首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rab8 is a monomeric GTPase that regulates the delivery of newly synthesized proteins to the basolateral surface in polarized epithelial cells. Recent publications have demonstrated that basolateral proteins interacting with the mu1-B clathrin adapter subunit pass through the recycling endosome (RE) en route from the TGN to the plasma membrane. Because Rab8 interacts with these basolateral proteins, these findings raise the question of whether Rab8 acts before, at, or after the RE. We find that Rab8 overexpression during the formation of polarity in MDCK cells, disrupts polarization of the cell, explaining how Rab8 mutants can disrupt basolateral endocytic and secretory traffic. However, once cells are polarized, Rab8 mutants cause mis-sorting of newly synthesized basolateral proteins such as VSV-G to the apical surface, but do not cause mis-sorting of membrane proteins already at the cell surface or in the endocytic recycling pathway. Enzymatic ablation of the RE also prevents traffic from the TGN from reaching the RE and similarly results in mis-sorting of newly synthesized VSV-G. We conclude that Rab8 regulates biosynthetic traffic through REs to the plasma membrane, but not trafficking of endocytic cargo through the RE. The data are consistent with a model in which Rab8 functions in regulating the delivery of TGN-derived cargo to REs.  相似文献   

2.
Sorting of newly synthesized plasma membrane proteins to the apical or basolateral surface domains of polarized cells is currently thought to take place within the trans-Golgi network (TGN). To explore the relationship between protein localization to the TGN and sorting to the plasma membrane in polarized epithelial cells, we have expressed constructs encoding the TGN marker, TGN38, in Madin-Darby canine kidney (MDCK) cells. We report that TGN38 is predominantly localized to the TGN of these cells and recycles via the basolateral membrane. Analyses of the distribution of Tac-TGN38 chimeric proteins in MDCK cells suggest that the cytoplasmic domain of TGN38 has information leading to both TGN localization and cycling through the basolateral surface. Mutations of the cytoplasmic domain that disrupt TGN localization also lead to nonpolarized delivery of the chimeric proteins to both surface domains. These results demonstrate an apparent equivalence of basolateral and TGN localization determinants and support an evolutionary relationship between TGN and plasma membrane sorting processes.  相似文献   

3.
Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20 degrees C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.  相似文献   

4.
Epithelial cells display distinct apical and basolateral membrane domains, and maintenance of this asymmetry is essential to the function of epithelial tissues. Polarized delivery of apical and basolateral membrane proteins from the trans Golgi network (TGN) and/or endosomes to the correct domain requires specific cytoplasmic machinery to control the sorting, budding and fission of vesicles. However, the molecular machinery that regulates polarized delivery of apical proteins remains poorly understood. In this study, we show that the small guanosine triphosphatase Rab14 is involved in the apical targeting pathway. Using yeast two-hybrid analysis and glutathione S-transferase pull down, we show that Rab14 interacts with apical membrane proteins and localizes to the TGN and apical endosomes. Overexpression of the GDP mutant form of Rab14 (S25N) induces an enlargement of the TGN and vesicle accumulation around Golgi membranes. Moreover, expression of Rab14-S25N results in mislocalization of the apical raft-associated protein vasoactive intestinal peptide/MAL to the basolateral domain but does not disrupt basolateral targeting or recycling. These data suggest that Rab14 specifically regulates delivery of cargo from the TGN to the apical domain.  相似文献   

5.
The mechanisms by which polarized epithelial cells target distinct carriers enriched in newly synthesized proteins to the apical or basolateral membrane remain largely unknown. Here we investigated the effect of phosphatidylinositol metabolism and modulation of the actin cytoskeleton, two regulatory mechanisms that have individually been suggested to function in biosynthetic traffic, on polarized traffic in Madin-Darby canine kidney cells. Overexpression of phosphatidylinositol 5-kinase (PI5K) increased actin comet frequency in Madin-Darby canine kidney cells and concomitantly stimulated trans-Golgi network (TGN) to apical membrane delivery of the raft-associated protein influenza hemagglutinin (HA), but did not affect delivery of a non-raft-associated apical protein or a basolateral marker. Modulation of actin comet formation by pharmacologic means, by overexpression of the TGN-localized inositol polyphosphate 5-phosphatase Ocrl, or by blockade of Arp2/3 function had parallel effects on the rate of apical delivery of HA. Moreover, HA released from a TGN block was colocalized in transport carriers in association with PI5K and actin comets. Inhibition of Arp2/3 function in combination with microtubule depolymerization led to a virtual block in HA delivery, suggesting synergistic coordination of these cytoskeletal assemblies in membrane transport. Our results suggest a previously unidentified role for actin comet-mediated propulsion in the biosynthetic delivery of a subset of apical proteins.  相似文献   

