首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study isolated the effect of whole head submersion in cold water, on surface heat loss and body core cooling, when the confounding effect of shivering heat production was pharmacologically eliminated. Eight healthy male subjects were studied in 17 degrees C water under four conditions: the body was either insulated or uninsulated, with the head either above the water or completely submersed in each body-insulation subcondition. Shivering was abolished with buspirone (30 mg) and meperidine (2.5 mg/kg), and subjects breathed compressed air throughout all trials. Over the first 30 min of immersion, exposure of the head increased core cooling both in the body-insulated conditions (head out: 0.47 +/- 0.2 degrees C, head in: 0.77 +/- 0.2 degrees C; P < 0.05) and the body-exposed conditions (head out: 0.84 +/- 0.2 degrees C and head in: 1.17 +/- 0.5 degrees C; P < 0.02). Submersion of the head (7% of the body surface area) in the body-exposed conditions increased total heat loss by only 10%. In both body-exposed and body-insulated conditions, head submersion increased core cooling rate much more (average of 42%) than it increased total heat loss. This may be explained by a redistribution of blood flow in response to stimulation of thermosensitive and/or trigeminal receptors in the scalp, neck and face, where a given amount of heat loss would have a greater cooling effect on a smaller perfused body mass. In 17 degrees C water, the head does not contribute relatively more than the rest of the body to surface heat loss; however, a cold-induced reduction of perfused body mass may allow this small increase in heat loss to cause a relatively larger cooling of the body core.  相似文献   

2.
We found a difference between the venous hematocrits of immersed and nonimmersed arms during immersion of the lower body in cold water but not during a comparable exposure to warm water. Fourteen healthy men were exposed to three different experimental conditions: arm immersion, body immersion, and control. The men always sat upright while both upper extremities hung vertically at their sides. During arm immersion, one forearm was completely immersed for 30 min in either cold water (28 degrees C, n = 7) or warm water (38 degrees C, n = 7). This cold-warm water protocol was repeated on separate days for exposure to the remaining conditions of body immersion (immersion of 1 forearm and all tissues below the xiphoid process) and control (no immersion). Blood samples were simultaneously drawn from cannulated veins in both antecubital fossae. Hematocrit difference (Hct diff) was measured by subtracting the nonimmersed forearm's hematocrit (Hct dry) from the immersed forearm's hematocrit (Hct wet). Hct diff was approximately zero when the men were exposed to the control condition and body immersion in warm water. In the remaining conditions, Hct wet dropped below Hct dry (P less than 0.01, 3-way analysis of variance). The decrements of Hct diff showed there were differences between venous hematocrits in immersed and nonimmersed regions of the body, indicating that changes of the whole-body hematocrit cannot be calculated from a large-vessel hematocrit soon after immersing the lower body in cold water.  相似文献   

3.
Regional cutaneous sensitivity to cooling was assessed in males by separately immersing four discrete skin regions in cold water (15 degrees C) during head-out immersion. The response measured was gasping at the onset of immersion; the gasping response appears to be the result of a nonthermoregulatory neurogenic drive from cutaneous cold receptors. Subjects of similar body proportions wore a neoprene "dry" suit modified to allow exposure to the water of either the arms, upper torso, lower torso, or legs, while keeping the unexposed skin regions thermoneutral. Each subject was immersed to the sternal notch in all four conditions of partial exposure plus one condition of whole body exposure. The five cold water conditions were matched by control immersions in lukewarm (34 degrees C) water, and trials were randomized. The magnitude of the gasping response was determined by mouth occlusion pressure (P0.1). For each subject, P0.1 values for the 1st min of immersion were integrated, and control trial values, although minimal, were subtracted from their cold water counterpart to account for any gasping due to the experimental design. Results were averaged and showed that the highest P0.1 values were elicited from whole body exposure, followed in descending order by exposures of the upper torso, legs, lower torso, and arms. Correction of the P0.1 response for differences in exposed surface area (A) and cooling stimulus (delta T) between regions gave a cold sensitivity index [CSI, P0.1/(A.delta T)] for each region and showed that the index for the upper torso was significantly higher than that for the arms or legs; no significant difference was observed between the indexes for the upper and lower torso.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The aim of this study was to ascertain whether repeated local cooling induces the same or different adaptational responses as repeated whole body cooling. Repeated cooling of the legs (immersion into 12 degrees C water up to the knees for 30 min, 20 times during 4 weeks = local cold adaptation - LCA) attenuated the initial increase in heart rate and blood pressure currently observed in control subjects immersed in cold water up to the knees. After LCA the initial skin temperature decrease tended to be lower, indicating reduced vasoconstriction. Heart rate and systolic blood pressure appeared to be generally lower during rest and during the time course of cooling in LCA humans, when compared to controls. All these changes seem to indicate attenuation of the sympathetic tone. In contrast, the sustained skin temperature in different areas of the body (finger, palm, forearm, thigh, chest) appeared to be generally lower in LCA subjects than in controls (except for temperatures on the forehead). Plasma levels of catecholamines (measured 20 and 40 min after the onset of cooling) were also not influenced by local cold adaptation. Locally cold adapted subjects, when exposed to whole body cold water immersion test, showed no change in the threshold temperature for induction of cold thermogenesis. This indicates that the hypothermic type of cold adaptation, typically occurring after systemic cold adaptation, does not appear after local cold adaptation of the intensity used. It is concluded that in humans the cold adaptation due to repeated local cooling of legs induces different physiological changes than systemic cold adaptation.  相似文献   

