首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several conditions have been used in the coupling reaction of stepwise SPPS at elevated temperature (SPPS‐ET), but we have elected the following as our first choice: 2.5‐fold molar excess of 0.04–0.08 M Boc or Fmoc‐amino acid derivative, equimolar amount of DIC/HOBt (1:1) or TBTU/DIPEA (1:3), 25% DMSO/toluene, 60 °C, conventional heating. In this study, aimed to further examine enantiomerization under such condition and study the applicability of our protocols to microwave‐SPPS, peptides containing L ‐Ser, L ‐His, L ‐Cys and/or L ‐Met were manually synthesized traditionally, at 60 °C using conventional heating and at 60 °C using microwave heating. Detailed assessment of all crude peptides (in their intact and/or fully hydrolyzed forms) revealed that, except for the microwave‐assisted coupling of L ‐Cys, all other reactions occurred with low levels of amino acid enantiomerization (<2%). Therefore, herein we (i) provide new evidences that our protocols for SPPS at 60 °C using conventional heating are suitable for routine use, (ii) demonstrate their appropriateness for microwave‐assisted SPPS by Boc and Fmoc chemistries, (iii) disclose advantages and limitations of the three synthetic approaches employed. Thus, this study complements our past research on SPPS‐ET and suggests alternative conditions for microwave‐assisted SPPS. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Peptides prepared by the solid-phase peptide synthesis (SPPS) approach are used increasingly in biological research, for instance to elicit anti-peptide antibodies that will recognize the intact, cognate protein. Recent advances in SPPS are reviewed, including the use of new coupling reagents, new methods for evaluating peptide purity and new techniques of automated and multiple peptide synthesis. Methods for enhancing peptide immunogenicity are discussed such as the use of adjuvants and liposomes, and of synthetic branched polypeptides as carriers.  相似文献   

3.
In this study we describe the first protocols for the synthesis of cystine-rich peptides in the presence of microwave radiation with Boc-solid phase peptide synthesis (SPPS). This method is exemplified for macrocyclic peptides known as cyclotides, which comprise approximately 30 amino acids and incorporate a cystine knot arrangement of their three disulfide bonds. However, the method is broadly applicable for a wide range of peptides using Boc-SPPS, especially for SPPS of large peptides via native chemical ligation. Microwave radiation produces peptides in high yield and with high purity, and we were able to reduce the time for the assembly of approximately 30 mer peptide chains to an overnight reaction in the automated microwave-assisted synthesis.  相似文献   

4.
The methodology for peptide bond formation is undergoing a continuous evolution where the main actors are being renewed. In recent years, coupling reagents based on the Oxyma scaffold, such as the uronium salt COMU, has been a groundbreaking contribution to the field. The advantages of COMU over classic benzotriazole‐based reagents (HATU, HBTU, HCTU, TBTU) were proven in terms of solubility and coupling efficiency in bulky junctions in our groups and others. However, some aspects of the use of COMU need to be revised and improved, such as the stability of commercial samples in organic solvents, which hampers the compatibility with long synthesis in automated synthesizers. In this review, an overview of the main features and suggestions to improve the use of COMU are presented, along with a discussion on the best conditions for its use in microwave‐assisted peptide robots. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Peptide purification by high-performance liquid chromatography (HPLC) is associated with high solvent consumption, relatively large effort and lack of efficient parallelization. As an alternative, many catch-and-release (c&r) purification methods have been developed over the last decades to enable the efficient parallel purification of peptides originating from solid-phase peptide synthesis (SPPS). However, with one exception, none of the c&r systems has been widely established in industry and academia until today. Herein, we present an entirely new chromatography-free purification concept for peptides synthesized on a solid support, termed reactive capping purification (RCP). The RCP method relies on the capping of truncation peptides arising from incomplete coupling of amino acids during SPPS with a reactive tag. The reactive tag contains a masked functionality that, upon liberation during cleavage from the resin, enables straightforward purification of the peptide by incubation with a resin-bound reactive moiety. In this work, two different reactive tags based on masked thiols were developed. Capping with these reactive tags during SPPS led to effective modification of truncated sequences and subsequent removal of the latter by chemoselective reaction with a maleimide-functionalized solid support. By introducing a suitable protecting group strategy, the thiol-based RCP method described here could also be successfully applied to a thiol-containing peptide. Finally, the purification of a 15-meric peptide by the RCP method was demonstrated. The developed method has low solvent consumption, has the potential for efficient parallelization, uses readily available reagents, and is experimentally simple to perform.  相似文献   

