首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Hu C  Koehl P  Max N 《Proteins》2011,79(10):2828-2843
The three‐dimensional structure of a protein is organized around the packing of its secondary structure elements. Predicting the topology and constructing the geometry of structural motifs involving α‐helices and/or β‐strands are therefore key steps for accurate prediction of protein structure. While many efforts have focused on how to pack helices and on how to sample exhaustively the topologies and geometries of multiple strands forming a β‐sheet in a protein, there has been little progress on generating native‐like packings of helices on sheets. We describe a method that can generate the packing of multiple helices on a given β‐sheet for αβα sandwich type protein folds. This method mines the results of a statistical analysis of the conformations of αβ2 motifs in protein structures to provide input values for the geometric attributes of the packing of a helix on a sheet. It then proceeds with a geometric builder that generates multiple arrangements of the helices on the sheet of interest by sampling through these values and performing consistency checks that guarantee proper loop geometry between the helices and the strands, minimal number of collisions between the helices, and proper formation of a hydrophobic core. The method is implemented as a module of ProteinShop. Our results show that it produces structures that are within 4–6 Å RMSD of the native one, regardless of the number of helices that need to be packed, though this number may increase if the protein has several helices between two consecutive strands in the sequence that pack on the sheet formed by these two strands. Proteins 2011; Published 2011 Wiley‐Liss, Inc.  相似文献   

2.
To advance our understanding of protein tertiary structure, the development of the knob‐socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob‐socket model simplifies packing based on repeated patterns of two motifs: a three‐residue socket for packing within secondary (2°) structure and a four‐residue knob‐socket for tertiary (3°) packing. For coil and turn secondary structure, knob‐sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α‐helices to tertiary packing. In irregular sockets, Gly, Pro, Asp, and Ser are favored, while in irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly. Cys, His,Met, and Trp are not favored in either. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β‐sheet socket may potentially function to inhibit β‐sheet extension. In addition, analysis of the preferred crossing angles for strands within a β‐sheet and mixed α‐helice/β‐sheet identifies canonical packing patterns useful in protein design. Lastly, the knob‐socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map. Proteins 2015; 83:2147–2161. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Hyun Joo  Jerry Tsai 《Proteins》2014,82(9):2128-2140
To understand the relationship between protein sequence and structure, this work extends the knob‐socket model in an investigation of β‐sheet packing. Over a comprehensive set of β‐sheet folds, the contacts between residues were used to identify packing cliques: sets of residues that all contact each other. These packing cliques were then classified based on size and contact order. From this analysis, the two types of four‐residue packing cliques necessary to describe β‐sheet packing were characterized. Both occur between two adjacent hydrogen bonded β‐strands. First, defining the secondary structure packing within β‐sheets, the combined socket or XY:HG pocket consists of four residues i, i+2 on one strand and j, j+2 on the other. Second, characterizing the tertiary packing between β‐sheets, the knob‐socket XY:H+B consists of a three‐residue XY:H socket (i, i+2 on one strand and j on the other) packed against a knob B residue (residue k distant in sequence). Depending on the packing depth of the knob B residue, two types of knob‐sockets are found: side‐chain and main‐chain sockets. The amino acid composition of the pockets and knob‐sockets reveal the sequence specificity of β‐sheet packing. For β‐sheet formation, the XY:HG pocket clearly shows sequence specificity of amino acids. For tertiary packing, the XY:H+B side‐chain and main‐chain sockets exhibit distinct amino acid preferences at each position. These relationships define an amino acid code for β‐sheet structure and provide an intuitive topological mapping of β‐sheet packing. Proteins 2014; 82:2128–2140. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
We describe a method that can thoroughly sample a protein conformational space given the protein primary sequence of amino acids and secondary structure predictions. Specifically, we target proteins with β‐sheets because they are particularly challenging for ab initio protein structure prediction because of the complexity of sampling long‐range strand pairings. Using some basic packing principles, inverse kinematics (IK), and β‐pairing scores, this method creates all possible β‐sheet arrangements including those that have the correct packing of β‐strands. It uses the IK algorithms of ProteinShop to move α‐helices and β‐strands as rigid bodies by rotating the dihedral angles in the coil regions. Our results show that our approach produces structures that are within 4–6 Å RMSD of the native one regardless of the protein size and β‐sheet topology although this number may increase if the protein has long loops or complex α‐helical regions. Proteins 2010. © Published 2009 Wiley‐Liss, Inc.  相似文献   