6.
The epithelial-specific adaptor AP1B sorts basolateral plasma membrane (PM) proteins in both biosynthetic and recycling routes, but the site where it carries out this function remains incompletely defined. Here, we have investigated this topic in Fischer rat thyroid (FRT) epithelial cells using an antibody against the medium subunit micro1B. This antibody was suitable for immunofluorescence and blocked the function of AP1B in these cells. The antibody blocked the basolateral recycling of two basolateral PM markers, Transferrin receptor (TfR) and LDL receptor (LDLR), in a perinuclear compartment with marker and functional characteristics of recycling endosomes (RE). Live imaging experiments demonstrated that in the presence of the antibody two newly synthesized GFP-tagged basolateral proteins (vesicular stomatitis virus G [VSVG] protein and TfR) exited the trans-Golgi network (TGN) normally but became blocked at the RE within 3-5 min. By contrast, the antibody did not block trafficking of green fluorescent protein (GFP)-LDLR from the TGN to the PM but stopped its recycling after internalization into RE in approximately 45 min. Our experiments conclusively demonstrate that 1) AP1B functions exclusively at RE; 2) TGN-to-RE transport is very fast and selective and is mediated by adaptors different from AP1B; and 3) the TGN and AP1B-containing RE cooperate in biosynthetic basolateral sorting.  相似文献   

7.
Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered.  相似文献   

8.
Two biosynthetic pathways exist for delivery of membrane proteins to the apical surface of epithelial cells, direct transport from the trans-Golgi network (TGN) and transcytosis from the basolateral membrane. Different epithelial cells vary in the expression of these mechanisms. Two extremes are MDCK cells, that use predominantly the direct route and hepatocytes, which deliver all apical proteins via the basolateral membrane. To determine how epithelial cells establish a particular targeting phenotype, we studied the apical delivery of endogenous dipeptidyl peptidase IV (DPPIV) at early and late stages in the development of monolayers of a highly polarized epithelial cell line derived from Fischer rat thyroid (FRT). In 1 day old monolayers, surface delivery of DPPIV from the TGN was unpolarized (50%/50%) but a large basal to apical transcytotic component resulted in a polarized apical distribution. In contrast, after 7 days of culture, delivery of DPPIV was mainly direct (85%) with no transcytosis of the missorted component. A basolateral marker, Ag 35/40 kD, on the other hand, was directly targeted (90-98%) at all times. These results indicate that the sorting machinery for apical proteins develops independently from the sorting machinery for basolateral proteins and that the sorting site relocates progressively from the basal membrane to the TGN during development of the epithelium. The transient expression of the transcytotic pathway may serve as a salvage pathway for missorted apical proteins when the polarized phenotype is being established.  相似文献   

9.
A mutation in the small GTPase Rab38 gives rise to the mouse coat color phenotype "chocolate" (cht), implicating Rab38 in the regulation of melanogenesis. However, its role remains poorly characterized. We report that cht Rab38(G19V) is inactive and that the nearly normal pigmentation in cht melanocytes results from functional compensation by the closely related Rab32. In cht cells treated with Rab32-specific small interfering RNA, a dramatic loss of pigmentation is observed. In addition to mature melanosomes, Rab38 and Rab32 localize to perinuclear vesicles carrying tyrosinase and tyrosinase-related protein 1, consistent with a role in the intracellular sorting of these proteins. In Rab38/Rab32-deficient cells, tyrosinase appears to be mistargeted and degraded after exit from the trans-Golgi network (TGN). This suggests that Rab38 and Rab32 regulate a critical step in the trafficking of melanogenic enzymes, in particular, tyrosinase, from the TGN to melanosomes. This work identifies a key role for the Rab38/Rab32 subfamily of Rab proteins in the biogenesis of melanosomes and potentially other lysosome-related organelles.  相似文献   

10.
A typical feature of epithelial cells is the polarized distribution of their respective plasma membrane proteins. Apical and basolateral proteins can be sorted both in the trans-Golgi network and endosomes, or in both locations. Inclusion into basolateral carriers in the TGN requires the presence of distinct cytoplasmic determinants, which also appear to be recognized in endosomes. Inactivation of the basolateral sorting information leads to the efficient apical delivery, probably due to the unmasking of a recessive apical signal. Factors associated with the cytosolic face of organelles probably not only recognize these signals to mediate the inclusion of the proteins into the correct transport vesicles, but also target the carriers to the corresponding plasma membrane domain. Our interest has focused on analyzing at the molecular level how epithelial MDCK cells generate and maintain a polarized phenotype, taking advantage of immunoglobulin receptors to study the biosynthetic and endocytic pathways and the corresponding sorting events.  相似文献   