6.
Phosphonium and uronium salt‐based reagents enable efficient and effective coupling reactions and are indispensable in peptide chemistry, especially in machine‐assisted SPPS. However, after the activating and coupling steps with these reagents in the presence of tertiary amines, Fmoc derivatives of Cys are known to be considerably racemized during their incorporation. To avoid this side reaction, a coupling method mediated by phosphonium/uronium reagents with a weaker base, such as 2,4,6‐trimethylpyridine, than the ordinarily used DIEA or that by carbodiimide has been recommended. However, these methods are appreciably inferior to the standard protocol applied for SPPS, that is, a 1 min preactivation procedure of coupling with phosphonium or uronium reagents/DIEA in DMF, in terms of coupling efficiency, and also the former method cannot reduce racemization of Cys(Trt) to an acceptable level (<1.0%) even when the preactivation procedure is omitted. Here, the 4,4′‐dimethoxydiphenylmethyl and 4‐methoxybenzyloxymethyl groups were demonstrated to be acid‐labile S‐protecting groups that can suppress racemization of Cys to an acceptable level (<1.0%) when the respective Fmoc derivatives are incorporated via the standard SPPS protocol of phosphonium or uronium reagents with the aid of DIEA in DMF. Furthermore, these protecting groups significantly reduced the rate of racemization compared to the Trt group even in the case of microwave‐assisted SPPS performed at a high temperature. © 2013 The Authors. European Peptide Society published by John Wiley & Sons, Ltd.  相似文献   

