共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Göran Karlsson Cecilia Persson Maxim Mayzel Mattias Hedenström Lars Backman 《Proteins》2016,84(4):461-466
Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross‐links, or caps the filament ends have been identified and the actin cross‐linker α‐actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α‐actinin is believed to be required for infection. To better understand the role of α‐actinin in the infectious process we have determined the solution structure of the C‐terminal calmodulin‐like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium‐binding EF‐hand motifs, connected with a mobile linker. Proteins 2016; 84:461–466. © 2016 Wiley Periodicals, Inc. 相似文献
3.
α‐Cyclodextrin was shown to be convenient chemical shift reagent for determination of the enantiomeric composition of α‐hydroxyphosphonic acids by means of 31P NMR. The developed methodology appeared to be reliable, repetitive, easy to perform and simple for interpretation. Enantiomeric discrimination in the 31P NMR spectra for 12 of 13 studied hydroxyphosphonates was achieved, with baseline separation of resonances obtained for eight compounds. In those cases, the chemical nonequivalence values ranged from 0.069 to 0.313 ppm. The studies showed that enantioselectivity is strongly influenced by the solution pD and the optimal condition was found at pD 2 or 10 depending on the guest structure. On the basis of the ROESY spectra the complexation modes of selected hydroxyphosphonates with α‐cyclodextrin was postulated. Chirality 2010. © 2009 Wiley‐Liss, Inc. 相似文献
4.
5.
Solution structure of the first RNA recognition motif domain of human spliceosomal protein SF3b49 and its mode of interaction with a SF3b145 fragment 下载免费PDF全文
Kanako Kuwasako Nobukazu Nameki Kengo Tsuda Mari Takahashi Atsuko Sato Naoya Tochio Makoto Inoue Takaho Terada Takanori Kigawa Naohiro Kobayashi Mikako Shirouzu Takuhiro Ito Taiichi Sakamoto Kaori Wakamatsu Peter Güntert Seizo Takahashi Shigeyuki Yokoyama Yutaka Muto 《Protein science : a publication of the Protein Society》2017,26(2):280-291
The spliceosomal protein SF3b49, a component of the splicing factor 3b (SF3b) protein complex in the U2 small nuclear ribonucleoprotein, contains two RNA recognition motif (RRM) domains. In yeast, the first RRM domain (RRM1) of Hsh49 protein (yeast orthologue of human SF3b49) reportedly interacts with another component, Cus1 protein (orthologue of human SF3b145). Here, we solved the solution structure of the RRM1 of human SF3b49 and examined its mode of interaction with a fragment of human SF3b145 using NMR methods. Chemical shift mapping showed that the SF3b145 fragment spanning residues 598–631 interacts with SF3b49 RRM1, which adopts a canonical RRM fold with a topology of β1‐α1‐β2‐β3‐α2‐β4. Furthermore, a docking model based on NOESY measurements suggests that residues 607–616 of the SF3b145 fragment adopt a helical structure that binds to RRM1 predominantly via α1, consequently exhibiting a helix–helix interaction in almost antiparallel. This mode of interaction was confirmed by a mutational analysis using GST pull‐down assays. Comparison with structures of all RRM domains when complexed with a peptide found that this helix–helix interaction is unique to SF3b49 RRM1. Additionally, all amino acid residues involved in the interaction are well conserved among eukaryotes, suggesting evolutionary conservation of this interaction mode between SF3b49 RRM1 and SF3b145. 相似文献
6.
New Delhi metallo‐β‐lactamase‐1 (NDM‐1), one of the metallo‐β‐lactamases (MBLs), has been identified from clinical isolates worldwide. Rapid detection of NDM‐1 producers is necessary to prevent their dissemination. Seven types of EDTA complexes were evaluated as MBL inhibitors in double‐disk synergy tests (DDSTs), resulting in detection of the first isolate of NDM‐1‐producing Escherichia coli (NDM‐1 Dok01) in Japan. NDM‐1 Dok01 was detected when EDTA magnesium disodium salt tetrahydrate (Mg‐EDTA), EDTA calcium disodium salt dihydrate, EDTA cobalt disodium salt tetrahydrate and EDTA copper disodium salt tetrahydrate were used as MBL inhibitors. The sensitivity and specificity of DDSTs using Mg‐EDTA for 75 MBL producers and 25 non‐MBL producers were 96.0% and 100%, respectively. These findings indicate that the DDST method using Mg‐EDTA can detect MBL‐producing strains, including NDM‐1 producers. 相似文献
7.
