首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alkaline phosphatases (APs) are non-specific phosphohydrolases that are widely used in molecular biology and diagnostics. We describe the structure of the cold active alkaline phosphatase from the Antarctic bacterium TAB5 (TAP). The fold and the active site geometry are conserved with the other AP structures, where the monomer has a large central beta-sheet enclosed by alpha-helices. The dimer interface of TAP is relatively small, and only a single loop from each monomer replaces the typical crown domain. The structure also has typical cold-adapted features; lack of disulfide bridges, low number of salt-bridges, and a loose dimer interface that completely lacks charged interactions. The dimer interface is more hydrophobic than that of the Escherichia coli AP and the interactions have tendency to pair with backbone atoms, which we propose to result from the cold adaptation of TAP. The structure contains two additional magnesium ions outside of the active site, which we believe to be involved in substrate binding as well as contributing to the local stability. The M4 site stabilises an interaction that anchors the substrate-coordinating R148. The M5 metal-binding site is in a region that stabilises metal coordination in the active site. In other APs the M5 binding area is supported by extensive salt-bridge stabilisation, as well as positively charged patches around the active site. We propose that these charges, and the TAP M5 binding, influence the release of the product phosphate and thus might influence the rate-determining step of the enzyme.  相似文献   

2.
Alkaline phosphatase (AP) from a North Atlantic marine Vibrio bacterium was previously characterized as being kinetically cold-adapted. It is still unknown whether its characteristics originate locally in the active site or are linked to more general structural factors. There are three metal-binding sites in the active site of APs, and all three metal ions participate in catalysis. The amino acid residues that bind the two zinc ions most commonly present are conserved in all known APs. In contrast, two of the residues that bind the third metal ion (numbered 153 and 328 in Escherichia coli AP) are different in various APs. This may explain their different catalytic efficiencies, as the Mg2+ most often present there is important for both structural stability and the reaction mechanism. We have mutated these key residues to the corresponding residues in E. coli AP to obtain the double mutant Asp116/Lys274, and both single mutants. All these mutants displayed reduced substrate affinity and lower overall reaction rates. The Lys274 and Asp116/Lys274 mutants also displayed an increase in global heat stability, which may be due to the formation of a stabilizing salt bridge. Overall, the results show that a single amino acid substitution in the active site is sufficient to alter the structural stability of the cold-active Vibrio AP both locally and globally, and this influences kinetic properties.  相似文献   

3.
Alkaline phosphatase (AP) from the cold-adapted Vibrio strain G15-21 is among the AP variants with the highest known k(cat) value. Here the structure of the enzyme at 1.4 A resolution is reported and compared to APs from E. coli, human placenta, shrimp and the Antarctic bacterium strain TAB5. The Vibrio AP is a dimer although its monomers are without the long N-terminal helix that embraces the other subunit in many other APs. The long insertion loop, previously noted as a special feature of the Vibrio AP, serves a similar function. The surface does not have the high negative charge density as observed in shrimp AP, but a positively charged patch is observed around the active site that may be favourable for substrate binding. The dimer interface has a similar number of non-covalent interactions as other APs and the "crown"-domain is the largest observed in known APs. Part of it slopes over the catalytic site suggesting that the substrates may be small molecules. The catalytic serines are refined with multiple conformations in both monomers. One of the ligands to the catalytic zinc ion in binding site M1 is directly connected to the crown-domain and is closest to the dimer interface. Subtle movements in metal ligands may help in the release of the product and/or facilitate prior dephosphorylation of the covalent intermediate. Intersubunit interactions may be a major factor for promoting active site geometries that lead to the high catalytic activity of Vibrio AP at low temperatures.  相似文献   

