首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultured carrot (Daucus carota L.) cells were adapted to growing in 25 millimolar glyphosate by transfer into progressively higher concentrations of the herbicide. Tolerance was increased 52-fold, and the adaptation was stable in the absence of glyphosate. The uptake of glyphosate was similar for adapted and nonadapted cells. Activity of the enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase was 12-fold higher in the adapted line compared to nonadapted cells, while activities of shikimate dehydrogenase and anthranilate synthase were similar in the two cell types. The adapted cells had higher levels of free amino acids—especially threonine, methionine, tyrosine, phenylalanine, tryptophan, histidine, and arginine—than did nonadapted cells. Glyphosate treatment caused decreases of 50 to 65% in the levels of serine, glycine, methionine, tyrosine, phenylalanine, and tryptophan in nonadapted cells, but caused little change in free amino acid levels in adapted cells.

The adaptation reported here supports the growing body of evidence linking tolerance to glyphosate with increased levels of the enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The elevated levels of aromatic amino acids, which may confer resistance in adapted cells, suggest that control of the shikimate pathway may be altered in these cells.

  相似文献   

2.
Aromatic amino acid transport in Yersinia pestis.   总被引:2,自引:2,他引:0       下载免费PDF全文
The uptake and concentration of aromatic amino acids by Yersinia pestis TJW was investigated using endogenously metabolizing cells. Transport activity did not depend on either protein synthesis or exogenously added energy sources such as glucose. Aromatic amino acids remained as the free, unaltered amino acid in the pool fraction. Phenylalanine and tryptophan transport obeyed Michaelis-Menten-like kinetics with apparent Km values of 6 x 10(-7) to 7.5 x 10(-7) and 2 x 10(-6) M, respectively. Tyrosine transport showed biphasic concentration-dependent kinetics that indicated a diffusion-like process above external tyrosine concentrations of 2 x 10(-6) M. Transport of each aromatic amino acid showed different pH and temperature optima. The pH (7.5 TO8) and temperature (27 C) optima for phenylalanine transport were similar to those for growth. Transport of each aromatic amino acid was characterized by Q10 values of approximately 2. Cross inhibition and exchange experiments between the aromatic amino acids and selected aromatic amino acid analogues revealed the existence of three transport systems: (i) tryptophan specific, (ii) phenylalanine specific with limited transport activity for tyrosine and tryptophan, and (iii) general aromatic system with some specificity for tyrosine. Analogue studies also showed that the minimal stereo and structural features for phenylalanine recognition were: (i) the L isomer, (ii) intact alpha amino and carboxy group, and (iii) unsubstituted aromatic ring. Aromatic amino acid transport was differentially inhibited by various sulfhydryl blocking reagents and energy inhibitors. Phenylalanine and tyrosine transport was inhibited by 2,4-dinitrophenol, potassium cyanide, and sodium azide. Phenylalanine transport showed greater sensitivity to inhibition by sulfhydryl blocking reagents, particularly N-ethylmaleimide, than did tyrosine transport. Tryptophan transport was not inhibited by either sulfhydryl reagents or sodium azide. The results on the selective inhibition of aromatic amino acid transport provide additional evidence for multiple transport systems . These results further suggest both specific mechanisms for carrier-mediated active transport and coupling to metabolic energy.  相似文献   

3.
In the biosynthetic pathway of aromatic amino acids of Brevibacterium flavum, ratios of each biosynthetic flow at the chorismate branch point were calculated from the reaction velocities of anthranilate synthetase for tryptophan and chorismate mutase for phenylalanine and tyrosine at steady state concentrations of chorismate. When these aromatic amino acids were absent, the ratio was 61, showing an extremely preferential synthesis of tryptophan. The presence of tryptophan at 0.01 mM decreased the ratio to 0.07, showing a diversion of the preferential synthesis to phenylalanine and tyrosine. Complete recovery by glutamate of the ability to synthesize the Millon-positive substance in dialyzed cell extracts confirmed that tyrosine was synthesized via pretyrosine in this organism. Partially purified prephenate aminotransferase, the first enzyme in the tyrosine-specific branch, had a pH optimum of 8.0 and Km’s of 0.45 and 22 mM for prephenate and glutamate, respectively, and its activity was increased 15-fold by pyridoxal-5-phosphate. Neither its activity nor its synthesis was affected at all by the presence of the end product tyrosine or other aromatic amino acids. The ratio of each biosynthetic flow for tyrosine and phenylalanine at the prephenate branch point was calculated from the kinetic equations of prephenate aminotransferase and prephenate dehydratase, the first enzyme in the phenylalanine-specific branch. It showed that tyrosine was synthesized in preference to phenylalanine when phenylalanine and tyrosine were absent. Furthermore, this preferential synthesis was diverted to a balanced synthesis of phenylalanine and tyrosine through activation of prephenate dehydratase by the tyrosine thus synthesized. The feedback inhibition of prephenate dehydratase by phenylalanine was proposed to play a role in maintaining a balanced synthesis when supply of prephenate was decreased by feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP*) synthetase, the common key enzyme. Overproduction of the end products in various regulatory mutants was also explained by these results.  相似文献   

