首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Introduction – Rumex nepalensis contains mainly anthraquinone and naphthalene derivatives. Although HPLC methods have been reported for the analysis of anthraquinones, neither a phytochemical analysis of Rumex species nor the simultaneous determination of anthraquinone and naphthalene derivatives in other samples has been reported so far. Objective – To develop and validate a HPLC method for the simultaneous determination of anthraquinone and naphthalene derivatives in R. nepalensis roots. Methodology – Anthraquinones and naphthalenes were extracted from R. nepalensis roots by three methods (reflux, ultrasonication and pressurized liquid extraction) using methanol. Separation was achieved on an RP C18 column with a gradient mobile phase consisting of 0.05% orthophosphoric acid in water (solvent A) and methanol (solvent B) using a UV detector (254 nm). Results – Small differences were observed in the contents of anthraquinone and naphthalene derivatives extracted by the three methods. Chrysophanol‐8‐Oβ‐D‐glucopyranoside and nepodin were detected as major constituents. The method showed a good linearity (r2 > 0.9992), high precision (RSD < 5%) and a good recovery (97–105%) of the compounds. The lowest detection limit was found to be 0.97 ng and the method was found to be robust. Conclusion – Reflux and ultrasonication were found to be the best suited methods for the extraction of glycosides and aglycones, respectively. The developed and validated HPLC method is simple, precise and accurate; and can hence be recommended as the method of choice for the analysis of anthraquinones and naphthalenes in R. nepalensis and other Rumex species for both quality control as well as routine analytical purposes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Several species belonging to the genus Rhamnus (Rhamnaceae), comprising ones among which are found the most typical plants of the Italian flora, are known to contain biologically active anthraquinone secondary metabolites. Although several Rhamnus species were so far investigated, no information is available concerning the content and relative abundances of anthraquinones in R. saxatilis. In this study we used a simple, reliable, and accurate analytical method to determine the anthraquinones in bark of R. saxatilis. This allowed us also to trace a comparative study on the efficacy of different extraction solvents in ultrasonication time dependent assays. Separation and quantification of anthraquinones were accomplished using a C18 column with the mobile phase of H2O:methanol (40:60, v/v, 1% formic acid) at a flow rate of 0.7 mL/min and a detection wavelength of 254 nm, while the qualitative analyses were also achieved at a wavelength of 435 nm.Finally, the described HPLC method, was used to obtain a specific chemical fingerprint for this species in comparison with other species from the same family.  相似文献   

3.
Introduction – Rhizoma Atractylodes Macrocephalae (RAM) contains several sesquiterpene compounds including atractylenolide III (AO‐III). This bioactive compound may be used as a chemical marker for the quality control of different processed RAM products. Objective – To develop and validate an RP‐HPLC method for the quantitative determination of AO‐III in RAM and in a variety of processed RAM products. Methodology – HPLC was carried out using a Kromssil C18 RP‐column eluted with methanol–water (70:30) at a flow rate of 1.0 mL/min and with UV detection at 220 nm. Full validation was performed using standard methods. Results – The linear range of AO‐III was 5–50 µg/mL; the regression equation was y = 10210x + 11194 (r = 0.9994) and the average recovery was 101.08% (RSD = 0.98%). The detection and quantification limits for AO‐III were determined to be 0.005 and 0.018 µg/mL at signal‐to‐noise ratios of approximately 3:1 and 10:1, respectively. Conclusion – The described HPLC method is appropriate for quality assurance and differentiation of AO‐III in RAM and different processed products.  相似文献   

4.
