首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses generated during acute infection play a critical role in the initial control of viremia. However, little is known about the viral T-cell epitopes targeted during acute infection or about their hierarchy in appearance and relative immunodominance over time. In this study, HIV-1-specific CD8+ T-cell responses in 18 acutely infected individuals expressing HLA-A3 and/or -B7 were characterized. Detailed analysis of CD8 responses in one such person who underwent treatment of acute infection followed by reexposure to HIV-1 through supervised treatment interruptions (STI) revealed recognition of only two cytotoxic T-lymphocyte (CTL) epitopes during symptomatic acute infection. HIV-1-specific CD8+ T-cell responses broadened significantly during subsequent exposure to the virus, ultimately targeting 27 distinct CTL epitopes, including 15 different CTL epitopes restricted by a single HLA class I allele (HLA-A3). The same few peptides were consistently targeted in an additional 17 persons expressing HLA-A3 and/or -B7 during acute infection. These studies demonstrate a consistent pattern in the development of epitope-specific responses restricted by a single HLA allele during acute HIV-1 infection, as well as persistence of the initial pattern of immunodominance during subsequent STI. In addition, they demonstrate that HIV-1-specific CD8+ T-cell responses can ultimately target a previously unexpected and unprecedented number of epitopes in a single infected individual, even though these are not detectable during the initial exposure to virus. These studies have important implications for vaccine design and evaluation.  相似文献   

2.
A Achour  F Bex  P Hermans  A Burny    D Zagury 《Journal of virology》1996,70(10):6741-6750
Cytotoxic T lymphocytes (CTL) may be important to prevent cell-to-cell transmission of human immunodeficiency virus type 1 (HIV-1), the agent responsible for AIDS. In this study, we investigated the epitope specificity of CTLs induced in individuals immunized against the virus envelope glycoprotein gp160. The determinant of HIV-1 gp160 for the stimulation of CTL is located in a region of high sequence variability among HIV-1 isolates, the so-called V3 loop P18. Using a panel of P18 peptides, we compared the CTL specificities of cells from two individuals immunized with vaccinia virus recombinants expressing the envelope glycoproteins from two different strains of HIV-1, IIIB and SIMI. For this purpose, CTLs specific for the IIIB P18 peptide (RIQRGPGRAFVTIGK) were compared with CTLs for the site from the SIMI isolate (TLHMGPKRAFYATGD). The results indicate that in contrast to CD8+ CTLs induced by the glycoprotein from strain IIIB, CD8+ CTLs induced by strain SIMI strongly cross-reacted with targets presenting P18 peptides as well as envelope proteins from the divergent MN and RF isolates but failed to cross-react with targets that presented the IIIB peptide. These data have implications for the design of an HIV vaccine.  相似文献   

3.
We investigated long-term memory and recall cellular immune responses to human immunodeficiency virus type 1 (HIV-1) Env and Gag proteins elicited by recombinant vesicular stomatitis viruses (VSVs) expressing Env and Gag. More than 7 months after a single vaccination with VSV-Env, approximately 6% of CD8(+) splenocytes stained with major histocompatibility complex class I tetramers containing the Env p18-I10 immunodominant peptide and showed a memory phenotype (CD44(Hi)). The level of tetramer-positive cells in memory was about 14% of the peak primary response. Recall responses elicited in these mice 5 days after boosting with a heterologous recombinant vaccinia virus expressing HIV-1 Env showed that 40 to 45% of CD8(+) splenocytes were tetramer positive and activated (CD62L(Lo)), and these cells produced gamma interferon after stimulation with Env peptide, indicating that they were functional. Five months after the boost, the long-term memory cell population (tetramer positive, CD44(Hi)) constituted 30% of the CD8(+) splenocytes. Recall responses to HIV-1 Gag were examined in mice primed with VSV recombinants expressing HIV-1 Gag protein and boosted with a vaccinia virus recombinant expressing Gag. Using this protocol, we found that approximately 40% of CD8(+) splenocytes were activated (CD62L(Lo)) and specific for a Gag immunodominant peptide (tetramer positive). The high-level Gag recall response elicited by the vaccinia virus-Gag was greater than that obtained by boosting with a VSV-Gag vector with a different VSV glycoprotein. The corresponding levels of CD44(Hi) memory cells were also higher long after boosting with vaccinia virus-Gag than after boosting with a glycoprotein exchange VSV-Gag. Our results show that VSV vectors elicit high-level memory CTL responses and that these can be amplified as much as six- to sevenfold using a heterologous boosting vector.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) isolates exhibit extensive sequence variation, particularly in the gp120 subunit of the envelope glycoprotein, and the degree of this variation has raised questions as to whether conserved regions of the HIV-1 envelope can be recognized by the host immune response. A CD8+ cytotoxic T-lymphocyte (CTL) clone specific for the HIV-1 envelope was derived by culturing peripheral blood mononuclear cells from an HIV-1 seropositive subject in the presence of a CD3-specific monoclonal antibody, interleukin-2, and irradiated allogeneic peripheral blood mononuclear cells. Lysis of target cells was restricted by an HLA-C molecule, Cw4, which has not been previously shown to present viral antigen to CTL. Mapping of the specificity of this CTL clone by using synthetic HIV-1 peptides localized the epitope to an 8-amino-acid region of gp120 (amino acids 376 to 383) which is conserved among approximately 90% of sequenced viral isolates. Examination of the recognition of variant peptides by this CTL clone demonstrated that a single, nonconservative amino acid substitution within the 8-amino-acid minimal epitope could abrogate lysis of targets incubated with the variant peptide. The identification of a CTL epitope in a highly conserved region of gp120 documents the ability of cellular immune responses of infected persons to respond to relatively invariant portions of this highly variable envelope glycoprotein. However, the ability of even a single-amino-acid change in gp120 to abolish lysis by CTL supports the hypothesis that sequence variation in HIV-1 may serve as a mechanism of immune escape. In addition, the identification of an HLA-C molecule presenting viral antigen to CTL supports a functional role for these molecules.  相似文献   