11.
Regulated transport of proteins to distinct plasma membrane domains is essential for the establishment and maintenance of cell polarity in all eukaryotic cells. The Rab family small G proteins play a crucial role in determining the specificity of vesicular transport pathways. Rab3B and Rab13 localize to tight junction in polarized epithelial cells and cytoplasmic vesicular structures in non-polarized fibroblasts, but their functions are poorly understood. Here we examined their roles in regulating the cell-surface transport of apical p75 neurotrophin receptor (p75NTR), basolateral low-density lipoprotein receptor (LDLR), and tight junctional Claudin-1 using transport assay in non-polarized fibroblasts. Overexpression of Rab3B mutants inhibited the cell-surface transport of LDLR, but not p75NTR and Claudin-1. In contrast, overexpression of Rab13 mutants impaired the transport of Claudin-1, but not LDLR and p75NTR. These results suggest that Rab3B and Rab13 direct the cell-surface transport of LDLR and Claudin-1, respectively, and may contribute to epithelial polarization.  相似文献   

12.
Tight junction: a co-ordinator of cell signalling and membrane trafficking   总被引:16,自引:0,他引:16  
Increasing evidence indicates that the tight junction plays a role in membrane transport. Various signalling and trafficking molecules localize to the sites of cell-cell junctions in epithelial cells, including Rab proteins, a family of small GTPases that regulate different steps of vesicular transport along the endocytic and exocytic pathways. We have recently shown that Rab13 controls protein kinase A activity, demonstrating a clear biochemical and functional link between Rab13 and protein kinase A signalling during tight junction assembly in epithelial cells. The present article focuses on how protein kinase A signalling and protein trafficking events could be integrated at tight junctions in epithelial cells.  相似文献   

13.
The sorting of newly synthesized membrane proteins to the cell surface is an important mechanism of cell polarity. To identify more of the molecular machinery involved, we investigated the function of the small GTPase Rab10 in polarized epithelial Madin-Darby canine kidney cells. We find that GFP-tagged Rab10 localizes primarily to the Golgi during early cell polarization. Expression of an activated Rab10 mutant inhibits biosynthetic transport from the Golgi and missorts basolateral cargo to the apical membrane. Depletion of Rab10 by RNA interference has only mild effects on biosynthetic transport and epithelial polarization, but simultaneous inhibition of Rab10 and Rab8a more strongly impairs basolateral sorting. These results indicate that Rab10 functions in trafficking from the Golgi at early stages of epithelial polarization, is involved in biosynthetic transport to the basolateral membrane and may co-operate with Rab8.  相似文献   

14.
In polarized epithelial cells, newly synthesized membrane proteins are delivered on specific pathways to either the apical or basolateral domains, depending on the sorting motifs present in these proteins. Because myosin VI has been shown to facilitate secretory traffic in nonpolarized cells, we investigated its role in biosynthetic trafficking pathways in polarized MDCK cells. We observed that a specific splice isoform of myosin VI with no insert in the tail domain is required for the polarized transport of tyrosine motif containing basolateral membrane proteins. Sorting of other basolateral or apical cargo, however, does not involve myosin VI. Site-directed mutagenesis indicates that a functional complex consisting of myosin VI, optineurin, and probably the GTPase Rab8 plays a role in the basolateral delivery of membrane proteins, whose sorting is mediated by the clathrin adaptor protein complex (AP) AP-1B. Our results suggest that myosin VI is a crucial component in the AP-1B-dependent biosynthetic sorting pathway to the basolateral surface in polarized epithelial cells.  相似文献   

15.
The Fc receptor FcRn traffics immunoglobulin G (IgG) in both directions across polarized epithelial cells that line mucosal surfaces, contributing to host defense. We show that FcRn traffics IgG from either apical or basolateral membranes into the recycling endosome (RE), after which the actin motor myosin Vb and the GTPase Rab25 regulate a sorting step that specifies transcytosis without affecting recycling. Another regulatory component of the RE, Rab11a, is dispensable for transcytosis, but regulates recycling to the basolateral membrane only. None of these proteins affect FcRn trafficking away from lysosomes. Thus, FcRn transcytotic and recycling sorting steps are distinct. These results are consistent with a single structurally and functionally heterogeneous RE compartment that traffics FcRn to both cell surfaces while discriminating between recycling and transcytosis pathways polarized in their direction of transport.  相似文献   