5.
Volunteers' body core temperatures were raised to 38.80-39.05 degrees C within a few minutes by immersion in water at 41 degrees C. Tests were then made with the subjects insulated and cooling slowly. Control immersions were made in water at 37 degrees C when core temperatures remained at 36.60-37.40 degrees C. Neither memory registration nor recall of memories registered an hour earlier, nor immediate ability to recall digit spans forward or backward was affected by the increase in core temperature. The increase in temperature did not have any significant effect on accuracy of performance of verbal logic problems or of two-digit subtractions. However, the increase in core temperature was associated with a significant increase in the speed of performance of the tests, by 11 and 10%, respectively. The warm immersions also induced a significant decrease in alertness and an increase in irritability as assessed subjectively by the volunteers; control immersions had no such effects.  相似文献   

6.
We evaluated the cooling rate of hyperthermic subjects, as measured by rectal temperature (T(re)), during immersion in a range of water temperatures. On 4 separate days, seven subjects (4 men, 3 women) exercised at 65% maximal oxygen consumption at an ambient temperature of 39 degrees C until T(re) increased to 40 degrees C (45.4 +/- 4.1 min). After exercise, the subjects were immersed in a circulated water bath controlled at 2, 8, 14, or 20 degrees C until T(re) returned to 37.5 degrees C. No difference in cooling rate was observed between the immersions at 8, 14, and 20 degrees C despite the differences in the skin surface-to-water temperature gradient, possibly because of the presence of shivering at 8 and 14 degrees C. Compared with the other conditions, however, the rate of cooling (0.35 +/- 0.14 degrees C/min) was significantly greater during the 2 degrees C water immersion, in which shivering was seldom observed. This rate was almost twice as much as the other conditions (P < 0.05). Our results suggest that 2 degrees C water is the most effective immersion treatment for exercise-induced hyperthermia.  相似文献   

7.
The gaze fixation reaction was studied in three rhesus monkeys before and during thermoneutral (34.5 degrees C) water immersion to the mid-chest level. The angular vestibulo-ocular reflex gain increased and the head angular velocity decreased significantly in all monkeys in 5 h after the start of immersion. Additionally, one animal was immersed to the neck level. Two hours in the condition of more pronounced support deprivation decreased significantly angular velocity of the head but not increased the angular vestibulo-ocular reflex gain. Therefore, support deprivation act upon the head movement control first.  相似文献   