4.
Tryptophan was found to be degraded in Saccharomyces cerevisiae mainly to tryptophol. Upon chromatography on DEAE-cellulose two aminotransferases were identified: Aromatic aminotransferase I was constitutively synthesized and was active in vitro with tryptophan, phenylalanine or tyrosine as amino donors and pyruvate, phenylpyruvate or 2-oxoglutarate as amino acceptors. The enzyme was six times less active with and had a twenty times lower affinity for tryptophan (K m=6 mM) than phenylalanine or tyrosine. It was postulated thus that aromatic aminotransferase I is involved in vivo in the last step of tyrosine and phenylalanine biosynthesis. Aromatic aminotransferase II was inducible with tryptophan but also with the other two aromatic amino acids either alone or in combinations. With tryptophan as amino donor the enzyme was most active with phenylpyruvate and not active with 2-oxoglutarate as amino acceptor; its affinity for tryptophan was similar as for the other aromatic amino acids (K m=0.2–0.4 mM). Aromatic aminotransferase II was postulated to be involved in vivo mainly in the degradation of tryptophan, but may play also a role in the degradation of the other aromatic amino acids.A mutant strain defective in the aromatic aminotransferase II (aat2) was isolated and its influence on tryptophan accumulation and pool was studied. In combination with mutations trp2 fbr, aro7 and cdr1-1, mutation aat2 led to a threefold increase of the tryptophan pool as compared to a strain with an intact aromatic aminotransferase II.  相似文献   

5.
Transport of Aromatic Amino Acids by Pseudomonas aeruginosa   总被引:9,自引:5,他引:4       下载免费PDF全文
Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan.  相似文献   

6.
Shikimate, anthranilate, indole, l -tryptophan, phenylpyruvate, l -p henylalanine, p-hydroxyphenylpyruvate or l -tyrosine were added to suspension-cultured Nicotiana tabacum (tabacco) and Daucus carota (carrot) tissues and incubated for 24 hours. Uptake of each compound was substantial as measured by its decrease in the medium. The levels of free tryptophan, phenylalanine and tyrosine were determined in the tissues after the 24 hours incubation. Shikimate did not change the aromatic animo acid levels in carrot tissue, but did increase all three in tobacco (3-fold or more), indicating a less stringent feedback control in tobacco. Anthranilate and indole increased the tissue tryptophan levels in both species by at least 17-fold, showing that the flow from anthranilate and indole to tryptophan was apparently unhindered by enzymatic control mechanisms. When tryptophan levels were elevated in both carrot and tobaccotissues by anthranilate, indole or tryptophan addition, there was also an increase in free phyenylalanine and tyrosine. This might be due to the reversal of phenylalanine and tyrosine feedback inhibition of chorismate mutase by the high tryptophan in the tissue. Chorismate mutase activity in tobacco crude extracts could be inhibited by 66–90% by 1 mM phenylalanine and /or tyrosine. Tryptophan at 1 mM stimulated the enzyme activity by 1/3 and completely reversed the phenylalanine and/or tyrosine inhibition of enzyme activity. Chorsimate mutase activity amino acids under a variety of conditions. Phenylpyruvate increased the phenylalanine levels and p-hydroxyphenylpyruvate increased the tyrosine levels in carrot and tobacco tissues indicating that there was no feedback control of the last step in phenylalanine and tyrosine biosynthesis.  相似文献   

7.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl–tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl–tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl–tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl–tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