5.
Does the amino acid use at the terminal positions of an α‐helix become altered depending on the context—more specifically, when there is an adjoining 310‐helix, and can a single helical cylinder encompass the resultant composite helix? An analysis of 138 and 107 cases of 310–α and α–310 composite helices, respectively, found in known protein structures indicate that the secondary structural element occurring first imposes its characteristics on the sequence of the structural element coming next. Thus, when preceded by a 310‐helix, the preference of proline to occur at the N1 position of an α‐helix is shifted to the N2 position, a typical characteristic of the C‐terminal capping of the 310‐helix. When an α‐ or a 310‐helix leads into a helix of the other type, there is a bend at the junction, especially for the 310–α composite, with the two junction residues facing inward and buried within the structure. Thus a single helical cylinder may not properly represent a composite helix, the bend providing a means for the tertiary structure to assume a globular shape, very much akin to what a proline‐induced kink does to an α‐helix. The tertiary structural context in which β–310 and 310–β composites occurs can be different, causing the angle between the secondary structural elements in the two cases to be different. Composites of 310‐helices and β‐strands are much more conserved among members in families of homologous structures than those between two types of helices; in many of the former instances, the 310‐helix constitutes the loops in β‐hairpin or β–β‐corner motifs. The overall fold of the chain may be more conserved than the actual identify of the secondary structure elements in a composite. © 2005 Wiley Periodicals, Inc. Biopolymers 78: 147–162, 2005 This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
Examples of homomeric β‐helices and β‐barrels have recently emerged. Here we generalize the theory for the shear number in β‐barrels to encompass β‐helices and homomeric structures. We introduce the concept of the “β‐strip,” the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n‐fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β‐strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α‐hemolysin, T4 phage spike, cylindrin, and the HET‐s(218‐289) prion. From reported dimensions measured by X‐ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in‐register β‐strands folded into a “β‐strip helix.” Results suggest both stabilization of an individual β‐strip helix and growth by addition of further β‐strip helices can involve the same pair of sequence segments associating with β‐sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design.  相似文献   

7.
The crystal structure of a tripeptide Boc‐Leu‐Val‐Ac12c‐OMe ( 1 ) is determined, which incorporates a bulky 1‐aminocyclododecane‐1‐carboxylic acid (Ac12c) side chain. The peptide adopts a semi‐extended backbone conformation for Leu and Val residues, while the backbone torsion angles of the Cα,α‐dialkylated residue Ac12c are in the helical region of the Ramachandran map. The molecular packing of 1 revealed a unique supramolecular twisted parallel β‐sheet coiling into a helical architecture in crystals, with the bulky hydrophobic Ac12c side chains projecting outward the helical column. This arrangement resembles the packing of peptide helices in crystal structures. Although short oligopeptides often assemble as parallel or anti‐parallel β‐sheet in crystals, twisted or helical β‐sheet formation has been observed in a few examples of dipeptide crystal structures. Peptide 1 presents the first example of a tripeptide showing twisted β‐sheet assembly in crystals. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
HP1454 is a protein of 303 amino acids found in the extracellular milieu of Helicobacter pylori. The protein structure, crystallized in the orthorhombic C2221 space group with one molecule per asymmetric unit, has been determined using the single‐wavelength anomalous dispersion method. HP1454 exhibits an elongated bent shape, composed of three distinct domains. Each domain possesses a fold already present in other structures: Domain I contains a three‐strand antiparallel β‐barrel flanked by a long α‐helix, Domain II is an anti‐parallel three‐helix bundle, and Domain III a β‐sheet flanked by two α‐helices. The overall assembly of the protein does not bear any similarity with known structures. Proteins 2014; 82:2868–2873. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Plants use a highly evolved immune system to exhibit defense response against microbial infections. The plant TIR domain, together with the nucleotide‐binding (NB) domain and/or a LRR region, forms a type of molecule, named resistance (R) proteins, that interact with microbial effector proteins and elicit hypersensitive responses against infection. Here, we report the first crystal structure of a plant TIR domain from Arabidopsis thaliana (AtTIR) solved at a resolution of 2.0 Å. The structure consists of five β‐strands forming a parallel β‐sheet at the core of the protein. The β‐strands are connected by a series of α‐helices and the overall fold mimics closely that of other mammalian and bacterial TIR domains. However, the region of the αD‐helix reveals significant differences when compared with other TIR structures, especially the αD3‐helix that corresponds to an insertion only present in plant TIR domains. Available mutagenesis data suggest that several conserved and exposed residues in this region are involved in the plant TIR signaling function.  相似文献   

