首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary After in vitro fertilization of naked eggs of the polyclad turbellarian, Hoploplana inquilina, both cell separation experiments and deletions of specific blastomeres are possible. With these techniques one can analyze the developmental potential of isolated blastomeres and determine if the embryonic axes have been established at the four-cell stage in this primitive, equally-cleaving spiralian embryo. Two-cell separation experiments with development of both halves resulted in pairs of larvae 1) neither of which had an eye (29%), 2) both of which had one eye (19%), and 3) one of which was eyeless and the other was one-eyed (43%). Deletion of one blastomere at the four-cell stage resulted in 68% one-eyed, 28% two-eyed and 3% eyeless larvae. The one-eyed larvae were asymmetric with respect to eye position with more having right than left eyes. Abnormal or missing ventrolateral lobes occurred with deletion of any of the macromeres at four cells but were significantly more common when A or C rather than B or D was deleted. The experiments support the hypothesis that eye development is a consequence of cytoplasmic localization of both a specific eye precursor and an inducer which segregate independently of cleavage planes, and indicate that the embryonic axes have been determined at the four-cell stage.  相似文献   

2.
Cell-deletion experiments were carried out on the embryo of the polyclad turbellarian Hoploplana inquilina to examine further the nature of development in primitive spiralians. The polyclads are of particular interest because they provide a link between the regulative development of acoels and the determinative development of annelids and molluscs. Single blastomeres were deleted at the two- and four-cell stages by puncture through the eggshell membrane with tungsten needles. All deletions resulted in abnormal larvae with consistent characteristics representing half or three-quarter Müller's larvae. The number of larval eyes was a particularly useful character in revealing mosaicism. This study establishes the polyclad embryo as determinative, but with important cell interactions also occurring during early development, and provides evidence that mosaicism became associated with spiral cleavage in the quartet form during the evolution of the Turbellaria.  相似文献   

3.
Barbara C. Boyer 《Hydrobiologia》1995,305(1-3):217-222
In spiralian embryos determination of the axes of bilateral symmetry is associated with D quadrant specification. This can occur late through equal cleavage and cell interactions (conditional specification) or by the four-cell stage through unequal cleavage and cytoplasmic localization (autonomous specification). Freeman & Lundelius (1992) suggest that in spiralian coelomates the former method is ancestral and the latter derived, with evolutionary pressure to shorten metamorphosis resulting in early D quadrant determination through unequal cleavage and appearance of adult features in the larvae. Because of the key phylogenetic position of the turbellarian platyhelminthes, understanding the method of axis specification in this group is important in evaluating the hypothesis. Polyclad development, with equal quartet spiral cleavage, is believed to represent the most primitive condition among living turbellarians and has been examined experimentally in Hoploplana inquilina. Blastomere deletions at the two and four-cell stage produce larvae that are abnormal in morphology and symmetry, indicating that early development is not regulative, and also establish that the embryo does not have an invariant cell lineage. Deletions of micromeres and macromeres at the eight-cell stage indicate that cell interactions are involved in dorso-ventral axis determination, with cross-furrow macromeres playing a more significant role than non-cross-furrow cells. The results support the idea that conditional specification is the primitive developmental mode that characterized the common ancestor of the turbellarians and spiralian coelomates. Evolutionary trends in development in polyclads and other turbellarian orders are discussed.  相似文献   

4.
Acoel embryos exhibit a unique form of development that some investigators argue is related to that found in polyclad turbellarians and coelomate spiralians, which display typical quartet spiral cleavage. We generated the first cell-lineage fate map for an acoel flatworm, Neochildia fusca, using modern intracellular lineage tracers to assess the degree of similarity between these distinct developmental programs. N. fusca develops via a "duet" cleavage pattern in which second cleavage occurs in a leiotropically oblique plane relative to the animal-vegetal axis. At the four-cell stage, the plane of first cleavage corresponds to the plane of bilateral symmetry. All remaining cleavages are symmetrical across the sagittal plane. No ectomesoderm is formed; the first three micromere duets generate only ectodermal derivatives. Endomesoderm, including the complex assemblage of circular, longitudinal, and oblique muscle fibers, as well as the peripheral and central parenchyma, is generated by both third duet macromeres. The cleavage pattern, fate map, and origins of mesoderm in N. fusca share little similarity to that exhibited by other spiralians, including the Platyhelminthes (e.g., polyclad turbellarians). These findings are considered in light of the possible evolutionary origins of the acoel duet cleavage program versus the more typical quartet spiral cleavage program. Finally, an understanding of the cell-lineage fate map allows us to interpret the results of earlier cell deletion studies examining the specification of cell fates within these embryos and reveals the existence of cell-cell inductive interactions in these embryos.  相似文献   