8.
Muscle glycogen availability and temperature regulation in humans   总被引:1,自引:0,他引:1  
The effects of intramuscular glycogen availability on human temperature regulation were studied in eight seminude subjects immersed in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Each subject was immersed three times over a 3-wk period. Each immersion followed 2.5 days of a specific dietary and/or exercise regimen designed to elicit low (L), normal (N), or high (H) glycogen levels in large skeletal muscle groups. Muscle glycogen concentration was determined in biopsies taken from the vastus lateralis muscle before and after each immersion. Intramuscular glycogen concentration before the immersion was significantly different among the L, N, and H trials (P less than 0.01), averaging 247 +/- 15, 406 +/- 23, and 548 +/- 42 (SE) mmol glucose units.kg dry muscle-1, respectively. The calculated metabolic heat production during the first 30 min of immersion was significantly lower during L compared with N or H (P less than 0.05). The rate at which Tre decreased was more rapid during the L immersion than either N or H (P less than 0.05), and the time during the immersion at which Tre first began to decrease also appeared sooner during L than N or H. The results suggest that low skeletal muscle glycogen levels are associated with more rapid body cooling during water immersion in humans. Higher than normal muscle glycogen levels, however, do not increase cold tolerance.  相似文献   

9.
Certain previous studies suggest, as hypothesized herein, that heat balance (i.e., when heat loss is matched by heat production) is attained before stabilization of body temperatures during cold exposure. This phenomenon is explained through a theoretical analysis of heat distribution in the body applied to an experiment involving cold water immersion. Six healthy and fit men (mean +/- SD of age = 37.5 +/- 6.5 yr, height = 1.79 +/- 0.07 m, mass = 81.8 +/- 9.5 kg, body fat = 17.3 +/- 4.2%, maximal O2 uptake = 46.9 +/- 5.5 l/min) were immersed in water ranging from 16.4 to 24.1 degrees C for up to 10 h. Core temperature (Tco) underwent an insignificant transient rise during the first hour of immersion, then declined steadily for several hours, although no subject's Tco reached 35 degrees C. Despite the continued decrease in Tco, shivering had reached a steady state of approximately 2 x resting metabolism. Heat debt peaked at 932 +/- 334 kJ after 2 h of immersion, indicating the attainment of heat balance, but unexpectedly proceeded to decline at approximately 48 kJ/h, indicating a recovery of mean body temperature. These observations were rationalized by introducing a third compartment of the body, comprising fat, connective tissue, muscle, and bone, between the core (viscera and vessels) and skin. Temperature change in this "mid region" can account for the incongruity between the body's heat debt and the changes in only the core and skin temperatures. The mid region temperature decreased by 3.7 +/- 1.1 degrees C at maximal heat debt and increased slowly thereafter. The reversal in heat debt might help explain why shivering drive failed to respond to a continued decrease in Tco, as shivering drive might be modulated by changes in body heat content.  相似文献   

10.
The effects of different types of clothing on human deep body temperature were studied with six healthy male subjects in a supine posture. Two clothing ensembles were employed for the present study: A covered the whole body area with garments except the face (1.97 clo) and B covered only the trunk and the upper half of the extremities with garments (1.53 clo). The experiment was carried out in a climatic chamber at 55% ± 5% relative humidity under cooling and warming temperatures: the temperature was changed from 22°C to 10°C (cooling) and returned to 22°C again (warming). The major findings were: rectal temperature (T re) continued to decrease gradually in A throughout the experiment, whereas in B it increased during cooling, and returned to previous levels during warming. As a result, Tre and chest skin temperature were maintained at a higher level in B than in A. Internal tissue conductances were greater in A than in B both during cooling and during warming. Thermal comfort appeared to have been influenced more by the rate of skin temperature change than by the level of skin temperature per se. It was concluded that peripheral vasoconstriction in B induced less heat flow from core to shell, and, thus, the core temperature was maintained at a higher level in B than in A.  相似文献   

