首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Small arms firing ranges at military training facilities can have enormous heavy metal burdens (percent level) in soils. Currently there are few published works that quantify the metal content of soils and waters at military installations or speculate on the potential for migration of these contaminants into groundwater. This article documents metals in soils and waters at nine small arms training ranges at three military installations in the U.S. Soil samples were collected from the surface and shallow subsurface. The results demonstrated that lead, antimony, copper, and zinc were the principal contaminants of interest and mapping a site's lead and copper surface distributions would adequately define the extent of impacted soil. Lower metal concentrations at three of the ranges reflected previous remediation by means of physical separation and mechanical removal of metallic fragments followed by fixation treatment with MaectiteTM. Except for the treated ranges where mixing had occurred, subsurface soil samples indicated limited vertical migration. Several of the ranges were also monitored for trace element migration in the vadose zone by means of suction-cup lysimeters. This pore-water sampling indicated ceramic suction-cup lysimeters are useful for assessing relative concentrations but require care in evaluation because of potential sorption losses. Monitoring of soil water at ranges should include antimony and zinc; the former because, in contrast to the other metals, it is typically soluble in an anionic form, and the latter because of its greater solubility and mobility.  相似文献   

2.
Heavy metal levels of cadmium, copper, mercury, manganese, and zinc were examined in the mummichog, Fundulus heteroditus from industrialized and non-industrialized environments. With one exception, the environment with the highest trace metal in its waters, had the fishes with the highest metal concentration. Except for mercury, the concentration factor varied inversely with the metal concentrations of the fish and water, suggesting a possible regulatory mechanism for metals in the tissues of mummichogs from environments with high metal concentrations. There was an inverse relationship between standard length and concentrations of zinc, manganese, copper and cadmium in whole male and female fishes. The viscera contained significantly greater concentrations of these metals than somatic muscle tissue. There were also significant differences between males and females with respect to whole-body zinc and copper concentrations, but no sex differences for manganese and cadmium.  相似文献   

3.
The cadmium, zinc, lead and copper concentrations in benthic invertebrates and sediment were determined during two consecutive winters in the Maarsseveen Lakes system. A sequential extraction procedure was applied to estimate the bioavailability of the trace metals in the sediment. Based on the trace metal analyses of organisms and sediment, it is concluded that the Maarsseveen Lakes system has background levels of cadmium, zinc, lead and copper. As the majority of metals was present in geochemically more stable sediment phases, the sequential extractions provided limited additional information on trace metal bioavailability.  相似文献   

4.
环境重金属污染物的生物有效性   总被引:24,自引:1,他引:23  
刘宗平 《生态学报》2005,25(2):273-278
利用生态系统研究了白银有色金属冶炼矿区周围环境中重金属的分布及生物有效性。结果表明 ,工厂在冶炼过程中已造成 Pb、Cd、Cu、Zn对周围环境不同程度的污染 ,其含量与距工厂的距离呈负相关 ;重金属在各种生物体内均有不同程度的吸收和累积 ,其吸收累积量随重金属和生物种类的不同而有差异 ;土壤的污染 ,使农作物和牧草中 Pb、Cd含量超过动物的最大耐受量和中毒的临界值 ;动物研究发现 ,肾脏、骨骼和肝脏是机体内重金属蓄积的主要器官。因此 ,放牧动物可作为环境重金属污染状况的标识 ,对评价重金属环境污染对当地人群的危害也有重要意义  相似文献   

5.
Summary The influence of heavy metal additions on availability and uptake of cadmium, lead, zinc, copper, manganese and iron by oat was studied. The experiments were carried out as pot experiments using sandy loam, sandy soil and organic soil. Selective extractants were used to remove metals held in different soil fractions.Lead and copper were preferently bound by organics and oxides, zinc by oxides and inorganics, and cadmium by inorganics and organics.Addition of cadmium to the soils resulted in higher cadmium concentrations in all plant parts but lower concentrations of lead, zinc, copper, manganese and iron, and the accumulation indexes of these metals were also lower when cadmium was added to the soil.Addition of cadmium plus lead, zinc and copper resulted in higher cadmium concentrations in leaves and straw of plants grown in sandy loam and sandy soil, but lower concentrations when plants were grown in organic soil as compared with the results when cadmium was added separately. The transfer of cadmium, lead, zinc and copper from soil to plant was greatest from sandy soil, and zinc and cadmium were more mobile in the plant than were lead and copper.Cadmium concentrations in leaves correlated significantly with CaCl2 and CH3COOH extractions in sandy loam and sandy soil and with CH3COOH extractions in organic soil.Generally, the total metal uptake was lowest from organic soil.  相似文献   