5.
Recent phylogenetic analyses of ribosomal and protein coding nuclear genes place the marine worms within the Nemertodermatida as one of the oldest lineages among the bilaterian animals. We studied the early embryonic cleavage in Nemertoderma westbladi to provide the first account of nemertodermatid early development. Live embryos were studied with interference microscopy and fixed embryos were either sectioned or studied with confocal laser scanning microscopy. Initially the divisions in the embryo are radial, but then micromeres are shifted clockwise generating a spiral pattern. The four-cell stage is characterized by duets of macromeres and micromeres and thus resembles the duet cleavage reported from members of the Acoela. However, subsequent stages differ from the acoel duet pattern and also from quartet spiral cleavage. The optimization of the cleavage pattern on current phylogenetic hypotheses with Nemertodermatida and Acoela as early bilaterian branches is discussed.  相似文献   

6.
Summary

Changes in egg shape and surface morphology during maturation may be related to the localization of cytoplasmic determinants in the embryos of organisms with spiral cleavage. The eggs of the polyclad turbellarian Hoploplana inquilino undergo pronounced shape changes during the meiotic divisions which have been examined with the scanning electron microscope. Unfertilized eggs have a smooth surface that becomes covered with microvilli and microblebs within 10 min of fertilization. First polar body extrusion is accompanied by the asymmetric appearance of large blebs (Blebbing Cycle I) primarily in the animal hemisphere with one quadrant characteristically smoother than the others and bearing fewer blebs. Blebbing Cycle II, which is less pronounced than the first but is still characterized by a relatively un blebbed quadrant of the zygote, coincides with second polar body formation. These asymmetric shape changes in the animal hemisphere during meiosis may possibly correlate with a primitive form of morphogenetic segregation and beginning quadrant specialization in polyclads, the most primitive spiralians with mosaic development.  相似文献   

7.
Many members of the spiralian phyla (i.e., annelids, echiurans, vestimentiferans, molluscs, sipunculids, nemerteans, polyclad turbellarians, gnathostomulids, mesozoans) exhibit early, equal cleavage divisions. In the case of the equal-cleaving molluscs, animal-vegetal inductive interactions between the derivatives of the first quartet micromeres and the vegetal macromeres specify which macromere becomes the 3D cell during the interval between fifth and sixth cleavage. The 3D macromere serves as a dorsal organizer and gives rise to the 4d mesentoblast. Even though it has been argued that this situation represents the ancestral condition among the Spiralia, these inductive events have only been documented in equal-cleaving molluscs. Embryos of the nemertean Cerebratulus lacteus also undergo equal, spiral cleavage, and the fate map of these embryos is similar to that of other spiralians. The role of animal first quartet micromeres in the establishment of the dorsal (D) cell quadrant was examined in C. lacteus by removing specific combinations of micromeres at the eight-cell stage. To follow the development of various cell quadrants, one quadrant was labeled with DiI at the four-cell stage, and specific first quartet micromeres were removed from discrete positions relative to the location of the labeled quadrant. The results indicate that the first quartet is required for normal development, as removal of all four micromeres prevented dorsoventral axis formation. In most cases, when either one or two adjacent first quartet micromeres were removed from one side of the embryo, the cell quadrant on the opposite side, with its macromere centered under the greatest number of the remaining animal micromeres, ultimately became the D quadrant. Twins containing duplicated dorsoventral axes were generated by removal of two opposing first quartet micromeres. Thus, any cell quadrant can become the D quadrant, and the dorsoventral axis is established after the eight-cell stage. While it is not yet clear exactly when key inductive interactions take place that establish the D quadrant in C. lacteus, contacts between the progeny of animal micromeres and vegetal macromeres are established during the interval between the fifth and sixth round of cleavage divisions (i.e., 32- to 64-cell stages). These findings argue that this mechanism of cell and axis determination has been conserved among equal-cleaving spiralians.  相似文献   