8.
Chorismate mutase CM-1, an isozyme that is inhibited by phenylalanine and tyrosine and activated by tryptophan was purified 1200-fold from etiolated mung bean seedlings with a final yield of 18–20%. Loss of activity was rapid in highly purified preparations but was reduced by the addition of bovine serum albumin. Enzyme activity was unaffected by thiol-alkylating agents, reducing agents, EDTA, or divalent cations.The enzyme displayed pH-sensitive, positive homotrophic cooperativity toward chorismate with greatest cooperativity at the pH optimum of the tryptophan-free enzyme (pH 7.2–7.4) and least cooperativity at the pH optimum of the enzyme fully activated with tryptophan (pH 7.0). Activation by tryptophan reduced the Km for the enzyme, and modified the sigmoid substrate saturation kinetics to a rectangular hyperbola. Feedback inhibition by the end product amino acids phenylalanine and tyrosine was not additive but revealed heterotrophic cooperativity with chorismate. Tyrosine (Ki = 31 μM) was a slightly more effective inhibitor than phenylalanine (Ki = 37 μM) at 1 mm chorismate. Tryptophan at equimolar concentration antagonized the feedback inhibition by phenylalanine and tyrosine. The latter two, however, at higher concentrations reversed the tryptophan activation in a noncompetitive fashion with respect to either tryptophan or chorismate. The enzyme was responsive only to the l-isomers of the amino acids. The results indicate a primary role for chorismate mutase CM-1 from mung bean in the regulation of the synthesis of phenylalanine and tyrosine for protein synthesis.  相似文献   

9.
Whole metabolizing Brevibacterium linens cells were used to study the transport of aromatic amino acids. Kinetic results followed the Michaelis-Menten equation with apparent Km values for phenylalanine, tyrosine, and tryptophan of 24, 3.5, and 1.8 microM. Transport of these amino acids was optimum at pH 7.5 and 25 degrees C for phenylalanine and pH 8.0 and 35 degrees C for tyrosine and tryptophan. Crossed inhibitions were all noncompetitive. The only marked stereospecificity was for the L form of phenylalanine. Transport was almost totally inhibited by carbonyl cyanide-m-chlorophenylhydrazone. Iodoacetate and N-ethylmaleimide were much more inhibitory for tryptophan transport than for transport of the other two aromatic amino acids.  相似文献   

10.
Effects of Glyphosate on Metabolism of Phenolic Compounds   总被引:1,自引:0,他引:1  
Light enhanced the inhibiting effect of root-fed glyphosate (5 × 10?4M) on dry weight accumulation of soybean [Glycine max. (L.) Merr.] seedling axes. Inhibition of growth by light was greatest in hypocotyls, whereas by glyphosate it was greatest in roots. A synergistic effect of light and glyphosate on stimulation of phenylalanine ammonia-Iyase (PAL, E.C. 4.3.1.5) activity was also demonstrated. In continuous white light PAL activity increased linearly for 4 days in axes of seedlings exposed to glyphosate. Evidence of phytochrome involvement in the light effect was shown. The stimulatory effect of glyphosate on PAL activity was greater in roots than in hypocotyls. Soluble hydroxyphenolic compound levels were reduced by glyphosate but were increased by light on a per axis basis. On a fresh weight basis, hydroxyphenolics were more concentrated in glyphosate-treated than in control tissues in the light. When compared to other amino acids, disproportionate decreases in free pools of phenylalanine and tyrosine occurred in axes of seedlings treated with glyphosate and light. The effect of light on all measured parameters was mainly in the hypocotyl, while that of glyphosate was primarily in the root. In the light, glyphosate caused increases in levels of glutamine and other amino acids that may be the result of amination reactions, protecting from excess ammonia generated by enhanced PAL activity. These results suggest that PAL has a strong influence on its substrate levels in this system and/or that glyphosate inhibits synthesis of aromatic amino acids.  相似文献   