8.
Moreno Marchiafava Paolo Boldrini Giuseppe Battaglia Sergio Scaccianoce Francesco Matrisciano Anna Pittaluga Ferdinando Nicoletti 《Journal of neurochemistry》2013,125(5):649-656
The α2δ subunit of voltage‐sensitive calcium channels (VSCCs) is the molecular target of pregabalin and gabapentin, two drugs marked for the treatment of focal epilepsy, neuropathic pain, and anxiety disorders. Expression of the α2δ subunit is up‐regulated in the dorsal horns of the spinal cord in models of neuropathic pain, suggesting that plastic changes in the α2δ subunit are associated with pathological states. Here, we examined the expression of the α2δ‐1 subunit in the amygdala, hippocampus, and frontal cortex in the trimethyltiazoline (TMT) mouse model of innate anxiety. TMT is a volatile molecule present in the feces of the rodent predator, red fox. Mice that show a high defensive behavior during TMT exposure developed anxiety‐like behavior in the following 72 h, as shown by the light–dark test. Anxiety was associated with an increased expression of the α2δ‐1 subunit of VSCCs in the amygdaloid complex at all times following TMT exposure (4, 24, and 72 h). No changes in the α2δ‐1 protein levels were seen in the hippocampus and frontal cortex of mice exposed to TMT. Pregabalin (30 mg/kg, i.p.) reduced anxiety‐like behavior in TMT‐exposed mice, but not in control mice. These data offer the first demonstration that the α2δ‐1 subunit of VSCCs undergoes plastic changes in a model of innate anxiety, and supports the use of pregabalin as a disease‐dependent drug in the treatment of anxiety disorders. 相似文献
9.
Willem‐Jan Welboren Eva M Janssen‐Megens Simon J van Heeringen Fred CGJ Sweep Paul N Span Hendrik G Stunnenberg 《The EMBO journal》2009,28(10):1418-1428
We used ChIP‐Seq to map ERα‐binding sites and to profile changes in RNA polymerase II (RNAPII) occupancy in MCF‐7 cells in response to estradiol (E2), tamoxifen or fulvestrant. We identify 10 205 high confidence ERα‐binding sites in response to E2 of which 68% contain an estrogen response element (ERE) and only 7% contain a FOXA1 motif. Remarkably, 596 genes change significantly in RNAPII occupancy (59% up and 41% down) already after 1 h of E2 exposure. Although promoter proximal enrichment of RNAPII (PPEP) occurs frequently in MCF‐7 cells (17%), it is only observed on a minority of E2‐regulated genes (4%). Tamoxifen and fulvestrant partially reduce ERα DNA binding and prevent RNAPII loading on the promoter and coding body on E2‐upregulated genes. Both ligands act differently on E2‐downregulated genes: tamoxifen acts as an agonist thus downregulating these genes, whereas fulvestrant antagonizes E2‐induced repression and often increases RNAPII occupancy. Furthermore, our data identify genes preferentially regulated by tamoxifen but not by E2 or fulvestrant. Thus (partial) antagonist loaded ERα acts mechanistically different on E2‐activated and E2‐repressed genes. 相似文献
10.
Jinyoung Son Misun Kim Ilo Jou Kyoung Chan Park Hee Young Kang 《Pigment cell & melanoma research》2014,27(2):201-208
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes. 相似文献
11.