16.
The Cu-ATPase ATP7A (MNK) is localized in the trans-Golgi network (TGN) and relocalizes in the plasma membrane via vesicle-mediated traffic following exposure of the cells to high concentrations of copper. Rab proteins are organelle-specific GTPases, markers of different endosomal compartments; their role has been recently reviewed (Trends Cell Biol. 11(2001) 487). In this article we analyze the endosomal pathway of trafficking of the MNK protein in stably transfected clones of CHO cells, expressing chimeric Rab5-myc or Rab7-myc proteins, markers of early or late endosome compartments, respectively. We demonstrate by immunofluorescence and confocal and electron microscopy techniques that the increase in the concentration of copper in the medium (189 microM) rapidly induces a redistribution of the MNK protein from early sorting endosomes, positive for Rab5-myc protein, to late endosomes, containing the Rab7-myc protein. Cell fractionation experiments confirm these results; i.e., the MNK protein is recruited to the endosomal fraction on copper stimulation and colocalizes with Rab5 and Rab7 proteins. These findings allow the first characterization of the vesicles involved in the intracellular routing of the MNK protein from the TGN to the plasma membrane, a key mechanism allowing appropriate efflux of copper in cells grown in high concentrations of the metal.  相似文献   

17.
Rab3 proteins are a subfamily of GTPases, known to mediate membrane transport in eukaryotic cells and play a role in exocytosis. Our data indicate that Rab3D is the major Rab3 species expressed in osteoclasts. To investigate the role of Rab3D in osteoclast physiology we examined the skeletal architecture of Rab3D-deficient mice and found an osteosclerotic phenotype. Although basal osteoclast number in null animals is normal the total eroded surface is significantly reduced, suggesting that the resorptive defect is due to attenuated osteoclast activity. Consistent with this hypothesis, ultrastructural analysis reveals that Rab3D(-/-) osteoclasts exhibit irregular ruffled borders. Furthermore, while overexpression of wild-type, constitutively active, or prenylation-deficient Rab3D has no significant effects, overexpression of GTP-binding-deficient Rab3D impairs bone resorption in vitro. Finally, subcellular localization studies reveal that, unlike wild-type or constitutively active Rab3D, which associate with a nonendosomal/lysosomal subset of post-trans-Golgi network (TGN) vesicles, inactive Rab3D localizes to the TGN and inhibits biogenesis of Rab3D-bearing vesicles. Collectively, our data suggest that Rab3D modulates a post-TGN trafficking step that is required for osteoclastic bone resorption.  相似文献   

18.
In epithelial cells, polarized growth and maintenance of apical and basolateral plasma membrane domains depend on protein sorting from the trans-Golgi network (TGN) and vesicle delivery to the plasma membrane. Septins are filamentous GTPases required for polarized membrane growth in budding yeast, but whether they function in epithelial polarity is unknown. Here, we show that in epithelial cells septin 2 (SEPT2) fibers colocalize with a subset of microtubule tracks composed of polyglutamylated (polyGlu) tubulin, and that vesicles containing apical or basolateral proteins exit the TGN along these SEPT2/polyGlu microtubule tracks. Tubulin-associated SEPT2 facilitates vesicle transport by maintaining polyGlu microtubule tracks and impeding tubulin binding of microtubule-associated protein 4 (MAP4). Significantly, this regulatory step is required for polarized, columnar-shaped epithelia biogenesis; upon SEPT2 depletion, cells become short and fibroblast-shaped due to intracellular accumulation of apical and basolateral membrane proteins, and loss of vertically oriented polyGlu microtubules. We suggest that septin coupling of the microtubule cytoskeleton to post-Golgi vesicle transport is required for the morphogenesis of polarized epithelia.  相似文献   

19.
Rab proteins are Ras-like GTPases that regulate traffic along the secretory or endocytic pathways. Within the Rab family, Rab3 proteins are expressed at high levels in neurons and endocrine cells where they regulate release of dense core granules and synaptic vesicles. Immuno-electron microscopy shows that Rab3A and Rab3D can coexist on the same granule before and after docking. Using electron microscopy of transfected PC12 cells, we report that expression of wild-type Rab3A (or Rab3D) increases the total number of granules and the percentage that is docked at the plasma membrane. Mutated Rab3A N135I (or Rab3D N135I) decreases the total granule number and the fraction of granules docked to the plasma membrane. These data show that at least one of the functions of Rab3A and Rab3D proteins is to control the number of granules docked at the plasma membrane.  相似文献   

20.
Cargo proteins moving along the secretory pathway are sorted at the TGN (trans-Golgi network) into distinct carriers for delivery to the plasma membrane or endosomes. Recent studies in yeast and mammals have shown that formation of these carriers is regulated by PtdIns(4)P. This phosphoinositide is abundant at the TGN and acts to recruit components required for carrier formation to the membrane. Other phosphoinositides are also present on the TGN, but the extent to which they regulate trafficking is less clear. Further characterization of phosphoinositide kinases and phosphatases together with identification of new TGN-associated phosphoinositide-binding proteins will reveal the extent to which different phosphoinositides regulate TGN trafficking, and help define the molecular mechanisms involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号