7.
The synthesis of difficult peptide sequences has been a challenge since the very beginning of SPPS. The self‐assembly of the growing peptide chains has been proposed as one of the causes of this synthetic problem. However, there is an increasing need to obtain peptides and proteins that are prone to aggregate. These peptides and proteins are generally associated with diseases known as amyloidoses. We present an efficient SPPS of two homologous peptide fragments of HuPrP (106–126) and MoPrP105–125 based on the use of the PEGA resin combined with proper coupling approaches. These peptide fragments were also studied by CD and TEM to determine their ability to aggregate. On the basis of these results, we support PEG‐based resins as an efficient synthetic tool to prepare peptide sequences prone to aggregate on‐resin. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
We have been engaged in the microwave‐solid phase peptide synthesis (SPPS) synthesis of the phenylglycine (Phg)‐containing pentapeptide H‐Ala‐Val‐Pro‐Phg‐Tyr‐NH2 (1) previously demonstrated to bind to the so‐called BIR3 domain of the anti‐apoptotic protein XIAP. Analysis of the target peptide by a combination of RP‐HPLC, ESI‐MS, and NMR revealed the presence of two diastereoisomers arising out of the racemisation of the Phg residue, with the percentage of the LLLDL component assessed as 49%. We performed the synthesis of peptide (1) using different microwave and conventional stepwise SPPS conditions in attempts to reduce the level of racemisation of the Phg residue and to determine at which part of the synthetic cycle the epimerization had occurred. We determined that racemisation occurred mainly during the Fmoc‐group removal and, to a much lesser extent, during activation/coupling of the Fmoc‐Phg‐OH residue. We were able to obtain the desired peptide with a 71% diastereomeric purity (29% LLLDL as impurity) by utilizing microwave‐assisted SPPS at 50 °C and power 22 Watts, when the triazine‐derived coupling reagent DMTMM‐BF4 was used, together with NMM as an activator base, for the incorporation of this residue and 20% piperidine as an Fmoc‐deprotection base. In contrast, the phenylalanine analogue of the above peptide, H‐Ala‐Val‐Pro‐Phe‐Tyr‐NH2 (2), was always obtained as a single diastereoisomer by using a range of standard coupling and deprotection conditions. Our findings suggest that the racemisation of Fmoc‐Phg‐OH, under both microwave‐SPPS and stepwise conventional SPPS syntheses conditions, is very facile but can be limited through the use of the above stated conditions. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Peptide nucleic acids (PNAs) are DNA mimics with a neutral peptide backbone instead of the negatively charged sugar phosphates. PNAs exhibit several attractive features such as high chemical and thermal stability, resistance to enzymatic degradation, and stable binding to their RNA or DNA targets in a sequence‐specific manner. Therefore, they are widely used in molecular diagnosis of antisense‐targeted therapeutic drugs or probes and in pharmaceutical applications. However, the main hindrance to the effective use of PNAs is their poor uptake by cells as well as the difficult and laborious chemical synthesis. In order to achieve an efficient delivery of PNAs into cells, there are already many published reports of peptides being used for transport across the cell membrane. In this protocol, we describe the automated as well as cost‐effective semi‐automated synthesis of PNAs and PNA‐peptide constructs on an automated peptide synthesizer. The facile synthesis of PNAs will be helpful in generating PNA libraries usable, e.g. for high‐throughput screening in biomolecular studies. Efficient synthetic schemes, the automated procedure, the reduced consumption of costly reagents, and the high purity of the products are attractive features of the reported procedure. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Benzotriazole‐based coupling reagents have dominated the last two decades of solid phase peptide synthesis. However, a growing interest in synthesizing complex peptides has stimulated the search for more efficient and low‐cost coupling reagents, such as COMU which has been introduced as a nonexplosive alternative to the classic benzotriazole coupling reagents. Here, we present a comparative study of the coupling efficiency of COMU with the benzotriazole‐based HBTU and HCTU for use in in situ neutralization Boc‐SPPS. Difficult sequences, such as ACP(65–74), Jung–Redeman 10‐mer, and HIV‐1 PR(81–99), were used as model target peptides on polystyrene‐based resins, as well as polyethylene glycol‐based resins. Coupling yields obtained using fast in situ Boc‐SPPS cycles were determined with the quantitative ninhydrin test as well as via LC‐MS analysis of the crude cleavage products. Our results demonstrate that COMU coupling efficiency was less effective compared to HBTU and HCTU with HCTU ≥ HBTU > COMU, when polystyrene‐based resins were employed. However, when the PEG resin was employed in combination with a safety catch amide (SCAL) linker, more comparable yields were observed for the three coupling reagents with the same ranking HCTU ≥ HBTU > COMU. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Solid phase peptide synthesis requires large amounts of organic solvents, the safe disposal of which is an important environmental issue. Peptide synthesis, if performed in water and using less or nontoxic reagents, circumvents the disposal problem. Our ultimate aim is to develop an "environment-friendly" solid phase peptide synthesis (SPPS) methodology. Previously, we showed that SPPS in water is feasible. To perform SPPS in water, the coupling reagent must be water-soluble and maintain its reactivity in water. For this report, we tested the efficacy of the water-soluble coupling reagents, 2-(5-norbornene-2,3-dicarboximido)-1,1,3,3-tetramethyluronium tetrafluoroborate (TNTU) and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM), towards SPPS in water. We successfully synthesized Leu-enkephalin amide on a solid support suspended in aqueous 50% EtOH using DMT-MM and 2-(4-sulfophenylsulfonyl)ethoxycarbonylamino acids.  相似文献   