4.
Bacterial hydantoinase possesses a binuclear metal center in which two metal ions are bridged by a posttranslationally carboxylated lysine. How the carboxylated lysine and metal binding affect the activity of hydantoinase was investigated. A significant amount of iron was always found in Agrobacterium radiobacter hydantoinase purified from unsupplemented cobalt-, manganese-, or zinc-amended Escherichia coli cell cultures. A titration curve for the reactivation of apohydantoinase with cobalt indicates that the first metal was preferentially bound but did not give any enzyme activity until the second metal was also attached to the hydantoinase. The pH profiles of the metal-reconstituted hydantoinase were dependent on the specific metal ion bound to the active site, indicating a direct involvement of metal in catalysis. Mutation of the metal binding site residues, H57A, H59A, K148A, H181A, H237A, and D313A, completely abolished hydantoinase activity but preserved about half of the metal content, except for K148A, which lost both metals in its active site. However, the activity of K148A could be chemically rescued by short-chain carboxylic acids in the presence of cobalt, indicating that the carboxylated lysine was needed to coordinate the binuclear ion within the active site of hydantoinase. The mutant D313E enzyme was also active but resulted in a pH profile different from that of wild-type hydantoinase. A mechanism for hydantoinase involving metal, carboxylated K148, and D313 was proposed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Four independent mutations were introduced to the Escherichia coli alkaline phosphatase active site, and the resulting enzymes characterized to study the effects of Glu as a metal ligand. The mutations D51E and D153E were created to study the effects of lengthening the carboxyl group by one methylene unit at the metal interaction site. The D51E enzyme had drastically reduced activity and lost one zinc per active site, demonstrating importance of the position of Asp51. The D153E enzyme had an increased kcat in the presence of high concentrations of Mg2+, along with a decreased Mg2+ affinity as compared to the wild-type enzyme. The H331E and H412E enzymes were created to probe the requirement for a nitrogen-containing metal ligand at the Zn1 site. The H331E enzyme had greatly decreased activity, and lost one zinc per active site. In the absence of high concentrations of Zn2+, dephosphorylation occurs at an extremely reduced rate for the H412E enzyme, and like the H331E enzyme, metal affinity is reduced. Except at the 153 position, Glu is not an acceptable metal chelating amino acid at these positions in the E. coli alkaline phosphatase active site.  相似文献   

6.
Divalent metal ions play a crucial role in catalysis by many RNA and protein enzymes that carry out phosphoryl transfer reactions, and defining their interactions with substrates is critical for understanding the mechanism of biological phosphoryl transfer. Although a vast amount of structural work has identified metal ions bound at the active site of many phosphoryl transfer enzymes, the number of functional metal ions and the full complement of their catalytic interactions remain to be defined for any RNA or protein enzyme. Previously, thiophilic metal ion rescue and quantitative functional analyses identified the interactions of three active site metal ions with the 3'- and 2'-substrate atoms of the Tetrahymena group I ribozyme. We have now extended these approaches to probe the metal ion interactions with the nonbridging pro-S(P) oxygen of the reactive phosphoryl group. The results of this study combined with previous mechanistic work provide evidence for a novel assembly of catalytic interactions involving three active site metal ions. One metal ion coordinates the 3'-departing oxygen of the oligonucleotide substrate and the pro-S(P) oxygen of the reactive phosphoryl group; another metal ion coordinates the attacking 3'-oxygen of the guanosine nucleophile; a third metal ion bridges the 2'-hydroxyl of guanosine and the pro-S(P) oxygen of the reactive phosphoryl group. These results for the first time define a complete set of catalytic metal ion/substrate interactions for an RNA or protein enzyme catalyzing phosphoryl transfer.  相似文献   

7.
8.
Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5′ AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5′ AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5′ to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 Å resolution APE1-DNA product complex with Mg2+ and a 0.92 Å Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg2+. Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.  相似文献   

9.
The gene encoding alkaline phosphatase (AP) from the psychrophilic strain TAB5 was cloned, and its nucleotide sequence was determined. A single open reading frame consisting of 1125 base pairs which encodes a polypeptide consisting of signal peptide of 22 amino acids and a mature protein of 353 amino acids was identified. The deduced protein sequence of AP exhibits a 38% identity to the AP III and AP IV sequences of Bacillus subtilis and conserves the typical sequence motifs of the core structure and active sites of APs from various sources. Based on the crystal structure of the mutated Escerichia coli AP D153H, a homology-based 3D model of the TAB5 AP was constructed on the basis of which various features of the enzyme amino-acid sequence can be interpreted in terms of potential psychrophilic adaptations. The AP gene was expressed in E. coli BL21(DE3) cells, the recombinant protein was isolated to homogeneity from the membrane fraction of the cells and its properties were examined. The purified TAB5 AP shows typical features of a cold enzyme: high catalytic activity at low temperature and a remarkable thermosensitivity. The use of this heat-labile enzyme, for dephosphorylation of nucleic acids, simplifies dephosphorylation protocols.  相似文献   