8.
Cytoplasm from muscle lineage blastomeres of an ascidian embryo can cause cells of a nonmuscle lineage to produce larval tail muscle acetylcholinesterase. Muscle cytoplasm was partitioned microsurgically into epidermal lineage blastomeres at the eight-cell stage. Posterior half-embryos (the two B3 cells) of Ascidia nigra were obtained first by separating the anterior and posterior blastomere pairs at the four-cell stage. At third cleavage, the two B3 cells divide into an ectodermal cell pair that gives rise solely to epidermal tissues, and a mesodermal-endodermal blastomere pair from which the tail muscle cells are derived. When the ectodermal and mesendodermal blastomere pairs were isolated from one another by microsurgery and reared as partial embryos, only cells originating from the mesendodermal blastomeres produced a histochemical acetylcholinesterase reaction. Immediately after cleavage of the isolated B3 cells into ectodermal and mesendodermal cell pairs, the cleavage furrows could be made to disappear by pressing firmly on the mesendodermal cells with a microneedle. Repeated up and down pressure with the microneedle at a new position across the mesendodermal cells caused furrows to reestablish in the new position, thereby incorporating mesodermal cytoplasm and increasing the size of the ectodermal cells. The cytoplasmically altered ectodermal blastomere pairs, which became detached from the mesendodermal cells by this microsurgical procedure, continued to divide and were reared to “larval” stages. One-third of these epidermal partial larvae produced patches of cells containing acetylcholinesterase. These results lend further support to the theory that choice of particular differentiation pathways (embryonic determination) in ascidian embryos is mediated by segregation of specific egg cytoplasmic determinants.  相似文献   

9.
The appearance and development of the embryonic and larval eyes of the polyclad turbellarian Stylochus mediterraneus were studied. In the embryo, the left epidermal eye appears first. Subsequently, the right epidermal eye appears, and within hours it sinks into the parenchyma and turns into a cerebral eye. Newly hatched Götte's larvae possess both the left epidermal and the right cerebral eye. Three days after hatching, an incomplete eye appears adjacent to the left epidermal eye. The left cerebral eye then originates from this incomplete eye as it sinks into the parenchyma. This third eye is believed to originate through a process of induction.  相似文献   

10.
Polar lobes, anucleate vegetal pole protrusions formed by Ilyanassa obsoleta embryos, serve as a mechanism for shunting morphogenetic determinants to one cell during the first two cleavages. Polar lobe material becomes segregated in the CD cell during first cleavage and in the D cell during second cleavage, resulting in a very unequal four-cell stage. Larval structures including external shell, foot, operculum, statocysts, and eyes develop only when polar lobe material is present. Treatment with the anionic detergent sodium dodecyl sulfate (SDS) before and during the first cleavage inhibited polar lobe formation and equalized cleavage, as the lobe material was distributed to two cells. No polar lobes formed during second clevage in SDS-equalized embryos, and the four-cell stage consisted of four equal cells with reduced cell contacts. SDS inrreversibly inhibited polar lobe formation without affecting cytokinesis. Although 27% of the larvae from SDS-equalized embryos had one or more lobe-dependent structures duplicated, morphogenesis was impaired: more than 40% of such larvae failed to form shell and/or statocysts. When cells were separated after equalized first cleavage and raised as pairs, the pairs of resulting larvae duplicated lobe-dependent structures with the same frequency as whole equalized embryos. Possible explanations for impaired morphogenesis in SDS-treated embryos are discussed.  相似文献   

11.
SUMMARY Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister‐phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect‐developing representative of the enteropneust hemichordates, Pty‐ chodera flava. Single blastomeres were iontophoretically labeled with DiI at the 2‐ through 16‐cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct‐developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect‐developing echinoids. The 16‐celled embryo contains eight animal “mesomeres,” four slightly larger “macromeres,” and four somewhat smaller vegetal “micromeres.” The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct‐developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two‐ or the four‐cell stage are capable of forming normal‐appearing, miniature tornaria larvae. These findings indicate that the fates of these cells and embryonic dorsoventral axial properties are not committed at these early stages of development. Comparisons with the developmental programs of other deuterostome phyla allow one to speculate on the conservation of some key developmental events/mechanisms and propose basal character states shared by the ancestor of echinoderms and hemichordates.  相似文献   