6.
The ontogeny of hepatic tissue growth and trace metal deposition was examined in the developing turkey embryo and newly hatched poult. Hepatic concentrations of zinc and iron in the embryo declined by about twofold between day 16 of incubation and hatching. Hepatic copper concentration increased approximately fourfold by day 23 of incubation and then declined rapidly through hatching. During the post-hatching period, hepatic zinc concentration increased twofold by day 10, whereas a small increase in hepatic iron concentration occurred just prior to hatching and continued through the third day post-hatching. A significant positive correlation existed between hepatic zinc and iron concentrations in the developing embryo. The concentrations of both these metals were inversely correlated with hepatic copper concentration during the same time. Total hepatic zinc and iron content increased throughout the entire time studied, whereas total copper content increased up to hatching and then declined during the first week post-hatching. The most rapid phase of hepatic metal accretion differed for each metal, with zinc being rapidly accumulated during the post-hatching period, copper during the last half of incubation and iron at about the time of hatching and the first few days post-hatching. Each of these metals demonstrated a specific relationship to hepatic tissue growth that changed between the embryonic and neonatal periods of development.  相似文献   

7.
The concentration of trace elements in L-cells has been studied as a function of the trace metal content of the growth medium. Cells were cultured in synthetic media which contained varying trace amounts of the elements manganese, iron, cobalt, copper, zinc and molybdenum. The cellular concentration of the elements potassium, iron, copper and zinc were then determined. It was found that the cell accumulates trace metals at a different rate than they are made available. Deficiencies in zinc could be “induced” in the cell by increasing the concentration of iron, manganese and cobalt; cellular iron deficiencies were observed at larger medium concentrations of zinc, manganese, copper and cobalt. Trace metal uptake by the cell was seen to parallel the utilization by multicellular organisms.  相似文献   

8.
J. G. Shiber 《Hydrobiologia》1981,83(2):181-195
Trace metal concentrations were determined in six species of intertidal organisms common to the coast of Ras Beirut, Lebanon. Lead, cadmium, nickel, iron, and zinc were highest in the polychaete,Hermodice carunculata, but the eggs of the sea urchin,Arbacia lixula, had similar iron levels and the sea anemone,Actinia equina, had zinc concentrations which also approached levels in the polychaete. The highest copper occurred in the shore crab,Pachygrapsus transversus, while chromium was highest in the eggs ofArbacia lixula.Cystoseira spinosa, the only alga studied, had average copper and iron concentrations similar to those found in the same species in another study. Together with the sea urchin eggs,C. spinosa exhibited the most variable zinc levels in the present investigation. The fish,Thalassoma pavo, which is rather common along the rocky coastal areas of Lebanon, appeared to have fairly high concentrations of certain elements in relation to levels reported in species of fish from other locations.Sewage, garbage, industrial and agricultural waste materials all enter the Mediterranean from Lebanon without prior treatment, which along with increased land erosion, probably contribute substantially to the availability of metals to the biota studied. It is suggested that more work on trace elements in coastal organisms from the eastern Mediterranean basin be undertaken before any conclusive statements are made. Such work should also investigate the various physiological and biochemical factors involved in metal uptake and retention by each species.  相似文献   

9.
Concentrations of copper, zinc and iron were measured in waters, sediments and invertebrates collected from the River Hayle. In river water at least 70% of copper and iron was associated with the particulate fraction whereas 80% of zinc was in the soluble form. Although total concentrations of zinc in water exceeded those of copper approximately ten fold, copper predominated over zinc in the sediments by a factor of approximately three. Iron was the most abundant metal recorded in both water and sediments.Seasonal differences in total metal content of waters suggested that concentrations of copper, zinc and iron increased during. periods of high flow and decreased during lower flows. Copper concentrations in the sediment, unlike zinc and iron, showed markedly higher values during the summer sampling period when flows were minimal.In the free-living Trichoptera larvae, concentrations of copper and zinc in the tissue appeared to follow copper and zinc levels in the water. Similar relationships in Odonata and Plecoptera larvae were not obtained. Factors affecting animal/metal relationships are discussed with particular reference to adaptation shown by organisms exposed to high concentrations of heavy metals in their environment.Department of Applied Biology, Cambridge  相似文献   