11.
Enzymological basis for herbicidal action of glyphosate   总被引:8,自引:8,他引:0       下载免费PDF全文
The effects of 1 millimolar glyphosate (N-[phosphonomethyl]glycine) upon the activities of enzymes of aromatic amino acid biosynthesis, partially purified by ion-exchange chromatography from mung bean seedings (Vigna radiata [L.] Wilczek), were examined. Multiple isozyme species of shikimate dehydrogenase, chorismate mutase, and aromatic aminotransferase were separated, and these were all insensitive to inhibition by glyphosate. The activities of prephenate dehydrogenase and arogenate dehydrogenase were also not sensitive to inhibition. Two molecular species of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase were resolved, one stimulated several-fold by Mn2+ (DAHP synthase-Mn), and the other absolutely dependent upon the presence of Co2+ for activity (DAHP synthase-Co). Whereas DAHP synthase-Mn was invulnerable to glyphosate, greater than 95% inhibition of DAHP synthase-Co was found in the presence of glyphosate. Since Co2+ is a Vmax activator with respect to both substrates, glyphosate cannot act simply by Co2+ chelation because inhibition is competitive with respect to erythrose-4-phosphate. The accumulation of shikimate found in glyphosate-treated seedlings is consistent with in vivo inhibition of both 5-enolpyruvylshikimic acid 3-phosphate synthase and one of the two DAHP synthase isozymes. Aromatic amino acids, singly or in combination, only showed a trend towards reversal of growth inhibition in 7-day seedlings of mung bean. The possibilities are raised that glyphosate may act at multiple enzyme targets in a given organism or that different plants may vary in the identity of the prime enzyme target.  相似文献   

12.
The phenylalanine ammonia-lyase (PAL) inhibitor l-alpha-aminooxy-beta-phenylpropionic acid (AOPP) was root-fed to light-exposed soybean seedlings alone or with glyphosate [N-(phosphonomethyl)glycine] to test further the hypothesis that PAL activity is involved in the mode of action of glyphosate. Extractable PAL activity was increased by 0.01 and 0.1 millimolar AOPP. AOPP reduced total soluble hydroxyphenolic compound levels and increased phenylalanine and tyrosine levels, indicating that in vivo PAL activity was inhibited by AOPP. The increase in extractable PAL caused by AOPP may be a result of decreased feedback inhibition of PAL synthesis by cinnamic acid and/or its derivatives. AOPP alone had no effect on growth (fresh weight and elongation) at either concentration, but at 0.1 millimolar it slightly alleviated growth (fresh weight) inhibition caused by 0.5 millimolar glyphosate after 4 days. Reduction of the free pool of phenylalanine by glyphosate was reversed by AOPP. These results indicate that glyphosate exerts some of its effects through reduction of aromatic amino acid pools through increases in PAL activity and that not all growth effects of glyphosate are due to reductions of aromatic amino acids.  相似文献   

13.
Summary Incorporation of 14C-phenylalanine by T. neapolitanus was inhibited competitively by relatively low concentrations of glycine, serine, alanine, valine, leucine, isoleucine, tryptophan, tyrosine, histidine, threonine, and methionine (Group I amino acids), but not greatly depressed by aspartate, glutamate, lysine, arginine, cysteine (Group II amino acids) and proline at similar concentrations. Group I acids competed with each other for incorporation but were little affected by Group II acids. Similarly Group I acids little depressed the incorporation of Group II acids, among which, however, some mutual inhibition occurred. Incorporation of proline was depressed by both Group I and II acids. Two main permeation mechanisms are proposed, one transporting Group I acids, the other Group II acids, but some overlapping of function probably occurs. Proline may be transported by a third permease, which is subject to inhibition by both Group I and II acids. T. concretivorus also has a common transport mechanism for some amino acids. Less interaction between amino acids was found using two heterotrophic pseudomonads.Exogenous phenylalanine inhibited both the biosynthesis and the uptake of tyrosine and tryptophan by T. neapolitanus. High phenylalanine concentrations depressed the assimilation of 14C-labelled tyrosine and tryptophan less than low ones, suggesting that the bacteria developed a requirement for external tyrosine and tryptophan when exposed to highly inhibitory concentrations of phenylalanine.  相似文献   

14.
A cell line of Eschscholtzia californica selected for meta-fluorotyrosine (MFT) tolerance was found to have 10-fold increased levels of phenylalanine and tyrosine compared to the parent line, while most other amino acids were only increased 2-fold. Tracer experiments with shikimic acid in the presence of MFT showed that the biosynthesis of the aromatic amino acids was not impaired in the tolerant line. Feeding experiments with phenylalanine, tyrosine, or shikimic acid also revealed a reduced turnover of the pools of the aromatic amino acids in the variant. Thus undisturbed de novo biosynthesis of the aromatic amino acids and dilution of toxic effects of MFT by the enlarged pool sizes seemed to be the main reason for the acquired tolerance. Despite the enlarged availability of the precursor tyrosine, formation of the benzophenanthridine alkaloids was enhanced neither in the growth nor in the production medium.  相似文献   