12.
In embryos of the gastropod Ilyanassa obsoleta, the first-quartet micromeres of the A, B and C lineages (1a, 1b, and 1c) are each competent to form an eye in response to signaling from the 3D cell. The first-quartet micromere of the dorsal D lineage (1d) is smaller than the others, divides at a slower rate, and lacks the ability to form an eye. These properties of 1d all depend on inheritance of vegetal polar lobe cytoplasm by its mother cell D at second cleavage. I show that they depend also on the presence of cells adjacent to D during the late four-cell stage: after ablation of the A and/or C cells before this stage, 1d inherits more cytoplasm than normal, divides more rapidly, and frequently forms an eye. In non-D lineages, cleavage plane positioning and micromere division rates are relatively insensitive to cell contacts. Compressing whole embryos during third cleavage also leads to an increase in 1d volume correlated with abnormal eye formation; this suggests that the normal effect of cell contacts is to position the D cell cleavage furrow closer to the animal pole, and the enhanced division asymmetry of the D cell contributes to the suppression of eye development.  相似文献   

13.
In mollusks with an equal four-cell stage, dorsoventral polarity becomes noticeable in the interval between the formation of the third and fourth quartet of micromeres, i.e., between the fifth and sixth cleavage. One of the two macromeres at the vegetal cross-furrow then partly withdraws from the surface and becomes located more toward the center of the embryonic cell mass than the other three macromeres. Only this specific macromere (3D) contacts the micromeres of the animal pole, divides with a delay, and develops into the stem cell of the mesentoblast (4d). After suppression of the normal contacts between micromeres and macromeres either by dissociation of the embryos or by deletion of first quartet cells, the normal differentiation of the macromeres fails to appear. By deleting a decreasing number of first quartet cells, an increasing percentage of embryos shows the normal differentiation pattern. Deletion of one of the cross-furrow macromeres does not preclude formation of the mesentoblast, which then originates by differentiation of an other macromere. It is concluded that initially the embryo is radially symmetrical and that the four quadrants have identical developmental capacities; mesentoblast differentiation from one macromere is induced through the contacts of the first quartet cells and that single macromere.  相似文献   

14.
The Nemertea represent one of a number of invertebrate phyla that display a highly conserved pattern of cell division known as spiral cleavage. The fates of the early blastomeres are known for representatives of some spiralian phyla (i.e., molluscs and annelids) and in these species there appears to be a high degree of conservation in the ultimate fates of particular embryonic cells. The first two cleavage planes bear an invariant relationship to the symmetry properties of the future larval and adult body plan. To investigate whether these properties of spiralian embryo-genesis are shared (conserved) amongst members of other spiralian phyla, individual blastomeres in two- and four-cell embryos of the nemertean, Nemertopsis bivittata, were microinjected with bi-otinylated dextran lineage tracers. N. bivittata is a direct-developing hoplonemertean that forms a nonfeeding larva. When individual blastomeres are injected at the two-cell stage, two sets of complementary labeling patterns (a total of four different patterns) were observed in the ectoderm of the larvae. When cells were injected at the four-cell stage, four different patterns were observed that represented subsets of the four patterns observed in the previous experiment. Unlike the case in the annelids and molluscs, in which the first cleavage plane bears a strict 45° angular relationship to the future dorsoventral axis, the first cleavage plane in N. bivittata can bear one of two different relationships relative to the larval/adult dorsoventral axis. In half the cases examined, the first cleavage plane corresponded roughly to the plane of bilateral symmetry, and in the rest, it lay along a frontal plane. A similar result was observed for the embryos of the indirect-developing heteronemertean, Cerebratutus lacteus. These results indicate that the fates of the four cell quadrants in nemerteans are not directly homologous to those in other spira-lians, such as the annelids and molluscs. For instance, no single cell quadrant appears to contribute a greater share to the formation of ectoderm, as is the case in the formation of the post-trochal region by the D-cell quadrant in annelids and mol-luscs. Rather, two adjacent cell quadrants contribute nearly equally to the formation of dorsal or ventral ectoderm in the larvae. Possible explanations for the determination of dorsoventrality in nemerte-ans, as well as implications of these findings regarding the evolution of spiralian development, are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Analysis of cell lineage in two- and four-cell mouse embryos   总被引:6,自引:0,他引:6  
Compared with other animals, the embryos of mammals are considered to have a highly regulative mode of development. However, recent studies have provided a strong correlation between the first cleavage plane and the future axis of the blastocyst, but it is still unclear how the early axes of the preimplantation embryo reflect the future body axes that emerge after implantation. We have carried out lineage tracing during mouse embryogenesis using the Cre-loxP system, which allowed us to analyze cell fates over a long period of development. We used a transgenic mouse strain, CAG-CAT-Z as a reporter line. The descendants of the manipulated blastomere heritably express beta-galactosidase. We examined the distribution of descendants of a single blastomere in the 8.5-day embryo after labeling at the two-cell and four-cell stages. The derivatives of one blastomere in the two-cell embryo randomly mix with cells originating from the second blastomere in all cell layers examined. Thus we find cells from different blastomeres intermingled and localized randomly along the body axis. The results of labeling experiments performed in the four-cell stage embryo fall into three categories. In the first, the labeled cells were intermingled with non-labeled cells in a manner similar to that seen after labeling at the two-cell stage. In the second, labeled cells were distributed only in the extra-embryonic ectoderm layers. Finally in the third category, labeled cells were seen only in the embryo proper and the extra-embryonic mesoderm. Manipulated embryos analyzed at the blastocyst stage showed localized distribution of the descendants of a single blastomere. These results suggest that incoherent clonal growth and drastic cell mixing occurs in the early mouse embryo after the blastocyst stage. The first cell specification event, i.e., partitioning cell fate between the inner cell mass and trophectoderm, can occur between the two-cell and four-cell stage, yet the cell fate is not determined.  相似文献   