10.
Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularly Balanus amphitrite) as trace metal biomonitors in coastal waters, identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the  相似文献   

11.
Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularly Balanus amphitrite) as trace metal biomonitors in coastal waters,identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the highest known in marine invertebrates.  相似文献   

12.
Pollutants deposited on the Severn Estuary from the atmosphere derive mainly from local industrial and urban centres. Atmospheric deposition accounts for 50% of the lead and zinc inputs, 10–20% of the cadmium, copper and nickel to the Estuary, but only a small proportion of the chromium, iron and manganese. Most of the cadmium, copper and lead comes from the lower atmosphere near Avonmouth and Cardiff Bay. Westerly winds have much higher sodium and chloride concentrations but generally carry lower pollution loads than the less frequent, offshore easterlies. Strong winds recycle pollutants into the atmosphere via sea spray. The hills on both sides of the Estuary encourage deep vertical mixing, and effluents may be carried well inland. Stable atmospheres, associated with southerly and easterly airflows, cause trapping and entrainment of stack emissions. Thus easterlies may deposit much higher levels of pollutants. This paper reviews present knowledge regarding the deposition of metals from the atmosphere into the waters of the Severn Estuary. Preliminary results (1989) indicate that, while distribution patterns remain broadly similar, the quantities deposited were considerably less than they were six years previously.  相似文献   

13.
Trace elements in agroecosystems and impacts on the environment.   总被引:21,自引:0,他引:21  
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.  相似文献   

14.
Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularlyBalanus amphitrite) as trace metal biomonitors in coastal waters, identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the highest known in marine invertebrates.  相似文献   

15.
This study investigates the comparative strategies of accumulation under standardised laboratory conditions of the essential metals zinc and copper, and the non-essential metal cadmium by three crustaceans of different taxa; vizPalaemon elegans Rathke (Malacostraca: Eucarida: Decapoda),Echinogammarus pirloti (Sexton & Spooner) (Malacostraca: Peracarida: Amphipoda) and the barnacleElminius modestus Darwin (Cirripedia: Thoracica).The decapodP. elegans regulates body zinc concentrations to a constant level (ca. 79 µg Zn g–1) over a wide range of dissolved metal availabilities until regulation breaks down at high Zn availabilities and net accumulation begins. The amphipodE. pirloti accumulates zinc at all dissolved zinc concentrations but at a low net rate such that the accumulation strategy approaches that of regulation. The barnacleE. modestus accumulates zinc to high body concentrations with no significant excretion of accumulated zinc. In the case of copper,P. elegans similarly regulates body copper concentrations to a constant level (ca. 129 µg Cu g–1) over a range of dissolved copper availabilities until regulation breaks down at high copper concentrations. Both the amphipodE. pirloti and the barnacleE. modestus on the other hand accumulate copper at all dissolved copper exposures with no evidence of regulation. All three crustaceans accumulate the non-essential metal cadmium at all dissolved cadmium concentrations without regulation.Heavy metal accumulation strategies therefore vary between crustacean taxa and between metals. Uptake rates for zinc and cadmium have been estimated for the three crustaceans and can be interpreted in terms of cuticle permeability and way of life of each crustacean. Examination of these uptake rates provides an insight into possible reasons behind the adoption of particular metal accumulation strategies.  相似文献   

16.
This is the first in-depth investigation of whether the gender or reproductive state of talitrid amphipods affects the bioaccumulation of trace metals. Concentrations of copper, zinc, and cadmium were measured in the beach flea Transorchestia chiliensis (Milne-Edwards) and the sand hopper Talorchestia quoyana (Milne-Edwards) (Amphipoda: Talitridae) from sites in and near the Avon-Heathcote Estuary, Christchurch, New Zealand. For T. chiliensis, the whole body trace metals concentrations (μg g−1) were generally similar for nonbrooding, brooding, and brooding females that had the embryos removed. Where there were differences between female groups (3 out of 15 samples), concentrations in nonbrooding females were below those for brooding females. The trace metal concentrations of separated embryos did not follow those of their mothers. The body zinc concentration was similar for males and females. For copper and cadmium, body concentrations for females were higher than males at the two most contaminated sites. Cadmium body concentrations were similar between sites, and the lowest concentrations were from amphipods from one of the Estuary sites rather than the reference site. In T. quoyana, the trace metal concentrations in nonbrooding female and male sand hoppers were similar for copper and zinc, but cadmium concentrations were higher in nonbrooding females than in males. Copper and zinc concentrations within amphipod body tissues did not reflect those in the sediment or their food. The implications of these results are discussed in relation to previous studies and the use of beach fleas and sand hoppers as metal biomonitors. The beach flea T. chiliensis is recommended as a suitable trace metal biomonitor in New Zealand coastal waters with the potential to be affected by anthropogenic trace metal contamination.  相似文献   