11.
To detect shifts in the threshold core temperature (Tc) for sweating caused by particular nonthermal stresses, it is necessary to stabilize or standardize all other environmental and physiological variables which cause such shifts. It is, however, difficult to cause progressive changes in Tc without also causing changes in skin temperature (Tsk). This study compares the technique of body warming by immersion in water at 40 degrees C, and subsequent body cooling in water at 28 degrees C, to determine the core threshold for sweating, with one by which Tc was raised by cycling exercise in air at 20 degrees C, and then lowered by immersion in water at 28 degrees C. The first of these procedures involved considerable shifts in Tsk upon immersion in water at 40 degrees C, and again upon transfer to water at 28 degrees C; the second procedure caused only small changes in Tsk. The onset of sweating at a lower esophageal temperature (Tes) during immersion in water at 40 degrees C (36.9 +/- 0.1 degrees C) than during exercise (37.4 +/- 0.3 degree C) is attributed to the high Tsk since Tes was then unchanged. Likewise, the rapid decline in the sweat rate during immersion at 28 degrees C had the same time course to extinction after the pretreatments. This related more to the Tsk, which was common, than to the levels or rates of change of Tes, which both differed between techniques. Tes fell most rapidly, and thus sweating was extinguished at a lower Tes, following 40 degrees C immersion than following exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The present work was undertaken to examine the effect of wet suits on the pattern of heat exchange during immersion in cold water. Four Korean women divers wearing wet suits were immersed to the neck in water of critical temperature (Tcw) while resting for 3 h or exercising (2-3 met on a bicycle ergometer) for 2 h. During immersion both rectal (Tre) and skin temperatures and O2 consumption (VO2) were measured, from which heat production (M = 4.83 VO2), skin heat loss (Hsk = 0.92 M +/- heat store change based on delta Tre), and thermal insulation were calculated. The average Tcw of the subjects with wet suits was 16.5 +/- 1.2 degrees C (SE), which was 12.3 degrees C lower than that of the same subjects with swim suits (28.8 +/- 0.4 degrees C). During the 3rd h of immersion, Tre and mean skin temperatures (Tsk) averaged 37.3 +/- 0.1 and 28.0 +/- 0.5 degrees C, and skin heat loss per unit surface area 42.3 +/- 2.66 kcal X m-2 X h. The calculated body insulation [Ibody = Tre - Tsk/Hsk] and the total shell insulation [Itotal = (Tre - TW)/Hsk] were 0.23 +/- 0.02 and 0.5 +/- 0.04 degrees C X kcal-1 X m2 X h, respectively. During immersion exercise, both Itotal and Ibody declined exponentially as the exercise intensity increased. Surprisingly, the insulation due to wet suit (Isuit = Itotal - Ibody) also decreased with exercise intensity, from 0.28 degrees C X kcal-1 X m2 X h at rest to 0.12 degrees C X kcal-1 X m2 X h at exercise levels of 2-3 met.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
This study examined how time of day affects thermoregulation during cold-water immersion (CWI). It was hypothesized that the shivering and vasoconstrictor responses to CWI would differ at 0700 vs. 1500 because of lower initial core temperatures (T(core)) at 0700. Nine men were immersed (20 degrees C, 2 h) at 0700 and 1500 on 2 days. No differences (P > 0.05) between times were observed for metabolic heat production (M, 150 W. m(-2)), heat flow (250 W. m(-2)), mean skin temperature (T(sk), 21 degrees C), and the mean body temperature-change in M (DeltaM) relationship. Rectal temperature (T(re)) was higher (P < 0.05) before (Delta = 0.4 degrees C) and throughout CWI during 1500. The change in T(re) was greater (P < 0. 05) at 1500 (-1.4 degrees C) vs. 0700 (-1.2 degrees C), likely because of the higher T(re)-T(sk) gradient (0.3 degrees C) at 1500. These data indicate that shivering and vasoconstriction are not affected by time of day. These observations raise the possibility that CWI may increase the risk of hypothermia in the early morning because of a lower initial T(core).  相似文献   

14.
Eleven women (age = 24.4 +/- 6.3 yr, mass = 65.0 +/- 7.8 kg, height = 167 +/- 8 cm, body fatness = 22.4 +/- 5.9%, mean +/- SD) were immersed to neck level in 18 degrees C water for up to 90 min for comparison of their thermal responses with those of men (n = 14) in a previous similarly conducted protocol. Metabolic rate increased about three times resting levels in men and women, whereas the rate of rectal temperature cooling (DeltaT(re)/Deltat) in women (0.47 degrees C/h) was about one-half that in men. With use of all data, DeltaT(re)/Deltat correlates with the ratio of body surface area to size and the metabolic rate of shivering correlates inversely to the square root of body fatness. No significant gender differences in total metabolic heat production normalized for body mass or surface area were found among subjects who completed 90 min of immersion (9 women and 7 men). Nor was there a gender difference in the overall percent contribution ( approximately 60%) of fat oxidation to total heat production. Blood concentrations of free fatty acids, glycerol, beta-hydroxybutyrate, and lactate increased significantly during the 90-min immersion, whereas muscle glycogen sampled from the right quadriceps femoris vastus lateralis decreased (free fatty acids, glycerol, and beta-hydroxybutyrate were higher in women). When the subjects were subgrouped according to similar body fatness and 60 min of immersion (6 women and 5 men), no significant gender differences emerged in DeltaT(re)/Deltat, energy metabolism, and percent fat oxidation. These findings suggest that no gender adjustments are necessary for prediction models of cold response if body fatness and the ratio of body surface area to size are taken into account and that a potential gender advantage with regard to carbohydrate sparing during cold water immersion is not supported.  相似文献   