5.
Qiu JT  Liu B  Tian C  Pavlakis GN  Yu XF 《Journal of virology》2000,74(13):5997-6005
In this study, we have investigated the influence of antigen targeting after DNA vaccination upon the induction of cellular immune responses against human immunodeficiency virus type 1 (HIV-1) Gag. In addition to the standard version of HIV-1 Gag, we constructed Gag expression vectors that encode a secreted (Sc-Gag) and a cytoplasmic (Cy-Gag) Gag molecule. Although all three HIV-1 Gag expression vectors induced detectable humoral and cellular immune responses, after intramuscular injection the DNA vector encoding the Sc-Gag generated the highest primary cytotoxic T-lymphocyte (CTL) and T-helper responses. Mice immunized with one of the HIV-1 Gag DNA vectors (but not with the control vector pcDNA3. 1) developed a protective immune response against infection with recombinant vaccinia virus expressing HIV-1 Gag, and this response persisted for 125 days. The magnitude of the protection correlated with the levels of Gag-specific ex vivo CTL activity and the number of CD8(+) T cells producing gamma interferon. The DNA vector encoding the Sc-Gag induced higher levels of protection and greater secondary CTL responses than did the DNA vector encoding Cy-Gag.  相似文献   

6.
T-tropic (X4) and dualtropic (R5X4) human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins kill primary and immortalized CD4(+) CXCR4(+) T cells by mechanisms involving membrane fusion. However, because much of HIV-1 infection in vivo is mediated by M-tropic (R5) viruses whose envelope glycoproteins use CCR5 as a coreceptor, we tested a panel of R5 and R5X4 envelope glycoproteins for their ability to lyse CCR5(+) target cells. As is the case for CXCR4(+) target cells, HIV-1 envelope glycoproteins expressed by single-round HIV-1 vectors killed transduced CD4(+) CCR5(+) cells in a membrane fusion-dependent manner. Furthermore, a CD4-independent R5 HIV-1 envelope glycoprotein was able to kill CD4-negative target cells expressing CCR5, demonstrating that CD4 is not intrinsically required for the induction of death. Interestingly, high levels of CD4 expression protected cells from lysis and syncytium formation mediated by the HIV-1 envelope glycoproteins. Immunoprecipitation experiments showed that high levels of CD4 coexpression inhibited proteolytic processing of the HIV-1 envelope glycoprotein precursor gp160. This inhibition could be overcome by decreasing the CD4 binding ability of gp120. Studies were also undertaken to investigate the ability of virion-bound HIV-1 envelope glycoproteins to kill primary CD4(+) T cells. However, neither X4 nor R5X4 envelope glycoproteins on noninfectious virions caused death in primary CD4(+) T cells. These results demonstrate that the interaction of CCR5 with R5 HIV-1 envelope glycoproteins capable of inducing membrane fusion leads to cell lysis; overexpression of CD4 can inhibit cell killing by limiting envelope glycoprotein processing.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) evades CD8(+) T-cell responses through mutations within targeted epitopes, but little is known regarding its ability to generate de novo CD8(+) T-cell responses to such mutants. Here we examined gamma interferon-positive, HIV-1-specific CD8(+) T-cell responses and autologous viral sequences in an HIV-1-infected individual for more than 6 years following acute infection. Fourteen optimal HIV-1 T-cell epitopes were targeted by CD8(+) T cells, four of which underwent mutation associated with dramatic loss of the original CD8(+) response. However, following the G(357)S escape in the HLA-A11-restricted Gag(349-359) epitope and the decline of wild-type-specific CD8(+) T-cell responses, a novel CD8(+) T-cell response equal in magnitude to the original response was generated against the variant epitope. CD8(+) T cells targeting the variant epitope did not exhibit cross-reactivity against the wild-type epitope but rather utilized a distinct T-cell receptor Vbeta repertoire. Additional studies of chronically HIV-1-infected individuals expressing HLA-A11 demonstrated that the majority of the subjects targeted the G(357)S escape variant of the Gag(349-359) epitope, while the wild-type consensus sequence was significantly less frequently recognized. These data demonstrate that de novo responses against escape variants of CD8(+) T-cell epitopes can be generated in chronic HIV-1 infection and provide the rationale for developing vaccines to induce CD8(+) T-cell responses directed against both the wild-type and variant forms of CD8 epitopes to prevent the emergence of cytotoxic T-lymphocyte escape variants.  相似文献   