17.
The levels of heavy metals copper and zinc were found to be high in the Vellar estuary. Therefore their effects on the larval development of the abundant hermit crab Clibanarius longitarsus were studied individually and in combination from hatching till moulting to glaucothoe stage in the laboratory using freshly hatched Artemia nauplii as food. The 96 h LC50 values found with 100 larvae each kept in 10 different concentrations of copper and zinc (350, 300, 250, 200, 150, 100, 50, 25, 10 and 5 ppb) were 50 ppb for copper and 90 ppb for zinc. Based on these 96 h LC50 values, three sublethal concentrations were chosen for the metals copper and zinc at 50%, 25% and 10% levels of the LC50 values. With increase in concentration of the test medium, the survival rate decreased and the time required for the completion of each zoeal stage increased. Copper was found to be more toxic than zinc as the survival rate in copper concentrations was lower than those in zinc concentrations. The survival rate in the mixed concentrations of metals was lower than in individual concentrations.  相似文献   

18.
Mantovi  Paolo  Bonazzi  Giuseppe  Maestri  Elena  Marmiroli  Nelson 《Plant and Soil》2003,250(2):249-257
In Northern Italy it is a common practice to utilise slurries and other manure from intensive animal farming to fertilise agricultural soils. Due to the relatively high copper and zinc contents of these materials, this practice could lead to contamination of soils and the crops grown on them. In this study we have evaluated the extent of copper and zinc contamination of soils subjected to different levels of fertilisation with liquid manure and the copper and zinc concentrations in the edible tissues of three crops (maize, sugar beet and lucerne) grown on the same soils. There was a direct correlation between soil copper and zinc contents and the levels of application of animal wastes and copper concentrations were high enough to represent a risk, according to current European legislation. The metal contents in the edible tissues of the three crops were relatively low and variable, but showed no clear correlations with the intensity of liquid manure applications. Overall, there was no risk of contamination of the food chain, as all concentrations were well below levels considered to be toxic to animals.  相似文献   

19.
Exposure of Chlorella vulgaris to elevated concentrations of copper, chromium, nickel and zinc led to intracellular accumulation of high concentrations of these metals. Concomitantly, accumulation of free proline occurred, depending on the concentration of metals in the external medium or in the cell. The greater the toxicity or accumulation of a metal, the greater the amount of intracellular proline in algal cells. However, higher concentrations of copper and chromium were inhibitory to proline accumulation by the test organism. The accumulation of proline was triggered within a few hours of metal treatment. Test metals also induced lipid peroxidation; copper was the most efficient inducer whereas zinc was the least. Pretreatment of C. vulgaris with proline counteracted metal-induced lipid peroxidation and potassium ion efflux. Thus the present work shows a protective effect of proline on metal toxicity through inhibition of lipid peroxidation.  相似文献   

20.
We have used accumulated metal concentration data to investigate variability in the bioavailabilities of cadmium, copper, lead, zinc and iron to the amphipod Gammarus fossarum inhabiting the Biala Przemsza river system draining an area of lead and zinc mining. The highest bioavailabilities of most of the metals were found in a stream carrying water from mine drainage and flotation processes. Significant amounts of bioavailable cadmium entered via another stream receiving waters from ore processing. The bioavailabilities of copper varied little, indicating the lack of a local point source of entry. All metals other than copper showed seasonal variations with the highest concentrations recorded in October. Comparative data show the Biala Przemsza system to be contaminated with cadmium, lead, zinc and iron. The data presented exemplify metal concentration ranges in G. fossarum inhabiting industrial areas, and can be used as a reference for future surveys involving this species in Central Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号