16.
Four-cell stage mouse blastomeres have different developmental properties   总被引:3,自引:0,他引:3  
Blastomeres of the early mouse embryo are thought to be equivalent in their developmental properties at least until the eight-cell stage. However, the experiments that have led to this conclusion could not have taken into account either the spatial origin of individual blastomeres or the spatial allocation and fate of their progeny. We have therefore readdressed this issue having defined cell lineages in mouse embryos undergoing different patterns of cleavage in their second division cycle. This has enabled us to identify a major group of embryos in which we can predict not only the spatial origin of each given four-cell blastomeres, but also which region of the blastocyst is most likely to be occupied by its progeny. We show that a pattern of second cleavage divisions in which a meridional division is followed by one that is equatorial or oblique allows us to identify blastomeres that differ in their fate and in their developmental properties both from each other and from their cousins. We find that one of these four-cell stage blastomeres that inherits some vegetal membrane marked in the previous cleavage cycle tends to contribute to mural trophectoderm. The progeny of its sister tend to donate cells to part of the ICM lining the blastocyst cavity and its associated trophectoderm. Chimaeras made entirely of these equatorially or obliquely derived blastomeres show developmental abnormalities in both late preimplantation and early postimplantation development. By contrast, chimaeras made from four-cell stage blastomeres from early meridional divisions develop normally. The developmental defects of chimaeras made from the most vegetal blastomeres that result from later second cleavages are the most severe and following transplantation into foster mothers they fail to develop to term. However, when such individual four-cell blastomeres are surrounded by blastomeres from random positions, they are able to contribute to all embryonic lineages. In conclusion, this study shows that while all four-cell blastomeres can have full developmental potential, they differ in their individual developmental properties according to their origin in the embryo from as early as the four-cell stage.  相似文献   