12.
The development of synthetic methodologies for cyclic peptides is driven by the discovery of cyclic peptide drug scaffolds such as the plant-derived cyclotides, sunflower trypsin inhibitor 1 (SFTI-1) and the development of cyclized conotoxins. Currently, the native chemical ligation reaction between an N-terminal cysteine and C-terminal thioester group remains the most robust method to obtain a head-to-tail cyclized peptide. Peptidyl thioesters are effectively generated by Boc SPPS. However, their generation is challenging using Fmoc SPPS because thioester linkers are not stable to repeated piperidine exposure during deprotection. Herein we describe a Fmoc-based protocol for synthesizing cyclic peptides adapted for microwave assisted solid phase peptide synthesis. The protocol relies on the linker Di-Fmoc-3,4-diaminobenzoic acid, and we demonstrate the use of Gly, Ser, Arg and Ile as C-terminal amino acids (using HBTU and HATU as coupling reagents). Following synthesis, an N-acylurea moiety is generated at the C-terminal of the peptide; the resin bound acylurea peptide is then deprotected and cleaved from the resin. The fully deprotected peptide undergoes thiolysis in aqueous buffer, generating the thioester in situ. Ultimately, the head-to-tail cyclized peptide is obtained via native chemical ligation. Two naturally occurring cyclic peptides, the prototypical Möbius cyclotide kalata B1 and SFTI-1 were synthesized efficiently, avoiding potential branching at the diamino linker, using the optimized protocol. In addition, we demonstrate the possibility to use the approach for the synthesis of long and synthetically challenging linear sequences, by the ligation of two truncated fragments of a 50-residue long plant defensin.  相似文献   

13.
Today, Fmoc SPPS is the method of choice for peptide synthesis. Very‐high‐quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward. The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology. Improvements are being continually reported for peptide quality, synthesis time and novel synthetic targets. Topical peptide research has contributed to a continuous improvement and expansion of Fmoc SPPS applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Evaluating the stability of coupling reagents, quality control (QC), and surface functionalization metrology are all critical to the production of high quality peptide microarrays. We describe a broadly applicable screening technique for evaluating the fidelity of solid phase peptide synthesis (SPPS), the stability of activation/coupling reagents, and a microarray surface metrology tool. This technique was used to assess the stability of the activation reagent 1‐{[1‐(Cyano‐2‐ethoxy‐2‐oxo‐ethylidenaminooxy)dimethylamino‐morpholinomethylene]}methaneaminiumHexafluorophosphate (COMU) (Sigma‐Aldrich, St. Louis, MO, USA) by SPPS of Leu‐Enkephalin (YGGFL) or the coupling of commercially synthesized YGGFL peptides to (3‐aminopropyl)triethyoxysilane‐modified glass surfaces. Coupling efficiency was quantitated by fluorescence signaling based on immunoreactivity of the YGGFL motif. It was concluded that COMU solutions should be prepared fresh and used within 5 h when stored at ~23 °C and not beyond 24 h if stored refrigerated, both in closed containers. Caveats to gauging COMU stability by absorption spectroscopy are discussed. Commercial YGGFL peptides needed independent QC, due to immunoreactivity variations for the same sequence synthesized by different vendors. This technique is useful in evaluating the stability of other activation/coupling reagents besides COMU and as a metrology tool for SPPS and peptide microarrays. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Attracted by the possibility to optimize time and yield of the synthesis of difficult peptide sequences by MW irradiation, we compared Fmoc/tBu MW‐assisted SPPS of 1–34 N‐terminal fragment of parathyroid hormone‐related peptide (PTHrP) with its conventional SPPS carried out at RT. MWs were applied in both coupling and deprotection steps of SPPS protocol. During the stepwise elongation of the resin‐bound peptide, monitoring was conducted by performing MW‐assisted mini‐cleavages and analyzing them by UPLC‐ESI‐MS. Identification of some deletion sequences was helpful to recognize critical couplings and as such helped to guide the introduction of MW irradiations to these stages. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Simple, effective protocols have been developed for manual and machine-assisted Boc-chemistry solid phase peptide synthesis on polystyrene resins. These use in situ neutralization [i.e. neutralization simultaneous with coupling], high concentrations (> 0.2 M) of Boc-amino acid-OBt esters plus base for rapid coupling, 100% TFA for rapid Boc group removal, and a single short (30 s) DMF flow wash between deprotection/coupling and between coupling/deprotection. Single 10 min coupling times were used throughout. Overall cycle times were 15 min for manual and 19 min for machine-assisted synthesis (75 residues per day). No racemization was detected in the base-catalyzed coupling step. Several side reactions were studied, and eliminated. These included: pyrrolidonecarboxylic acid formation from Gln in hot TFA-DMF; chain-termination by reaction with excess HBTU; and, chain termination by acetylation (from HOAc in commercial Boc-amino acids). The in situ neutralization protocols gave a significant increase in the efficiency of chain assembly, especially for "difficult" sequences arising from sequence-dependent peptide chain aggregation in standard (neutralization prior to coupling) Boc-chemistry SPPS protocols or in Fmoc-chemistry SPPS. Reported syntheses include HIV-1 protease(1-50,Cys.amide), HIV-1 protease(53-99), and the full length HIV-1 protease(1-99).  相似文献   