Introduction – Asparagus officinalis L. has several biological activities including antifungal, antiviral and antitumoral activities due to the steroidal saponins. Normally diosgenin and sarsasapogenin are analysed separately by thin‐layer chromatography or high‐performance liquid chromatography (HPLC‐UV or HPLC‐ELSD), which is time‐consuming and expensive, so we need to find a rapid solution to this problem. Objective – To develop a sensitive, rapid and validated TLC method for simultaneous detection and quantification of diosgenin and sarsasapogenin. Methodology – Samples were prepared by extraction of A. officinalis with 70% aqueous ethanol to get steroidal saponins, and then hydrolysed using 36 mL 2 m hydrochloric acid for 3 h. The hydrolysis product was extracted with chloroform, and then analysed by TLC, the results of which were verified by HPLC and HPLC‐MS. Results – The retention factor (Rf) of diosgenin and sarsasapogenin on TLC plate were 0.49 and 0.6, respectively. After calculation from the regression equation of the standard curve, the contents of diosgenin and sarsasapogenin in the A. officinalis extract were 0.27–0.46 and 0.11–0.32%, respectively. Conclusion – The study showed that thin‐layer chromatography can be applied for the determination of diosgenin and sarsasapogenin in the oldest tissue of A. officinalis, and also can be conducted for screening of sapogenin in other plant or extracts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A new simple, simultaneous matrix HPLC methodology was developed to facilitate better peak separability and resolution for the determination of levels of myocardial tissue nucleotides, nucleosides and oxidative metabolites. The components of interests were ATP, AMP, ADP, IMP, hypoxanthine, xanthine, adenosine, inosine, NAD, and NADH, which are used to establish myocardial cellular energy status and effectiveness of cardioprotection. Their detection was achieved using a 4-μm spherical bead, 300 × 3.9 mm I.D. Nova-Pak C18 column in a 12% methanol mobile phase solvent selection, ion-pairing reagents 1.47 mM TBAP (tetrabutylammonium phosphate) and 73.5 mM KH2PO4, at a pH of 4.0. The extraction method was modified for rapid determination to ensure diminished acid labile NADH effects. Comparisons of peak retention (k), resolution (Rs) of solvents of varying concentrations and pH adjustments facilitated this method. This isocratic single run determination allows for simple, simultaneous rapid quantification and identification of alterations in high-energy phosphates, nucleoside degradation products and NAD/NADH levels associated with myocardial ischemia, with excellent reliability.  相似文献   

6.
Introduction – Chiisanogenin existing in many Acanthopanax species has been reported to possess anti‐inflammatory, antibacterial and antiplatelet aggregatory activities. Objective – To develop and validate a rapid and sensitive ultra performance liquid chromatography‐tandem mass spectrometry method for the determination of chiisanogenin in rat plasma and to investigate its pharmacokinetics after oral administration of chiisanogenin or the extract of Acanthopanax sessiliflorus fruits. Methodology – The sample pretreatment involved a one‐step extraction of 0.2 mL plasma with diethyl ether. Acetaminophen was used as the internal standard. The separation was carried out on an ACQUITY UPLC? BEH C18 column with a mobile phase of acetonitrile‐5 mM ammonium acetate (90:10, v/v) at a flow rate of 0.2 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via electrospray ionization (ESI) source. Results – A high sample throughput was achieved with an analysis time of 1.1 min per sample. The calibration curve was linear (r2 ≥ 0.99) over the concentration range of 5–500 ng/mL with a lower limit of quantification (LLOQ) of 5 ng/mL. The intra‐day and inter‐day precision (relative standard deviation, R.S.D.) values were below 11% and the accuracy (relative error, R.E.) was within 8% at all three quality control (QC) levels. Conclusion – The method was successfully applied to the pharmacokinetic study of chiisanogenin in rat after oral administration of chiisanogenin and the extract of Acanthopanax sessiliflorus fruits. Other constituents in the extract affected the pharmacokinetic behavior of chiisanogenin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Introduction – Biflavones of Hypericum perforatum L. are bioactive compounds used in the treatment of inflammation and depression. Determination of amentoflavone and biapigenin from blood is challenging owing to their similar structures and low concentrations. Objective – To develop a rapid, sensitive and accurate method based on liquid‐phase extraction followed by high‐performance liquid chromatography and electrospray ionisation mass spectrometry (HPLC‐ESI‐MS) for quantification of biflavones in human plasma. Methodology – After extraction from blood, the analytes were subjected to HPLC with an XTerra® MS C18 column and a binary mobile phase consisting of 2% formic acid in water and acetonitrile under isocratic elution conditions, with ESI‐MS detection in the negative ion mode and multiple reaction monitoring (MRM). Results – Both calibration curves showed good linearity within the concentration range 1–500 ng/mL. Limits of detection (S/N = 3) were 0.1 ng for pure substances and the limits of quantitation (S/N = 5) were 1.0 ng/mL from analyte‐spiked serum. The grand mean recovery was 90% from several subsamples of each biflavone. The imprecision (RSD) of peak areas was between 5% (intraday) and 10% (interday) for high concentrations (250 ng/mL) and between 10% (intraday) and 15% (interday) for low concentrations (1 ng/mL). Inaccuracy of the mean was less than 20% at the lower limit of quantitation. Conclusion – The developed and validated method for determination of biflavones from human plasma was effectively applied to pharmacokinetic studies of 13 probands and preliminary results indicate biphasic concentration–time curves. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Introduction – Arbutin is a skin‐whitening agent that occurs naturally in the bark and leaves of various plants. It is commonly quantified in plant extracts and skin‐whitening products by HPLC. Objective – To develop an alternative gas chromatographic method for the separation and quantification of arbutin in Origanum majorana and Arctostaphylos uva‐ursi extracts. Methodology – N,O‐Bis(trimethylsilyl)acetamide and trimethylchlorosilane were used as silylation reagents, and the gas chromatographic separation of silylated extracts and standards was performed using a DB‐5 narrow bore column. GC‐MS was used for the compound identification, and the quantification was carried out by GC‐FID. The quantitative results were compared with those of HPLC analysis. Results – The developed method gave a good sensitivity with linearity in the range 0.33–500 mg/mL and recovery >98%, allowing the quantification of arbutin in O. majorana and A. uva‐ursi extracts. The relative standard deviations (RSD) relating to intra‐day and inter‐day precision were <0.002% and <4.8%, respectively. The GC results correlated well with those obtained by HPLC analysis. Conclusion – The analysis of marjoram and bearberry samples showed that the established GC method was rapid, selective, and demonstrated that arbutin could be screened alternatively by gas chromatography. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Introduction – Ixeris sonchifolia (Bunge) Hance, a folk medicine, has been widely used in China for its anti‐inflammatory and haemostatic effects. However, the miscellaneous component composition of this herbal medicine is not well known. Objective – To develop a fast and comprehensive analytical method for the characterisation of various components from I. Sonchifolia, as a tool for the quality control of the herb and its related preparations. Methodology – Ixeris sonchifolia samples were extracted with 60% aqueous methanol, purified by solid‐phase extraction and then analysed by the combinatorial use of HPLC‐TOFMS and HPLC‐ITMS. Results – A total of six sesquiterpene lactones, six phenolic acids and seven flavonoids were identified or tentatively characterised. Five of them were reported for the first time in I. sonchifolia and, in particular, two amino acid‐sesquiterpene lactone conjugates, 11,13‐dihydro‐13‐prolyl‐ixerin Z and 11,13‐dihydro‐13‐prolyl‐ixerin Z1, that were first found in this plant source. Conclusion – A global profile of I. sonchifolia constituents was described, which could be useful for the quality control of this herb and its related preparations. The employed combination of HPLC‐TOFMS and HPLC‐ITMS could also be a promising tool for the analysis of other herbal medicines containing sesquiterpene lactones, phenolic acids or flavonoids. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Extraction of DMP 450 from plasma was performed with C2 solid-phase extraction columns, using 0.1 M ammonium acetate in 90% methanol to elute DMP 450. The extraction recovery over the range of 10 to 10 000 ng/ml averaged 81.0, 96.2, 77.4, 95.2 and 68.0% from rat, dog, monkey, chimpanzee (25–10 000 ng/ml) and human plasma, respectively. HPLC analysis was carried out with a C18 column and a mobile phase of acetonitrile, methanol and 30 mM potassium phosphate (pH 3), the composition dependent on the type of plasma being analyzed, and monitored at a wavelength of 229 nm. Intra-day and inter-day coefficients of variation were less than 9.9 and 12.9%, respectively. Absolute differences were less than 11.5%.  相似文献   

11.