17.
In this paper we describe the embryonic development of the polyclad flatworm Imogine mcgrathi. Imogine is an indirect developer that hatches as a planctonic Goette’s larva after an embryonic period of approximately 7 days. Light and electron microscopic analyses of sections of staged embryos were combined with antibody stainings of wholemounted embryos to reconstruct the origin and movement of the primordia of the various organ systems, with particular emphasis on the nervous system. We introduce a system of morphologically defined stages aimed at facilitating future studies and cross-species comparisons among flatworm embryos. Imogine embryos undergo typical spiral cleavage. Micromere quartets 1–3 form an irregular double layer of mesenchymal cells that during gastrulation expands over micromere quartet 4. Micromere 4d divides into several large mesendodermal precursors whose position defines the ventral pole of the embryo. These cells, along with the animal micromeres that obtained a sub-surface position during cleavage, form a deep layer of cells that gives rise to all internal structures, including the nervous system, musculature, nephridia, and gut. Micromeres 4a–c are large yolky cells that are incorporated into the lumen of the gut, but do not themselves contribute to the gut epithelium. Shortly after gastrulation, cell differentiation sets in. Cells located at the surface adopt epithelial characteristics and form cilia that result in continuous movement of the post-gastrula stage embryo. Deep cells at the lateral margins of the embryo become organized into a protonephridial tube. A cluster of approximately 50 deep cells at the anterior pole forms the brain, in which we have identified sets of founder neurons of the brain commissure and the dorsal and ventral connectives. The early differentiating neurons, along with other cells forming stabilized microtubules (ciliated cells of the epidermis, gut and protonephridia; apical gland cells) could be analyzed in detail because of their labeling with an antibody against acetylated α-tubulin. Our findings indicate that, despite significant differences in the cleavage pattern and arrangement of blastomeres in the early embryo, morphogenesis and organ formation of a polyclad embryo follows a pattern that is very similar to the pattern observed by us and others in phylogenetically more evolved rhabdocoel flatworms. Received: 10 February 2000 / Accepted: 10 April 2000  相似文献   

18.
 Embryos acquire axial properties (e.g., the animal-vegetal, dorsoventral and bilateral axes) at various times over the course of their normal developmental programs. In the spiral-cleaving nemertean, Cerebratulus lacteus, lineage tracing studies have shown that the dorsoventral axis is set up prior to the first cleavage division; however, blastomeres isolated at the two-cell stage will regulate to form apparently perfect, miniature pilidium larvae. We have examined the nature of axial specification in this organism by determining whether partial embryos retain the original embryonic/larval axial properties of the intact embryo, or whether new axial relationships are generated as a consequence of the regulatory process. Single blastomeres in two-cell stage embryos were injected with lineage tracer, and were then bisected along the second cleavage plane at the four-cell stage. Thus, the relationship between the plane of the first cleavage division and various developmental axes could be followed throughout development in the ”half-embryos”. While some embryo fragments appear to retain their original animal-vegetal and dorsoventral axes, many fragments generate novel axial properties. These results indicate that axial properties set up and used during normal development in C. lacteus can be completely reorganized during the course of regulation. While certain embryonic axes, such as the animal-vegetal and dorsoventral axes, appear to be set up prior to first cleavage, these axes and associated cell fates are not irreversibly fixed until later stages of development in normal intact embryos. In C. lacteus, the process whereby these properties are ultimately determined is apparently controlled by complex sets of cell-cell interactions. Received: 11 October 1996 / Accepted: 21 February 1997  相似文献   

19.
This study defines the time period during which the cellular components that specify comb plates and photocytes become localized in different parts of blastomeres prior to their segregation to separate daughter cells. At the two-cell stage the factors which specify comb plates are localized at the aboral pole of the blastomeres. There is not a significant localization of the factors which specify comb plates and photocytes along the tentacular axis of the embryo. At the four-cell stage, the factors which specify comb plates become localized at one end of the tentacular axis of the blastomeres; however, the factors which specify photocytes have not yet become localized. At the eight-cell stage, the factors which specify these two cell types are segregated to different blastomeres.The role of cleavage in setting up these localized regions of developmental potential has been studied by reversibly inhibiting selected cleavages. After the first division, the pattern of cleavage that follows a period of cleavage inhibition corresponds to the pattern occurring in untreated embryos that began development at the same time. This situation is similar to the “clock” system, which controls many aspects of the pattern of cleavage in sea urchin embryos. The extent to which the factors that specify comb plates and photocytes become localized in a given region of a blastomere is correlated with the kind of cleavage which occurs after a block. Most of the activity involved in localizing developmental potential takes place during cleavage.  相似文献   

20.
Frequency response functions were measured between the cells of Xenopus laevis embryos during the first two cleavage stages. Linear systems theory was then used to produce electronic models which account for the electrical behavior of the systems. Coupling between the cells may be explained by models which have simple resistive elements joining each cell to its neighbors. The vitelline, or fertilization, membrane which surrounds the embryos has no detectable resistance to the passage of electric current. The electrical properties of the four-cell embryo can only be explained by the existence of individual junctions linking each pair of cells. This arrangement suggests that electrotonic coupling is important in the development of the embryos, at least until the four-cell stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号