10.
Analysis of sequence alignments of alkaline phosphatases revealed a correlation between metal specificity and certain amino acid side chains in the active site that are metal-binding ligands. The Zn(2+)-requiring Escherichia coli alkaline phosphatase has an Asp at position 153 and a Lys at position 328. Co(2+)-requiring alkaline phosphatases from Thermotoga maritima and Bacillus subtilis have a His and a Trp at these positions, respectively. The mutations D153H, K328W, and D153H/K328W were induced in E. coli alkaline phosphatase to determine whether these residues dictate the metal dependence of the enzyme. The wild-type and D153H enzymes showed very little activity in the presence of Co(2+), but the K328W and especially the D153H/K328W enzymes effectively use Co(2+) for catalysis. Isothermal titration calorimetry experiments showed that in all cases except for the D153H/K328W enzyme, a possible conformation change occurs upon binding Co(2+). These data together indicate that the active site of the D153H/K328W enzyme has been altered significantly enough to allow the enzyme to utilize Co(2+) for catalysis. These studies suggest that the active site residues His and Trp at the E. coli enzyme positions 153 and 328, respectively, at least partially dictate the metal specificity of alkaline phosphatase.  相似文献   

11.
GTP cyclohydrolase (GCH) III from Methanocaldococcus jannaschii, which catalyzes the conversion of GTP to 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (FAPy), has been shown to require Mg2+ for catalytic activity and is activated by monovalent cations such as K+ and ammonium [Graham, D. E., Xu, H., and White, R. H. (2002) Biochemistry 41, 15074-15084]. The reaction is formally identical to that catalyzed by a GCH II ortholog (SCO 6655) from Streptomyces coelicolor; however, SCO 6655, like other GCH II proteins, is a zinc-containing protein. The structure of GCH III complexed with GTP solved at 2 A resolution clearly shows that GCH III adopts a distinct fold that is closely related to the palm domains of phosphodiesterases, such as DNA polymerase I. GCH III is a tetramer of identical subunits; each monomer is composed of an N- and a C-terminal domain that adopt nearly superimposible structures, suggesting that the protein has arisen by gene duplication. Three metal ions were located in the active site, two of which occupy positions that are analogous to those occupied by divalent metal ions in the structures of a number of palm domain containing proteins, such as DNA polymerase I. Two conserved Asp residues that coordinate the metal ions, which are also found in palm domain containing proteins, are observed in GCH III. Site-directed variants (Asp-->Asn) of these residues in GCH III are less active than wild-type. The third metal ion, most likely a potassium ion, is involved in substrate recognition through coordination of O6 of GTP. The arrangement of the metal ions in the active site suggests that GCH III utilizes two metal ion catalysis. The structure of GCH III extends the repertoire of possible reactions with a palm fold to include cyclohydrolase chemistry.  相似文献   

12.
Metal-dependent formate dehydrogenases (Fdh) from prokaryotic organisms are members of the dimethyl sulfoxide reductase family of mononuclear molybdenum-containing and tungsten-containing enzymes. Fdhs catalyze the oxidation of the formate anion to carbon dioxide in a redox reaction that involves the transfer of two electrons from the substrate to the active site. The active site in the oxidized state comprises a hexacoordinated molybdenum or tungsten ion in a distorted trigonal prismatic geometry. Using this structural model, we calculated the catalytic mechanism of Fdh through density functional theory tools. The simulated mechanism was correlated with the experimental kinetic properties of three different Fdhs isolated from three different Desulfovibrio species. Our studies indicate that the C–H bond break is an event involved in the rate-limiting step of the catalytic cycle. The role in catalysis of conserved amino acid residues involved in metal coordination and near the metal active site is discussed on the basis of experimental and theoretical results.  相似文献   

13.
Comparisons among evolutionarily related enzymes offer opportunities to reveal how structural differences produce different catalytic activities. Two structurally related enzymes, Escherichia coli alkaline phosphatase (AP) and Xanthomonas axonopodis nucleotide pyrophosphatase/phosphodiesterase (NPP), have nearly identical binuclear Zn2+ catalytic centers but show tremendous differential specificity for hydrolysis of phosphate monoesters or phosphate diesters. To determine if there are differences in Zn2+ coordination in the two enzymes that might contribute to catalytic specificity, we analyzed both x-ray absorption spectroscopic and x-ray crystallographic data. We report a 1.29-Å crystal structure of AP with bound phosphate, allowing evaluation of interactions at the AP metal site with high resolution. To make systematic comparisons between AP and NPP, we measured zinc extended x-ray absorption fine structure for AP and NPP in the free-enzyme forms, with AMP and inorganic phosphate ground-state analogs and with vanadate transition-state analogs. These studies yielded average zinc–ligand distances in AP and NPP free-enzyme forms and ground-state analog forms that were identical within error, suggesting little difference in metal ion coordination among these forms. Upon binding of vanadate to both enzymes, small increases in average metal–ligand distances were observed, consistent with an increased coordination number. Slightly longer increases were observed in NPP relative to AP, which could arise from subtle rearrangements of the active site or differences in the geometry of the bound vanadyl species. Overall, the results suggest that the binuclear Zn2+ catalytic site remains very similar between AP and NPP during the course of a reaction cycle.  相似文献   