15.
The effect of varying the body surface area being cooled by a liquid microclimate system was evaluated during exercise heat-stress conditions. Six male subjects performed a total of six exercise (O2 uptake = 1.2 l/min) tests in a hot environment (ambient temperature = 38 degrees C, relative humidity = 30%) while dressed in clothing having low moisture permeability and high insulation. Each subject completed two upper body exercise (U; arm crank) tests: 1) with only the torso surface (T) cooled; and 2) with the surfaces of both the torso and upper arms (TA) cooled [coolant temperature at the inlet (Ti) was 20 degrees C for all upper body tests]. Each subject also completed four lower body exercise (L; walking) tests: 1) with only the T cooled (Ti = 20 degrees C); 2) with only the T cooled (Ti = 26 degrees C); 3) with torso, upper arm, and thigh surface (TAT) cooled (Ti = 20 degrees C); and 4) with TAT cooled (Ti = 26 degrees C). During U exercise, TA cooling had no effects compared with cooling only T. During L exercise, sweat rates, heart rates, and rectal temperature (Tre) changes were less with TAT cooling compared with cooling only the T. Altering Ti had no effect on Tre changes, but higher heart rates were observed with 26 than with 20 degrees C. These data indicate that cooling arms during upper body exercise provides no thermoregulatory advantage, although cooling the thigh surfaces during lower body exercise does provide an advantage.  相似文献   

16.
AIM: To investigate the influence of low cooling rates on endothelial function and morphology of corneas frozen with propane-1,2-diol (PROH). METHODS: Rabbit corneas, mounted on support rings, were exposed to 1.4mol/l (10% v/v) PROH, seeded to initiate freezing, and cooled at 0.2 or 1 degrees C/min to -80 degrees C. Corneas were frozen immersed in liquid or suspended in air. After being held overnight in liquid nitrogen, corneas were warmed at 1 or 20 degrees C/min. After stepwise removal of the cryoprotectant, the ability of the endothelium actively to control corneal hydration was monitored during normothermic perfusion. Morphology was assessed after staining with trypan blue and alizarin red S, and by specular microscopy during perfusion. RESULTS: Functional survival was achieved only after slow cooling (0.2 degrees C/min) with the cornea immersed in the cryoprotectant medium, and rapid warming (20 degrees C/min). These conditions also gave the best morphology after freezing and thawing. CONCLUSION: Cooling rates lower than those typically applied to cornea improved functional survival of the endothelium. This result is in accord with previous observations showing the benefit of low cooling rates for cell monolayers [CryoLetters 17 (1996) 213-218].  相似文献   

17.
Physical work, high ambient temperature and wearing protective clothing can elevate body temperature and cardiovascular strain sufficiently to degrade performance and induce heat-related illnesses. We have recently developed an Arm Immersion Cooling System (AICS) for use in military training environments and this paper will review literature supporting such an approach and provide details regarding its construction. Extremity cooling in cool or cold water can accelerate body (core temperature) cooling from 0.2 to 1.0 °C/10 min vs. control conditions, depending on the size/surface area of the extremity immersed. Arm immersion up to the elbow results in greater heat loss than hand- or foot-only immersion and may reduce cardiovascular strain by lowering heart rate by 10–25 beats/min and increase work tolerance time by up to 60%. The findings from studies in this paper support the use of AICS prototypes, which have been incorporated as part of the heat stress mitigation procedures employed in US Army Ranger Training and may have great application for sports and occupational use.  相似文献   