17.
Taking into account that microwave technology applied to SPPS is proposed as a valid support to the enhancement of efficiency of coupling reactions in short times, we compared the efficacy of a new automatic monomode microwave instrument versus a traditional automatic peptide synthesizer in the synthesis of different difficult peptide sequences. We verified that microwave-assisted solid phase synthesis is convenient, in terms of yield, purity, and time consumed to prepare two peptides which were previously shown to be difficult to obtain by conventional strategy, i.e., the antibiotic Gramicidin A and a glycopeptide.  相似文献   

18.
The complexes Cu(OBt)2 and Cu(OAt)2, which are derived from copper(II) and HOBt and HOAt, respectively, are shown to be more effective in suppressing racemization during solid-phase peptide synthesis (SPPS) than are those compounds currently being used for this purpose. These compounds can readily be used in conjunction with the commonly applied coupling reagents in fully automated systems for solid-phase peptide chemistry.  相似文献   

19.
Microwave energy represents an efficient manner to accelerate both the deprotection and coupling reactions in 9-fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis (SPPS). Typical SPPS side reactions including racemization and aspartimide formation can occur with microwave energy but can easily be controlled by routine use of optimized methods. Cysteine, histidine, and aspartic acid were susceptible to racemization during microwave SPPS of a model 20mer peptide containing all 20 natural amino acids. Lowering the microwave coupling temperature from 80 degrees C to 50 degrees C limited racemization of histidine and cysteine. Additionally, coupling of both histidine and cysteine can be performed conventionally while the rest of the peptide is synthesized using microwave without any deleterious effect, as racemization during the coupling reaction was limited to the activated ester state of the amino acids up to 80 degrees C. Use of the hindered amine, collidine, in the coupling reaction also minimized formation of D-cysteine. Aspartimide formation and subsequent racemization of aspartic acid was reduced by the addition of HOBt to the deprotection solution and/or use of piperazine in place of piperidine.  相似文献   

20.
Cystic fibrosis (CF), a life‐shortening genetic disease, is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that codes for the CFTR protein, the major chloride channel expressed at the apical membrane of epithelial cells. The development of an imaging probe capable of non‐invasively detect CFTR at the cell surface could be of great advantage for the management of CF. With that purpose, we synthesized the first extracellular loop of CFTR protein (ECL1) through fluorenylmethyloxycarbonyl (Fmoc)‐based microwave‐assisted solid‐phase peptide synthesis (SPPS), according to a reported methodology. However, aspartimide formation, a well‐characterized side reaction in Fmoc‐SPPS, prompted us to adopt a different side‐chain protection strategy for aspartic acid residues present in ECL1 sequence. The peptide was subsequently modified via PEGylation and biotinylation, and cyclized through disulfide bridge formation, mimicking the native loop conformation in CFTR protein. Herein, we report improvements in the synthesis of the first extracellular loop of CFTR, including peptide modifications that can be used to improve antigen presentation in phage display for selection of novel antibodies against plasma membrane CFTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号