14.
In an effort to explore the effects of local flexibility on the cold adaptation of enzymes, we designed point mutations aiming to modify side-chain flexibility at the active site of the psychrophilic alkaline phosphatase from the Antarctic strain TAB5. The mutagenesis targets were residues Trp260 and Ala219 of the catalytic site and His135 of the Mg2+ binding site. The replacement of Trp260 by Lys in mutant W260K, resulted in an enzyme less active than the wild-type in the temperature range 5-25 degrees C. The additional replacement of Ala219 by Asn in the double mutant W260K/A219N, resulted in a drastic increase in the energy of activation, which was reflected in a considerably decreased activity at temperatures of 5-15 degrees C and a significantly increased activity at 20-25 degrees C. Further substitution of His135 by Asp in the triple mutant W260K/A219N/H135D restored a low energy of activation. In addition, the His135-->Asp replacement in mutants H135D and W260K/A219N/H135D resulted in considerable stabilization. These results suggest that the psychrophilic character of mutants can be established or masked by very slight variations of the wild-type sequence, which may affect active site flexibility through changes in various conformational constraints.  相似文献   

15.
Protein nucleases and RNA enzymes depend on divalent metal ions to catalyze the rapid hydrolysis of phosphate diester linkages of nucleic acids during DNA replication, DNA repair, RNA processing, and RNA degradation. These enzymes are widely proposed to catalyze phosphate diester hydrolysis using a "two-metal-ion mechanism." Yet, analyses of flap endonuclease (FEN) family members, which occur in all domains of life and act in DNA replication and repair, exemplify controversies regarding the classical two-metal-ion mechanism for phosphate diester hydrolysis. Whereas substrate-free structures of FENs identify two active site metal ions, their typical separation of > 4 A appears incompatible with this mechanism. To clarify the roles played by FEN metal ions, we report here a detailed evaluation of the magnesium ion response of T5FEN. Kinetic investigations reveal that overall the T5FEN-catalyzed reaction requires at least three magnesium ions, implying that an additional metal ion is bound. The presence of at least two ions bound with differing affinity is required to catalyze phosphate diester hydrolysis. Analysis of the inhibition of reactions by calcium ions is consistent with a requirement for two viable cofactors (Mg2+ or Mn2+). The apparent substrate association constant is maximized by binding two magnesium ions. This may reflect a metal-dependent unpairing of duplex substrate required to position the scissile phosphate in contact with metal ion(s). The combined results suggest that T5FEN primarily uses a two-metal-ion mechanism for chemical catalysis, but that its overall metallobiochemistry is more complex and requires three ions.  相似文献   

16.
Alkaline phosphatases (AP) are widely distributed in nature, and generally have a dimeric structure. However, there are indications that either monomeric or multimeric bacterial forms may exist. This paper describes the gene sequence of a psychrophilic marine Vibrio AP, previously shown to be particularly heat labile. The kinetic properties were also indicative of cold adaptation. The amino acid sequence of the Vibrio G15-21 AP reveals that the residues involved in the catalytic mechanism, including those ligating the metal ions, have precedence in other characterized APs. Compared with Escherichia coli AP, the two zinc binding sites are identical, whereas the metal binding site, normally occupied by magnesium, is not. Asp-153 and Lys-328 of E. coli AP are His-153 and Trp-328 in Vibrio AP. Two additional stretches of amino acids not present in E. coli AP are found inserted close to the active site of the Vibrio AP. The smaller insert could be accommodated within a dimeric structure, assuming a tertiary structure similar to E. coli AP. In contrast the longer insert would most likely protrude into the interface area, thus preventing dimer formation. This is the first primary structure of a putative monomeric AP, with indications as to the basis for a monomeric existence. Proximity of the large insert loop to the active site may indicate a surrogate role for the second monomer, and may also shape the catalytic as well as stability characteristics of this enzyme.  相似文献   