15.
After the oral administration of large doses of tyrosine, tryptophan, or phenylalanine to rats, increased plasma levels of these amino acids can be observed. These levels can be further elevated, approximately 2-fold, by administering along with the amino acids, inhibitors of aromatic-l-amino acid decarboxylase. The inhibitors, by themselves, do not alter control plasma levels of the aromatic amino acids. This effect of the inhibitors appears to be specific for amino acids which are substrates of the decarboxylase since they did not further elevate plasma levels of leucine or valine after oral loading of these amino acids. Elevation of plasma tyrosine could also be observed after inhibition of the decarboxylase when tyrosine was administered intraperitoneally or in rats pretreated with antimicrobial agents, indicating that inhibition of decarboxylation by intestinal bacteria was not responsible for the effects. It was shown that the decarboxylase inhibitors do not act by simultaneously inhibiting other major routes of metabolism, such as transamination in the case of tyrosine. These findings indicate that, when tissue levels of tyrosine, phenylalanine, or tryptophan are elevated, decarboxylation becomes a major route for their metabolism.  相似文献   

16.
Summary In extension of previous studies on the regulation of the aromatic amino acid pathway in blue-green and green algae the control of two branch-point enzymes, namely chorismate mutase and anthranilate synthetase has been studied. The activity of chorismate mutase in these organisms is effectively inhibited by l-tyrosine or l-phenylalanine. l-tryptophan, in contrast, proved to be a positive effector of the enzyme: in the absence of phenylalanine or tyrosine tryptophan slightly stimulated chorismate mutase activity; this stimulation was even brought about in the presence of excess phenylalanine or tyrosine, irrespective if the enzyme had been preincubated with these inhibitors or not. Tryptophan thus proved to completely revert the feedback inhibition of this enzyme by phenylalanine or tyrosine. Substrate saturation curves of chorismate mutase activity are hyperbolic in the presence of tryptophan and sigmoid in the presence of phenylalanine or tyrosine. In contrast to the enzymes of the green algae investigated, chorismate mutase activity of Anacystis nidulans, a member of the class of the blue-green algae was not affected by any of the aromatic amino acids.The activity of anthranilate synthetase, the second enzyme of the chorismic acid branch-point of the pathway was consistently inhibited by l-tryptophan in all the organisms tested. The results described here bear significance on the regulation of a multi-branched pathway the first enzyme of which is inhibited just by one endproduct.  相似文献   

17.
Regulation of phenylalanine biosynthesis in Rhodotorula glutinis.   总被引:1,自引:1,他引:0       下载免费PDF全文
The phenylalanine biosynthetic pathway in the yeast Rhodotorula glutinis was examined, and the following results were obtained. (i) 3-Deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase in crude extracts was partially inhibited by tyrosine, tryptophan, or phenylalanine. In the presence of all three aromatic amino acids an additive pattern of enzyme inhibition was observed, suggesting the existence of three differentially regulated species of DAHP synthase. Two distinctly regulated isozymes inhibited by tyrosine or tryptophan and designated DAHP synthase-Tyr and DAHP synthase-Trp, respectively, were resolved by DEAE-Sephacel chromatography, along with a third labile activity inhibited by phenylalanine tentatively identified as DAHP synthase-Phe. The tyrosine and tryptophan isozymes were relatively stable and were inhibited 80 and 90% by 50 microM of the respective amino acids. DAHP synthase-Phe, however, proved to be an extremely labile activity, thereby preventing any detailed regulatory studies on the partially purified enzyme. (ii) Two species of chorismate mutase, designated CMI and CMII, were resolved in the same chromatographic step. The activity of CMI was inhibited by tyrosine and stimulated by tryptophan, whereas CMII appeared to be unregulated. (iii) Single species of prephenate dehydratase and phenylpyruvate aminotransferase were observed. Interestingly, the branch-point enzyme prephenate dehydratase was not inhibited by phenylalanine or affected by tyrosine, tryptophan, or both. (iv) The only site for control of phenylalanine biosynthesis appeared to be DAHP synthase-Phe. This is apparently sufficient since a spontaneous mutant, designated FP9, resistant to the growth-inhibitory phenylalanine analog p-fluorophenylalanine contained a feedback-resistant DAHP synthase-Phe and cross-fed a phenylalanine auxotroph of Bacillus subtilis.  相似文献   