8.
We generated Chinese hamster ovary cell lines that stably express wild-type, secreted, and glycosylphosphatidylinositol (GPI)-anchored envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1). The cells expressing wild-type Env (WT cells) express both the precursor gp160 and the mature gp120/gp41 and readily form large syncytia when cocultivated with CD4+ human cells. The cells expressing secreted Env (SEC cells) release 140-kDa precursor and mature 120-kDa envelope glycoproteins into the supernatants. The cells expressing GPI-anchored Env (PI cells) express both 140-kDa precursor and mature gp120/gp41 envelope glycoproteins, which can be released from the cell surface by treatment with phosphatidylinositol-specific phospholipase C (PI-PLC). Both the secreted and PI-PLC-released envelope glycoproteins form oligomers that can be detected on nonreducing sodium dodecyl sulfate-polyacrylamide gels. In contrast to the WT cells, the SEC and PI cells do not form syncytia when cocultivated with CD4+ human cells. The availability of cells producing water-soluble oligomers of HIV-1 Env should facilitate studies of envelope glycoprotein structure and function. The WT cells, which readily induce syncytia with CD4+ cells, provide a convenient system for assessing potential fusion inhibitors and for studying the fusion mechanism of the HIV Env glycoprotein.  相似文献   

9.
Rabies virus (RV) has recently been developed as a novel vaccine candidate for human immunodeficiency virus type 1 (HIV-1). The RV glycoprotein (G) can be functionally replaced by HIV-1 envelope glycoprotein (Env) if the gp160 cytoplasmic domain (CD) of HIV-1 Env is replaced by that of RV G. Here, we describe a pilot study of the in vivo replication and immunogenicity of an RV with a deletion of G (DeltaG) expressing a simian/human immunodeficiency virus SHIV(89.6P) Env ectodomain and transmembrane domain fused to the RV G CD (DeltaG-89.6P-RVG) in a rhesus macaque. An animal vaccinated with DeltaG-89.6P-RVG developed SHIV(89.6P) virus-neutralizing antibodies and SHIV(89.6P)-specific cellular immune responses after challenge with SHIV(89.6P). There was no evidence of CD4(+) T-cell loss, and plasma viremia was controlled to undetectable levels by 6 weeks postchallenge and has remained suppressed out to 22 weeks postchallenge.  相似文献   

