contributes to the recovery of PC-induced cardioprotection via down-regulation of endoplasmic reticulum stress (ERS) in the aged hearts is unclear.

Methods

The aged H9C2 cells (the cardiomyocytes line) were induced using H2O2 and were exposed to H/R and PC protocols. Cell viability was observed by CCK-8 kit. Apoptosis was detected by Hoechst 33342 staining and flow cytometry. Related protein expressions were detected through Western blot.

Results

In the present study, we found that 30 μM H2O2 induced H9C2 cells senescence but not apoptosis. Supplementation of NaHS protected against H/R-induced apoptosis, the expression of cleaved caspase-3 and cleaved caspase-9 and the release of cytochrome c. The addition of NaHS also counteracted the reduction of cell viability caused by H/R and decreased the expression of GRP 78, CHOP, cleaved caspase-12, ATF 4, ATF 6 and XBP-1 and the phosphorylation of PERK, eIF 2α and IRE 1α. Additionally, NaHS increased Bcl-2 expression. PC alone did not provide cardioprotection in H/R-treated aged cardiomyocytes, which was significantly restored by the supplementation of NaHS. The beneficial role of NaHS was similar to the supply of 4-PBA (an inhibitor of ERS), GSK2656157 (an inhibitor of PERK), STF083010 (an inhibitor of IRE 1α), respectively, during PC.

Conclusion

Our results suggest that the recovery of myocardial protection from PC by exogenous H2S is associated with the inhibition of ERS via down-regulating PERK-eIF 2α-ATF 4, IRE 1α-XBP-1 and ATF 6 pathways in the aged cardiomyocytes.
  相似文献   

19.
20.

Objectives

To examine the potential of ferulic acid and 4-vinylguaiacol for inhibiting epidermal growth factor receptor (EGFR) in human breast cancer cells in vitro.

Results

Ferulic acid and 4-vinylguaiacol limit the EGF (epidermal growth factor)-induced breast cancer proliferation and new DNA synthesis. Western blot analysis revealed both ferulic acid and 4-vinylguaiacol exhibit sustained inhibition of EGFR activation through down-regulation of Tyr 1068 autophosphorylation. Molecular docking analysis shows ferulic acid forming hydrogen bond interaction with Lys 745 and Met 793 whereas, 4-vinylguaiacol forms two hydrogen bonds with Phe 856 and exhibits stronger hydrophobic interactions with multiple amino acid residues at the EGFR kinase domain.

Conclusions

Ferulic acid and 4-vinylguaiacol could serve as a potential structure for the development of new small molecule therapeutics against EGFR.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号