17.
Four independent mutations were introduced to the Escherichia coli alkaline phosphatase active site, and the resulting enzymes characterized to study the effects of Glu as a metal ligand. The mutations D51E and D153E were created to study the effects of lengthening the carboxyl group by one methylene unit at the metal interaction site. The D51E enzyme had drastically reduced activity and lost one zinc per active site, demonstrating importance of the position of Asp(51). The D153E enzyme had an increased k(cat) in the presence of high concentrations of Mg(2+), along with a decreased Mg(2+) affinity as compared to the wild-type enzyme. The H331E and H412E enzymes were created to probe the requirement for a nitrogen-containing metal ligand at the Zn(1) site. The H331E enzyme had greatly decreased activity, and lost one zinc per active site. In the absence of high concentrations of Zn(2+), dephosphorylation occurs at an extremely reduced rate for the H412E enzyme, and like the H331E enzyme, metal affinity is reduced. Except at the 153 position, Glu is not an acceptable metal chelating amino acid at these positions in the E. coli alkaline phosphatase active site.  相似文献   

18.
Although helix P4 in the catalytic domain of the RNase P ribozyme is known to coordinate magnesium ions important for activity, distinguishing between direct and indirect roles in catalysis has been difficult. Here, we provide evidence for an indirect role in catalysis by showing that while the universally conserved bulge of helix P4 is positioned 5 nt downstream of the cleavage site, changes in its structure can still purturb active site metal binding. Because changes in helix P4 also appear to alter its position relative to the pre-tRNA cleavage site, these data suggest that P4 contributes to catalytic metal ion binding through substrate positioning.  相似文献   

19.
BACKGROUND: Many microorganisms have the ability to either oxidize molecular hydrogen to generate reducing power or to produce hydrogen in order to remove low-potential electrons. These reactions are catalyzed by two unrelated enzymes: the Ni-Fe hydrogenases and the Fe-only hydrogenases. RESULTS: We report here the structure of the heterodimeric Fe-only hydrogenase from Desulfovibrio desulfuricans - the first for this class of enzymes. With the exception of a ferredoxin-like domain, the structure represents a novel protein fold. The so-called H cluster of the enzyme is composed of a typical [4Fe-4S] cubane bridged to a binuclear active site Fe center containing putative CO and CN ligands and one bridging 1, 3-propanedithiol molecule. The conformation of the subunits can be explained by the evolutionary changes that have transformed monomeric cytoplasmic enzymes into dimeric periplasmic enzymes. Plausible electron- and proton-transfer pathways and a putative channel for the access of hydrogen to the active site have been identified. CONCLUSIONS: The unrelated active sites of Ni-Fe and Fe-only hydrogenases have several common features: coordination of diatomic ligands to an Fe ion; a vacant coordination site on one of the metal ions representing a possible substrate-binding site; a thiolate-bridged binuclear center; and plausible proton- and electron-transfer pathways and substrate channels. The diatomic coordination to Fe ions makes them low spin and favors low redox states, which may be required for catalysis. Complex electron paramagnetic resonance signals typical of Fe-only hydrogenases arise from magnetic interactions between the [4Fe-4S] cluster and the active site binuclear center. The paucity of protein ligands to this center suggests that it was imported from the inorganic world as an already functional unit.  相似文献   

20.
Metal ions are indispensable cofactors for chemical catalysis by a plethora of enzymes. Porphobilinogen synthases (PBGSs), which catalyse the second step of tetrapyrrole biosynthesis, are grouped according to their dependence on Zn(2+). Using site-directed mutagenesis, we embarked on transforming Zn(2+)-independent Pseudomonas aeruginosa PBGS into a Zn(2+)-dependent enzyme. Nine PBGS variants were generated by permutationally introducing three cysteine residues and a further two residues into the active site of the enzyme to match the homologous Zn(2+)-containing PBGS from Escherichia coli. Crystal structures of seven enzyme variants were solved to elucidate the nature of Zn(2+) coordination at high resolution. The three single-cysteine variants were invariably found to be enzymatically inactive and only one (D139C) was found to bind detectable amounts of Zn(2+). The double mutant A129C/D139C is enzymatically active and binds Zn(2+) in a tetrahedral coordination. Structurally and functionally it mimics mycobacterial PBGS, which bears an equivalent Zn(2+)-coordination site. The remaining two double mutants, without known natural equivalents, reveal strongly distorted tetrahedral Zn(2+)-binding sites. Variant A129C/D131C possesses weak PBGS activity while D131C/D139C is inactive. The triple mutant A129C/D131C/D139C, finally, displays an almost ideal tetrahedral Zn(2+)-binding geometry and a significant Zn(2+)-dependent enzymatic activity. Two additional amino acid exchanges further optimize the active site architecture towards the E.coli enzyme with an additional increase in activity. Our study delineates the potential evolutionary path between Zn(2+)-free and Zn(2+)-dependent PBGS enyzmes showing that the rigid backbone of PBGS enzymes is an ideal framework to create or eliminate metal dependence through a limited number of amino acid exchanges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号