Introduction – Cortex Mori, one of the well‐known traditional Chinese herbal medicines, is derived from the root bark of Morus alba L. according to the China Pharmacopeia. Stilbene glycosides are the main components isolated from aqueous extracts of Morus alba and their content varies depending on where Cortex Mori was collected. We have established a qualitative and quantitative method based on the bioactive stilbene glycosides for control of the quality of Cortex Mori from different sources. Objective – To develop a high‐performance liquid chromatography coupled with ultraviolet absorption detection for simultaneous quantitative determination of five major characteristic stilbene glycosides in 34 samples of the root bark of Morus alba L. (Cortex Mori) from different sources. Methodology – The analysis was performed on an ODS column using methanol‐water‐acetic acid (18: 82: 0.1, v/v/v) as the mobile phase and the peaks were monitored at 320 nm. Results – All calibration curves showed good linearity (r ≥ 0.9991) within test ranges. This method showed good repeatability for the quantification of these five components in Cortex Mori with intra‐ and inter‐day standard deviations less than 2.19% and 1.45%, respectively. Conclusion – The validated method was successfully applied to quantify the five investigated components, including a pair of cis‐trans‐isomers 1 and 2 and a pair of isomers 4 and 5 in 34 samples of Cortex Mori from different sources. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A high-performance liquid chromatography (HPLC) analytical method for the determination of oxolinic acid and flumequine in Artemia nauplii is described. The samples were extracted and cleaned up by a solid-phase extraction (SPE) procedure using SPE C18 cartridges. Oxolinic acid and flumequine were determined by reversed-phase HPLC using a mobile phase of methanol–0.1 M phosphate buffer, pH 3 (45:55, v/v) and a UV detection wavelength of 254 nm. Calibration curves were linear for oxolinic acid in the range of 0.2–50 μg/g (r2=0.9998) and for flumequine in the range of 0.3–50 μg/g (r2=0.9994). Mean recoveries amounted to 100.8% and 98.4% for oxolinic acid and flumequine, respectively. The quantification limit was 0.2 μg/g for oxolinic acid and 0.3 μg/g for flumequine. Quantitative data from an in vivo feeding study indicated excellent uptake of both drugs by Artemia nauplii.  相似文献   

13.
A selective HPLC method is described for the determination of cefpodoxime levels in plasma and sinus mucosa. Sample preparation included solid-phase extraction with a C8 cartridge. Cefpodoxime and cefaclor (internal standard) were eluted with methanol and analyzed on an optimised system consisting of a C18 stationary phase and a ternary mobile phase (0.05 M acetate buffer pH 3.8—methanol—acetonitrile, 87:10:3, v/v) monitored at 235 nm. Linearity and both between- and within-day reproducibility were assessed for plasma and sinus mucosa samples. Inter-assay coefficients of variation were lower than 13.6% (n = 10) for plasma (0.2 μg/ml) and lower than 12.4% (n = 5) for sinus mucosa (0.25 μg/g). The quantification limit was 0.05 μg/ml for plasma and 0.13 μg/g for tissue. The method was used to study the diffusion of cefpodoxime in sinus mucosa.  相似文献   

14.