10.
To help elucidate the role of secondary structure packing preferences in protein folding, here we present an analysis of the packing geometry observed between alpha-helices and between alpha-helices and beta-sheets in 1316 diverse, nonredundant protein structures. Finite-length vectors were fit to the alpha-carbon atoms in each of the helices and strands, and the packing angle between the vectors, Omega, was determined at the closest point of approach within each helix-helix or helix-sheet pair. Helix-sheet interactions were found in 391 of the proteins, and the distributions of Omega values were calculated for all the helix-sheet and helix-helix interactions. The packing angle preferences for helix-helix interactions are similar to those previously observed. However, analysis of helix-strand packing preferences uncovered a remarkable tendency for helices to align antiparallel to parallel regions of beta-sheets, independent of the topological constraints or prevalence of beta-alpha-beta motifs in the proteins. This packing angle preference is significantly diminished in helix interactions involving mixed and antiparallel beta-sheets, suggesting a role for helix-sheet dipole alignment in guiding supersecondary structure formation in protein folding. This knowledge of preferred packing angles can be used to guide the engineering of stable protein modules.  相似文献   

11.
Numerous short peptides have been shown to form β‐sheet amyloid aggregates in vitro. Proteins that contain such sequences are likely to be problematic for a cell, due to their potential to aggregate into toxic structures. We investigated the structures of 30 proteins containing 45 sequences known to form amyloid, to see how the proteins cope with the presence of these potentially toxic sequences, studying secondary structure, hydrogen‐bonding, solvent accessible surface area and hydrophobicity. We identified two mechanisms by which proteins avoid aggregation: Firstly, amyloidogenic sequences are often found within helices, despite their inherent preference to form β structure. Helices may offer a selective advantage, since in order to form amyloid the sequence will presumably have to first unfold and then refold into a β structure. Secondly, amyloidogenic sequences that are found in β structure are usually buried within the protein. Surface exposed amyloidogenic sequences are not tolerated in strands, presumably because they lead to protein aggregation via assembly of the amyloidogenic regions. The use of α‐helices, where amyloidogenic sequences are forced into helix, despite their intrinsic preference for β structure, is thus a widespread mechanism to avoid protein aggregation.  相似文献   

12.
Common structural elements in proteins such as α‐helices or β‐sheets are characterized by uniformly repeating, energetically favorable main chain conformations which additionally exhibit a completely saturated hydrogen‐bonding network of the main chain NH and CO groups. Although polyproline or polyglycine type II helices (PPII or PGII) are frequently found in proteins, they are not considered as equivalent secondary structure elements because they do not form a similar self‐contained hydrogen‐bonding network of the main chain atoms. In this context our finding of an unusual motif of glycine‐rich PGII‐like helices in the structure of the acetophenone carboxylase core complex is of relevance. These PGII‐like helices form hexagonal bundles which appear to fulfill the criterion of a (largely) saturated hydrogen‐bonding network of the main‐chain groups and therefore may be regarded in this sense as a new secondary structure element. It consists of a central PGII‐like helix surrounded by six nearly parallel PGII‐like helices in a hexagonal array, plus an additional PGII‐like helix extending the array outwards. Very related structural elements have previously been found in synthetic polyglycine fibers. In both cases, all main chain NH and CO groups of the central PGII‐helix are saturated by either intra‐ or intermolecular hydrogen‐bonds, resulting in a self‐contained hydrogen‐bonding network. Similar, but incomplete PGII‐helix patterns were also previously identified in a GTP‐binding protein and an antifreeze protein.  相似文献   

13.
β‐Sheets are quite frequent in protein structures and are stabilized by regular main‐chain hydrogen bond patterns. Irregularities in β‐sheets, named β‐bulges, are distorted regions between two consecutive hydrogen bonds. They disrupt the classical alternation of side chain direction and can alter the directionality of β‐strands. They are implicated in protein‐protein interactions and are introduced to avoid β‐strand aggregation. Five different types of β‐bulges are defined. Previous studies on β‐bulges were performed on a limited number of protein structures or one specific family. These studies evoked a potential conservation during evolution. In this work, we analyze the β‐bulge distribution and conservation in terms of local backbone conformations and amino acid composition. Our dataset consists of 66 times more β‐bulges than the last systematic study (Chan et al. Protein Science 1993, 2:1574–1590). Novel amino acid preferences are underlined and local structure conformations are highlighted by the use of a structural alphabet. We observed that β‐bulges are preferably localized at the N‐ and C‐termini of β‐strands, but contrary to the earlier studies, no significant conservation of β‐bulges was observed among structural homologues. Displacement of β‐bulges along the sequence was also investigated by Molecular Dynamics simulations.  相似文献   