18.
1. Temperatures of different body surface regions and deep body temperature (Tb) of unrestrained adult Mongolia gerbils exposed to ambient temperatures (Ta) of -10-35 degrees C were measured using infrared (i.r.) thermography and a thermocouple. 2. A strong positive linear relationship between the surface temperature and Ta was found. For Ta range -4-35 degrees C, the slope was lowest for the areas around the eyes and dorsal head, and steepest for the body extremities. At -10 degrees C, surface temperatures of the areas around the eyes and dorsal head were significantly lower then predicted. 3. Tb was lowest at Ta of 25 and 30 degrees C, increased at all temperatures above and up to Ta of -4 degrees C below this range, and began decline at -10 degrees C. 4. The thermoneutral zone (TNZ) is probably between 28 and 32 degrees C, and the absolute lower critical temperature (Tabsl) is probably -4 degrees C. 5. The Mongolian gerbil shows little control of surface temperature and in contrast to larger mammals it has not developed any special thermoregulatory surface areas to regulate heat exchange with its environment. At temperatures below -4 degrees C, this species is unable to maintain the surface temperature of body extremities above the freezing point. 6. It is suggested that the Mongolian gerbil uses mainly behavioral and ecological adaptive strategies to attenuate the stressful effects of its habitat.  相似文献   

19.
Previous retrospective studies report a core body temperature cooling rate of 3 degrees C/h during avalanche burial. Hypercapnia occurs during avalanche burial secondary to rebreathing expired air, and the effect of hypercapnia on hypothermia during avalanche burial is unknown. The objective of this study was to determine the core temperature cooling rate during snow burial under normocapnic and hypercapnic conditions. We measured rectal core body temperature (T(re)) in 12 subjects buried in compacted snow dressed in a lightweight clothing insulation system during two different study burials. In one burial, subjects breathed with a device (AvaLung 2, Black Diamond Equipment) that resulted in hypercapnia over 30-60 min. In a control burial, subjects were buried under identical conditions with a modified breathing device that maintained normocapnia. Mean snow temperature was -2.5 +/- 2.0 degrees C. Burial time was 49 +/- 14 min in the hypercapnic study and 60 min in the normocapnic study (P = 0.02). Rate of decrease in T(re) was greater with hypercapnia (1.2 degrees C/h by multiple regression analysis, 95% confidence limits of 1.1-1.3 degrees C/h) than with normocapnia (0.7 degrees C/h, 95% confidence limit of 0.6-0.8 degrees C/h). In the hypercapnic study, the fraction of inspired carbon dioxide increased from 1.4 +/- 1.0 to 7.0 +/- 1.4%, minute ventilation increased from 15 +/- 7 to 40 +/- 12 l/min, and oxygen saturation decreased from 97 +/- 1 to 90 +/- 6% (P < 0.01). During the normocapnic study, these parameters remained unchanged. In this study, T(re) cooling rate during snow burial was less than previously reported and was increased by hypercapnia. This may have important implications for prehospital treatment of avalanche burial victims.  相似文献   

20.
The roles of antidiuretic hormone (ADH) and aldosterone in the elicited diuretic responses of trained and untrained men to seated, supine, and head-out water immersed conditions were studied. Volunteers were comprised of groups of six untrained individuals, six trained swimmers, and six trained runners. Each subject underwent three protocols, six hours in a seated position, supine position, or immersion (35 degrees C water). The last two protocols were preceded and followed by 1 h of seated position. After 10 h of fasting, 0.5% body wt of water was drunk. One hour later the trained groups had higher urine osmolalities (P less than 0.05) and urinary excretion rates of ADH (P less than 0.05) and lower urine flow rates (P less than 0.05) than untrained subjects. Throughout the sitting protocol, urinary ADH was also higher in both trained groups (P less than 0.05). Both supine posture and immersion resulted in significant decreases in urinary ADH in the untrained subjects (P less than 0.05) but no changes wer noted in swimmers and only during the second hour of immersion in the runners (P less than 0.05). The natriuresis and kaliuresis were greater during immersion than in the supine position but plasma renin activity, measured only in trained groups, and plasma aldosterone, measured in the untrained group, were decreased similarly with both protocols. The increases in urinary sodium excretion and urine flow rate were lower in trained than untrained subjects during the supine and immersion protocols (P less than 0.05). The data are compatible with an increased osmotic but decreased volume sensitivity of ADH control in trained men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号