Introduction – Methyl jasmonate (MJA), which is a natrual hormonal regulator, is thought to be essential for the regulation of systemic defence responses. The information about MJA levels in plant tissues is helpful for the study of the disease resistance mechanism and genetically engineered cultivars with increased resistance. Therefore, the quantification of MJA levels in plant tissues by means of a sensitive and reliable method is of interest. Objective – Development of a film extraction method coupled with GC for determination of methyl jasmonate in leaf tisssue of oilseed rape for analysis of early signalling in sclerotinia sclerotiorum resistance. Methodology – A robust polydimethylsiloxane film was prepared and used for extraction of MJA in leaf tissues. By using in‐solution extraction mode, optimum extraction efficiency was achieved with methanol–water (1 : 5, v/v) as extraction medium at 40°C for 60 min. Results – Under the optimal conditions, a detection limit of 0.2 ng/mL was achieved. Excellent reproducibility was found over a linear range of 1–1000 ng/mL. MJA in leaves infected by sclerotinia sclerotiorum was determined, with the results showing that basal levels of MJA (15 ng/g) were present in noninfested controls, but increased to 313 ng/g 10 h after fungal attack. Conclusion – The film extraction method is a simple, rapid and inexpensive sampling technique for determination of endogenous MJA in plant tissues that can be applied to most plants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Introduction – The fruit bodies of Fomes officinalis are used for the treatment of coughs, gastric cancer, rheumatism and hydropsia; however, no method is currently available to assess the quality of this medicinal fungus based on quantitative profile of its main triterpenes. Objective – To develop a simple and accurate HPLC‐UV method for the simultaneous quantification of five lanostane‐type triterpenes in the fruit bodies of F. officinalis. Method – Separations were performed on an Agilent Zorbax Eclipse XDB‐C18 column by gradient elution using acetonitrile : formic acid. Analytes were identified by HPLC coupled with electrospray ionisation mass spectrometry experiments. The quantitative HPLC‐UV method was validated for linearity, precision, accuracy and limits of detection and quantification. Results – Calibration curves presented good linear regression (r > 0.9996) within test ranges. The relative standard deviation of this method was less than 1.7% for intra‐ and inter‐day assays and overall recoveries were 96.4–104.1% for the five compounds analysed. The method was successfully applied to the quantification of five triterpenes in 16 samples of F. officinalis collected from different regions. Conclusion – The developed assay could be considered as a suitable quality control method for F. officinalis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Introduction – Dehydrocavidine is a major component of Corydalis saxicola Bunting with sedative, analgesic, anticonvulsive and antibacterial activities. Conventional methods have disadvantages in extracting, separating and purifying dehydrocavidine from C. saxicola. Hence, an efficient method should be established. Objective – To develop a suitable preparative method in order to isolate dehydrocavidine from a complex C. saxicola extract by preparative HSCCC. Methodology – The methanol extract of C. saxicola was prepared by optimised microwave‐assisted extraction (MAE). The analytical HSCCC was used for the exploration of suitable solvent systems and the preparative HSCCC was used for larger scale separation and purification. Dehydrocavidine was analysed by high‐performance liquid chromatography (HPLC) and further identified by ESI‐MS and 1H NMR. Results – The optimised MAE experimental conditions were as follows: extraction temperature, 60°C; ratio of liquid to solid, 20; extraction time, 15 min; and microwave power, 700 W. In less than 4 h, 42.1 mg of dehydrocavidine (98.9% purity) was obtained from 900 mg crude extract in a one‐step separation, using a two‐phase solvent system composed of chloroform–methanol–0.3 m hydrochloric acid (4 : 0.5 : 2, v/v/v). Conclusion – Microwave‐assisted extraction coupled with high‐speed counter‐current chromatography is a powerful tool for extraction, separation and purification of dehydrocavidine from C. saxicola. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

The α-Amylase and α-glucosidase are two main enzymes involved in carbohydrate metabolism. This study was aimed at detecting alpha-amylase inhibitory activity from edible mushroom mycelia. Oyster mushroom was collected from a natural source, from Indian Institute of Technology (Banaras Hindu University) campus and was maintained in vitro in mycelial form. Chloroform, acetone, methanol, and water were used separately for extraction of an active constituent from mycelial cells grown, for 7?days, in potato dextrose broth. The extracts were tested for alpha-amylase inhibitory activity. Chloroform, acetone, and methanol extracts were found to have alpha-amylase inhibitory activity, with IC50 values of 1.71, 224, and 383?μg/mL, respectively. Aqueous extract had no enzyme inhibitory activity. The acetone extract inhibited α-amylase non-competitively whereas chloroform extract showed competitive inhibition. Acetone extraction yielded highest total phenolic content (TPC) of 0.524?mM of gallic acid equivalent, whereas chloroform extraction resulted in lowest TPC of 0.006?mM. The HPLC and absorbance maxima of acetone and chloroform extracts suggest that the bioactive component responsible for enzyme inhibition could be glycoproteins in chloroform extract and catechins (flavonoids) in acetone extract. Thus, the mushroom mycelia under study may be exploited for production and purification of a lead compound for the development of the α-amylase inhibitory drug.  相似文献   

18.