14.
G‐Protein Coupled Receptors (GPCRs) play a critical role in cellular signal transduction pathways and are prominent therapeutic targets. Recently there has been major progress in obtaining experimental structures for a few GPCRs. Each GPCR, however, exhibits multiple conformations that play a role in their function and we have been developing methods aimed at predicting structures for all these conformations. Analysis of available structures shows that these conformations differ in relative helix tilts and rotations. The essential issue is, determining how to orient each of the seven helices about its axis since this determines how it interacts with the other six helices. Considering all possible helix rotations to ensure that no important packings are overlooked, and using rotation angle increments of 30° about the helical axis would still lead to 127 or 35 million possible conformations each with optimal residue positions. We show in this paper how to accomplish this. The fundamental idea is to optimize the interactions between each pair of contacting helices while ignoring the other 5 and then to estimate the energies of all 35 million combinations using these pair‐wise interactions. This BiHelix approach dramatically reduces the effort to examine the complete set of conformations and correctly identifies the crystal packing for the experimental structures plus other near‐native packings we believe may play an important role in activation. This approach also enables a detailed structural analysis of functionally distinct conformations using helix‐helix interaction energy landscapes and should be useful for other helical transmembrane proteins as well. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
The sensor histidine kinases of two‐component signal‐transduction systems (TCSs) are essential for bacteria to adapt to variable environmental conditions. The two‐component regulatory system BaeS/R increases multidrug and metal resistance in Salmonella and Escherichia coli. In this study, we report the X‐ray structure of the periplasmic sensor domain of BaeS from Serratia marcescens FS14. The BaeS sensor domain (34–160) adopts a mixed α/β‐fold containing a central four‐stranded antiparallel β‐sheet flanked by a long N‐terminal α‐helix and additional loops and a short C‐terminal α‐helix on each side. Structural comparisons revealed that it belongs to the PDC family with a remarkable difference in the orientation of the helix α2. In the BaeS sensor domain, this helix is situated perpendicular to the long helix α1 and holds helix α1 in the middle with the beta sheet, whereas in other PDC domains, helix α2 is parallel to helix α1. Because the helices α1 and α2 is involved in the dimeric interface, this difference implies that BaeS uses a different dimeric interface compared with other PDC domains. Proteins 2017; 85:1784–1790. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
Membrane-embedded protein domains frequently exist as α-helical bundles, as exemplified by photosynthetic reaction centers, bacteriorhodopsin, and cytochrome C oxidase. The sidechain packing between their transmembrane helices was investigated by a nearest-neighbor analysis which identified sets of interfacial residues for each analyzed helix–helix interface. For the left-handed helix–helix pairs, the interfacial residues almost exclusively occupy positions a, d, e, or g within a heptad motif (abcdefg) which is repeated two to three times for each interacting helical surface. The connectivity between the interfacial residues of adjacent helices conforms to the knobs-into-holes type of sidechain packing known from soluble coiled coils. These results demonstrate on a quantitative basis that the geometry of sidechain packing is similar for left-handed helix–helix pairs embedded in membranes and coiled coils of soluble proteins. The transmembrane helix–helix interfaces studied are somewhat less compact and regular as compared to soluble coiled coils and tolerate all hydrophobic amino acid types to similar degrees. The results are discussed with respect to previous experimental findings which demonstrate that specific interactions between transmembrane helices are important for membrane protein folding and/or oligomerization. Proteins 31:150–159, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Arc repressor is a homodimeric protein with a ribbon‐helix–helix fold. A single polar‐to‐hydrophobic substitution (N11L) at a solvent‐exposed position leads to population of an alternate dimeric fold in which 310 helices replace a β‐sheet. Here we find that the variant Q9V/N11L/R13V (S‐VLV), with two additional polar‐to‐hydrophobic surface mutations in the same β‐sheet, forms a highly stable, reversibly folded octamer with approximately half the?α‐helical content of wild‐type Arc. At low protein concentration and low ionic strength, S‐VLV also populates both dimeric topologies previously observed for N11L, as judged by NMR chemical shift comparisons. Thus, accumulation of simple hydrophobic mutations in Arc progressively reduces fold specificity, leading first to a sequence with two folds and then to a manifold bridge sequence with at least three different topologies. Residues 9–14 of S‐VLV form a highly hydrophobic stretch that is predicted to be amyloidogenic, but we do not observe aggregates of higher order than octamer. Increases in sequence hydrophobicity can promote amyloid aggregation but also exert broader and more complex effects on fold specificity. Altered native folds, changes in fold coupled to oligomerization, toxic pre‐amyloid oligomers, and amyloid fibrils may represent a near continuum of accessible alternatives in protein structure space.  相似文献   