RalA GTPase Tethers Insulin Granules to L‐ and R‐Type Calcium Channels Through Binding α2δ‐1 Subunit
Huanli Xie Leon Parsaud Jamie A. Lopez Yu He Subbulakshmi Chidambaram Patrick P. Lam David E. James Shuzo Sugita Herbert Y. Gaisano 《Traffic (Copenhagen, Denmark)》2013,14(4):428-439
RalA GTPase has been implicated in the regulated delivery of exocytotic vesicles to the plasma membrane (PM) in mammalian cells. We had reported that RalA regulates biphasic insulin secretion, which we have now determined to be contributed by RalA direct interaction with voltage‐gated calcium (Cav) channels. RalA knockdown (KD) in INS‐1 cells and primary rat β‐cells resulted in a reduction in Ca2+ currents arising specifically from L‐(Cav1.2 and Cav1.3) and R‐type (Cav2.3) Ca2+ channels. Restoration of RalA expression in RalA KD cells rescued these defects in Ca2+ currents. RalA co‐immunoprecipitated with the Cavα2δ‐1 auxiliary subunit known to bind the three Cavs. Moreover, the functional molecular interactions between Cavα2δ‐1 and RalA on the PM shown by total internal reflection fluorescent microscopy/FRET analysis could be induced by glucose stimulation. KD of RalA inhibited trafficking of α2δ‐1 to insulin granules without affecting the localization of the other Cav subunits. Furthermore, we confirmed that RalA and α2δ‐1 functionally interact since RalA KD‐induced inhibition of Cav currents could not be recovered by RalA when α2δ‐1 was simultaneously knocked down. These data provide a mechanism for RalA function in insulin secretion, whereby RalA binds α2δ‐1 on insulin granules to tether these granules to PM Ca2+ channels. This acts as a chaperoning step prior to and in preparation for sequential assembly of exocyst and excitosome complexes that mediate biphasic insulin secretion. 相似文献
12.
Chuan‐Mei Yeh Jyh‐Perng Wang Shih‐Ching Lo Wen‐Chia Chan Ming‐Yi Lin 《Biotechnology progress》2010,26(4):1001-1007
Poly‐γ‐glutamate (γ‐PGA) has applications in food, medical, cosmetic, animal feed, and wastewater industries. Bacillus subtilis DB430, which possesses the γ‐PGA synthesis ywsC‐ywtAB genes in its chromosome, cannot produce γ‐PGA. An efficient synthetic expression control sequence (SECS) was introduced into the upstream region of the ywtABC genes, and this resulted in γ‐PGA‐producing B. subtilis mutant strains. Mutant B. subtilis PGA6‐2 stably produces high levels of γ‐PGA in medium A without supplementation of extra glutamic acid or ammonium chloride. The mutant B. subtilis PGA 6‐2 is not only a γ‐PGA producer, but it is also a candidate for the genetic and metabolic engineering of γ‐PGA production. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
13.
Bárbara Lara‐Chacón Mario Bermúdez de León Daniel Leocadio Pablo Gómez Lizeth Fuentes‐Mera Ivette Martínez‐Vieyra Arturo Ortega David A. Jans Bulmaro Cisneros 《Journal of cellular biochemistry》2010,110(3):706-717
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
14.
15.
Emma Burgos‐Ramos Gabriel Á Martos‐Moreno Manuela G. López Rosario Herranz David Aguado‐Llera Javier Egea Diana Frechilla Edurne Cenarruzabeitia Rafael León Eduardo Arilla‐Ferreiro Jesús Argente Vicente Barrios 《Journal of neurochemistry》2009,109(2):360-370
The protective effects of insulin‐like growth factor I on the somatostatin (SRIF) system in the temporal cortex after β‐amyloid (Aβ) injury may be mediated through its N‐terminal tripeptide glycine‐proline‐glutamate (GPE). GPE is cleaved to cyclo[Pro‐Gly] (cPG), a metabolite suggested to mediate in neuroprotective actions. We evaluated the effects of GPE and cPG in the temporal cortex of Aβ25–35‐treated rats on SRIF and SRIF receptor protein and mRNA levels, adenylyl cyclase activity, cell death, Aβ25–35 accumulation, cytosolic calcium levels ([Ca2+]c) and the intracellular signaling mechanisms involved. GPE and cPG did not change Aβ25–35 levels, but GPE partially restored SRIF and SRIF receptor 2 protein content and mRNA levels and protected against cell death after Aβ25–35 insult, which was coincident with Akt activation and glycogen synthase kinase 3β inhibition. In addition, GPE displaced glutamate from NMDA receptors and blocked the glutamate induced rise in cytosolic calcium in isolated rat neurons and moderately increased Ca2+ influx per se. Our findings suggest that GPE, but not its metabolite, mimics insulin‐like growth factor I effects on the SRIF system through a mechanism independent of Aβ clearance that involves modulation of calcium and glycogen synthase kinase 3β signaling. 相似文献
16.