18.
In tobacco cell suspensions, protein synthesis and mitotic activity were inhibited by amino acid analogues: p-fluorophenylalanine (pFPA) or 5-methyltryptophan (5MT). After inhibition by pFPA, when the mitotic activity recovered in the presence of phenylalanine and casein hydrolysate, the time table of the mitotic phases was permanently altered. The inhibiting effects of 5MT were effectively reversed by tryptophan addition to the medium. Therefore 5MT was selected for reversible protein synthesis inhibition in partially synchronized cell suspensions. When cytokinin was added in a culture where protein synthesis was inhibited by 5MT, no mitosis was observed after the cells were transferred to a hormone-free medium and protein synthesis restored by tryptophan. Cytokinin must again be added in order to restore mitosis. Thus, the hormone effectiveness of cytokinins required that protein synthesis remained undisturbed. The effect of the protein synthesis inhibition by 5MT upon the metabolism of N6-benzyladenine was investigated: the intracellular concentration of this cytokinin was not altered, whereas the metabolic pool of its derivatives was quantitatively reduced.  相似文献   

19.
The plant shikimate pathway directs bulk carbon flow toward biosynthesis of aromatic amino acids (AAAs, i.e. tyrosine, phenylalanine, and tryptophan) and numerous aromatic phytochemicals. The microbial shikimate pathway is feedback inhibited by AAAs at the first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DHS). However, AAAs generally do not inhibit DHS activities from plant extracts and how plants regulate the shikimate pathway remains elusive. Here, we characterized recombinant Arabidopsis thaliana DHSs (AthDHSs) and found that tyrosine and tryptophan inhibit AthDHS2, but not AthDHS1 or AthDHS3. Mixing AthDHS2 with AthDHS1 or 3 attenuated its inhibition. The AAA and phenylpropanoid pathway intermediates chorismate and caffeate, respectively, strongly inhibited all AthDHSs, while the arogenate intermediate counteracted the AthDHS1 or 3 inhibition by chorismate. AAAs inhibited DHS activity in young seedlings, where AthDHS2 is highly expressed, but not in mature leaves, where AthDHS1 is predominantly expressed. Arabidopsis dhs1 and dhs3 knockout mutants were hypersensitive to tyrosine and tryptophan, respectively, while dhs2 was resistant to tyrosine-mediated growth inhibition. dhs1 and dhs3 also had reduced anthocyanin accumulation under high light stress. These findings reveal the highly complex regulation of the entry reaction of the plant shikimate pathway and lay the foundation for efforts to control the production of AAAs and diverse aromatic natural products in plants.

Characterization of Arabidopsis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase enzymes and mutants revealed highly complex metabolite-mediated feedback regulation of the plant shikimate pathway.  相似文献   

20.
The dipeptide aspartame (APM; aspartylphenylalanine methylester), an artificial sweetener, was studied in vivo for its ability to influence brain levels of the large neutral amino acids and the rates of hydroxylation of the aromatic amino acids. The administration by gavage of APM (200 mg/kg) caused large increments in blood and brain levels of phenylalanine and tyrosine by 60 minutes. Brain tryptophan level was occasionally reduced significantly, but the brain levels of the branched-chain amino acids were always unaffected. Smaller doses (50, 100 mg/kg) also raised blood and brain tyrosine and phenylalanine, but did not reduce brain tryptophan levels. At the highest dose (200 mg/kg), APM gavage caused an insignificant increase in dopa accumulation (after NSD-1015), and a modest reduction in 5-hydroxytryptophan accumulation. No changes in the brain levels of serotonin, 5-hydroxyindoleacetic acid, dopamine, dihydroxyphenylacetic acid, homovanillic acid, or norepinephrine were produced by APM administration (200 mg/kg). These results thus indicate that APM, even when administered in amounts that cause large increments in brain tyrosine and phenylalanine, produce minimal effects on the rates of formation of monoamine transmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号