18.
Secondary structural transitions from α‐helix to β‐sheet conformations are observed in several misfolding diseases including Alzheimer's and Parkinson's. Determining factors contributing favorably to the formation of each of these secondary structures is therefore essential to better understand these disease states. β‐hairpin peptides form basic components of anti‐parallel β‐sheets and are suitable model systems for characterizing the fundamental forces stabilizing β‐sheets in fibrillar structures. In this study, we explore the free energy landscape of the model β‐hairpin peptide GB1 and its E2 isoform that preferentially adopts α‐helical conformations at ambient conditions. Umbrella sampling simulations using all‐atom models and explicit solvent are performed over a large range of end‐to‐end distances. Our results show the strong preference of GB1 and the E2 isoform for β‐hairpin and α‐helical conformations, respectively, consistent with previous studies. We show that the unfolded states of GB1 are largely populated by misfolded β‐hairpin structures which differ from each other in the position of the β‐turn. We discuss the energetic factors contributing favorably to the formation of α‐helix and β‐hairpin conformations in these peptides and highlight the energetic role of hydrogen bonds and non‐bonded interactions. Proteins 2014; 82:2394–2402. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Conformational energy computations were carried out on the packing of two identical collagenlike poly(tripeptide) triple helices in order to determine the energetics of favorable packing arrangements as a function of composition and chain length. The triple helices considered were [CH3CO-(Gly-Pro-Pro)nt-NHCH3]3 and [CH3CO-(Gly-Pro-Ala)nt-NHCH3]3, with nt = 3, 4, and 5. The packing arrangements were characterized in terms of their intermolecular energies and orientation angles Ω0 of the axes of the two triple helices. For short triple helices (nt = 3 or 4), many low-energy orientations, with a wide range of values of Ω0, can occur. When the triple helices are longer (nt = 5), the only low-energy packing arrangements of two poly(Gly-Pro-Pro) triple helices are those with a nearly parallel orientation of the two helix axes, with Ω0 ≈ ?10°. This result accounts for the observed parallel (rather than antiparallel) arrangement of collagen molecules in microfibril assembly and stands in contrast to the preferred antiparallel arrangement of a pair of α-helices. Since the preference for a parallel arrangement of these collagenlike triple helices is less pronounced in the case of poly(Gly-Pro-Ala), it appears that this preference is a consequence of the frequent presence of imino acids in position Y of the Gly-X-Y repeating triplet. In poly(Gly-Pro-Ala), most of the low-energy packing arrangements are parallel, but a few arrangements with low energies and high values of |Ω0| occur. These packing arrangements have a high energy, however, when Pro is substituted for Ala, and thus they are not accessible for collagen with natural amino (imino) acid sequences. The computations reported here account for some of the characteristic features of collagen packing in terms of the local interaction energies of a pair of triple helices.  相似文献   

20.
The ribosomal protein S6 from Thermus thermophilus has served as a model system for the study of protein folding, especially for understanding the effects of circular permutations of secondary structure elements. This study presents the structure of a permutant protein, the 96‐residue P54‐55, and the structure of its 101‐residue parent protein S6wt in solution. The data also characterizes the effects of circular permutation on the backbone dynamics of S6. Consistent with crystallographic data on S6wt, the overall solution structures of both P54‐55 and S6wt show a β‐sheet of four antiparallel β‐strands with two α‐helices packed on one side of the sheet. In clear contrast to the crystal data, however, the solution structure of S6wt reveals a disordered loop in the region between β‐strands 2 and 3 (Leu43‐Phe60) instead of a well‐ordered stretch and associated hydrophobic mini‐core observed in the crystal structure. Moreover, the data for P54‐55 show that the joined wild‐type N‐ and C‐terminals form a dynamically robust stretch with a hairpin structure that complies with the in silico design. Taken together, the results explain why the loop region of the S6wt structure is relatively insensitive to mutational perturbations, and why P54‐55 is more stable than S6wt: the permutant incision at Lys54‐Asp55 is energetically neutral by being located in an already disordered loop whereas the new hairpin between the wild‐type N‐ and C‐termini is stabilizing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号