Zihao Teng Yan Guo Xingqi Liu Jian Zhang Xiaodi Niu Qinlei Yu Xuming Deng Jianfeng Wang 《Journal of cellular and molecular medicine》2019,23(10):6955-6964
Metallo‐β‐lactamases (MBLs) are some of the best known β‐lactamases produced by common Gram‐positive and Gram‐negative pathogens and are crucial factors in the rise of bacterial resistance against β‐lactam antibiotics. Although many types of β‐lactamase inhibitors have been successfully developed and used in clinical settings, no MBL inhibitors have been identified to date. Nitrocefin, checkerboard and time‐kill assays were used to examine the enzyme behaviour in vitro. Molecular docking calculation, molecular dynamics simulation, calculation of the binding free energy and ligand‐residue interaction decomposition were used for mechanistic research. The behaviour of the enzymes in vivo was investigated by a mouse infection experiment. We showed that theaflavin‐3,3´‐digallate (TFDG), a natural compound lacking antibacterial activities, can inhibit the hydrolysis of MBLs. In the checkerboard and time‐kill assays, we observed a synergistic effect of TFDG with β‐lactam antibiotics against methicillin‐resistant Staphylococcus aureus BAA1717. Molecular dynamics simulations were used to identify the mechanism of the inhibition of MBLs by TFDG, and we observed that the hydrolysis activity of the MBLs was restricted by the binding of TFDG to Gln242 and Ser369. Furthermore, the combination of TFDG with β‐lactam antibiotics showed effective protection in a mouse Staphylococcus aureus pneumonia model. These findings suggest that TFDG can effectively inhibit the hydrolysis activity of MBLs and enhance the antibacterial activity of β‐lactam antibiotics against pathogens in vitro and in vivo. 相似文献
17.
Max Gassmann Federico Focher Hans-Jrg Buhk Elena Ferrari Silvio Spadari Ulrich Hübscher 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1988,951(2-3)
Porcine circovirus is the only mammalian DNA virus so far known to contain a single-stranded circular genome (Tischer et al. (1982) Nature 295, 64–66). Replication of its small viral DNA (1.76 kb) appears to be dependent on cellular enzymes expressed during S-phase of the cell cycle (Tischer et al. (1987) Arch. Virol. 96, 39–57). In this paper we have exploited the porcine circovirus genome to probe for in vitro initiation and elongation of DNA replication by different preparations of calf thymus DNA polymerase α and δ as well as by a partially purified preparation from pig thymus. The results indicated that three different purification fractions of calf thymus DNA polymerase α and one from pig thymus initiate DNA synthesis at several sites on the porcine circovirus DNA. It appears that the sites at which DNA primase synthesizes primers are not entirely random. Subsequent DNA elongation by a highly purified DNA polymerase α holoenzyme which had been isolated by the criterion of replicating single-stranded M13 DNA (Ottiger et al. (1987) Nucleic Acids Res. 15, 4789–4807) is very efficient. Complete conversion to the double-stranded form is obtained in less than 1 min. When the DNA synthesis by DNA polymerase α is blocked with the DNA polymerase α specific monoclonal antibody SJK 132-20 after initiation by DNA primase, DNA polymerase δ can efficiently replicate from the primers. This in vitro DNA replication system may be used in analogy to the bacteriophage systems in E. coli to study initiation and elongation of DNA replication. 相似文献
18.
19.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc. 相似文献