The extraction and purification methods used in the maleyl derivatization HPLC technique was evaluated with respect to the pH of the extraction mixture, the extraction solvent and the purification methods used in order to determine optimum conditions for quantification of fumonisins B1, B2, and B3 in corn cultures. The highest recovery of the three compounds was obtained by extraction at pH 3.5 with CH3OH–H20 (3∶1), whilst the subsequent solvent partitioning and reversedphase C18 Sep-pak purification have been shown to be very important in the quantification of the fumonisins in the corn cultures. The percentage recovery of the improved technique, utilizing a gradient HPLC solvent system for the simultaneous determination of the fumonisins, was 93.4% for FB1, 68.0% for FB2, and 82.6% for FB3. The study indicates that the polarity of the fumonisins and consequently their solubility during extraction as well as their behavior during the subsequent purification step play an important role in quantification of these mycotoxins in corn cultures.  相似文献   

19.
A method enabling quantification of R-(−)- and S-(+)-mepivacaine in human plasma in the low nanogram per milliliter range is described. The procedure involves extraction from plasma with diethyl ether, centrifugation, back-extraction into an acidified aqueous solution, washing with a mixture of pentane and isoamylalcohol, alkalinisation, followed by extraction with a mixture of n-pentane and isoamylalcohol. After evaporation of the organic phase, the residue is redissolved in the mobile phase used for the HPLC analysis, which consists of a 6.8:93.2 (v/v) isopropanol-sodium hydrogenphosphate buffer solution with the pH adjusted to 6.8 using phosphoric acid. The HPLC method has been described previously. Separation of the enantiomers is achieved with an α1-AGP column and the UV detection wavelength is 210 nm. The minimal detectable concentration is ca. 3 ng/ml and the lower limit of quantification is 5 ng/ml for each enantiomer. For both enantiomers r is >0.9995 over the plasma enantiomeric concentration range of 10.5–1054 ng/ml.  相似文献   

20.
Introduction – The increasing demands of roots and rhizomes of Salvia miltiorrhiza almost exhausted the wild Salvia sources in China. However, the content and composition of phenolic acids in the aerial parts of the plant and their potential to be used as a substitute has not been explored. Objective – To evaluate the potential of the aerial parts of Salvia miltiorrhiza as new natural sources of phenolic acids. Methodology – HPLC coupled with diode array detection (DAD) and electrospray ionization multistage mass spectrometry (ESI/MSn) has been used for qualitative and quantitative analysis of phenolic compounds. Results – A total of 38 phenolic compounds were identified or tentatively characterized. A quantitative HPLC‐DAD method allowing the simultaneously quantification of six phenolic acids was optimized and validated for linearity, precision, accuracy, and limits of detection and quantification. Calibration curves showed good linear regression (r2 > 0.9991) within test ranges; the recoveries ranged between 95.64 and 101.67% and the RSDs were less than 3.01%. Conclusion – The developed methods have been proved to be effective for the identification and quantification of phenolic acids in S. miltiorrhiza. The results obtained suggest that the aerial parts of the plant could be used as an alternative source of sage phenolics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号