10.
We investigated the ability of a plasmid-derived IL-21 delivered alone or in combination with the IL-15 gene to regulate immune responses to the HIV-1 envelope (Env) glycoprotein induced by DNA vaccination. Mice were injected with the gp140DeltaCFI(HXB2/89.6) vector expressing a modified Env glycoprotein with C-terminal mutations intended to mimic a fusion intermediate, in which the most divergent region encoding the variable V1, V2, and V3 domains of CXCR4-tropic HxB2 virus was replaced with the dual-tropic 89.6 viral strain. Using a recombinant vaccinia virus expressing 89.6 Env glycoprotein (vBD3) in a mouse challenge model, we observed that IL-21 plasmid produced sustained resistance to viral transmission when injected 5 days after DNA vaccination. Moreover, IL-21 in a synergistic manner with IL-15 expression vector augmented the vaccine-induced recall responses to the vBD3 challenge compared with those elicited by immunization in the presence of either cytokine alone. The synergistic combination of IL-21 and IL-15 plasmids promoted expansion of CD8+CD127+ memory T cell pools specific for a subdominant HLA-A2-restricted Env(121-129) epitope (KLTPLCVTL). Our results also show that coimmunization with IL-21 and IL-15 plasmid combination resulted in enhanced CD8+ T cell function that was partially independent of CD4+ T cell help in mediating protection against vBD3 challenge. Furthermore, the use of IL-21 and IL-15 genes was able to increase Ab-dependent cellular cytotoxicity and complement-dependent lysis of Env-expressing target cells through augmentation of Env-specific IgG Ab levels. These data indicate that the plasmid-delivered IL-21 and IL-15 can increase the magnitude of the response to DNA vaccines.  相似文献   

11.
Since cytotoxic T lymphocytes (CTLs) are critical for controlling human immunodeficiency virus type 1 (HIV-1) replication in infected individuals, candidate HIV-1 vaccines should elicit virus-specific CTL responses. In this report, we study the immune responses elicited in rhesus monkeys by a recombinant poxvirus vaccine and the degree of protection afforded against a pathogenic simian-human immunodeficiency virus SHIV-89.6P challenge. Immunization with recombinant modified vaccinia virus Ankara (MVA) vectors expressing SIVmac239 gag-pol and HIV-1 89.6 env elicited potent Gag-specific CTL responses but no detectable SHIV-specific neutralizing antibody (NAb) responses. Following intravenous SHIV-89.6P challenge, sham-vaccinated monkeys developed low-frequency CTL responses, low-titer NAb responses, rapid loss of CD4+ T lymphocytes, high-setpoint viral RNA levels, and significant clinical disease progression and death in half of the animals by day 168 postchallenge. In contrast, the recombinant MVA-vaccinated monkeys demonstrated high-frequency secondary CTL responses, high-titer secondary SHIV-89.6-specific NAb responses, rapid emergence of SHIV-89.6P-specific NAb responses, partial preservation of CD4+ T lymphocytes, reduced setpoint viral RNA levels, and no evidence of clinical disease or mortality by day 168 postchallenge. There was a statistically significant correlation between levels of vaccine-elicited CTL responses prior to challenge and the control of viremia following challenge. These results demonstrate that immune responses elicited by live recombinant vectors, although unable to provide sterilizing immunity, can control viremia and prevent disease progression following a highly pathogenic AIDS virus challenge.  相似文献   

12.
In an effort to develop a safe and effective vaccine against respiratory syncytial virus (RSV), we used Escherichia coli heat-labile toxin (LT), and LTK63 (an LT mutant devoid of ADP-ribosyltransferase activity) to elicit murine CD8(+) CTL responses to an intranasally codelivered CTL peptide from the second matrix protein (M2) of RSV. M2(82-90)-specific CD8(+) T cells were detected by IFN-gamma enzyme-linked immunospot and (51)Cr release assay in local and systemic lymph nodes, and their induction was dependent on the use of a mucosal adjuvant. CTL elicited by peptide immunization afforded protection against RSV challenge, but also enhanced weight loss. CTL-mediated viral clearance was not dependent on IFN-gamma since depletion using specific mAb during RSV challenge did not affect cellular recruitment or viral clearance. Depletion of IFN-gamma did, however, reduce the concentration of TNF detected in lung homogenates of challenged mice and largely prevented the weight loss associated with CTL-mediated viral clearance. Mice primed with the attachment glycoprotein (G) develop lung eosinophilia after intranasal RSV challenge. Mucosal peptide vaccination reduced pulmonary eosinophilia in mice subsequently immunized with G and challenged with RSV. These studies emphasize that protective and immunoregulatory CD8(+) CTL responses can be mucosally elicited using enterotoxin-based mucosal adjuvants but that resistance against viral infection may be accompanied by enhanced disease.  相似文献   

13.
An effective vaccine against the human immunodeficiency virus type 1 (HIV-1) will very likely have to elicit both cellular and humoral immune responses to control HIV-1 strains of diverse geographic and genetic origins. We have utilized a pathogenic chimeric simian-human immunodeficiency virus (SHIV) rhesus macaque animal model system to evaluate the protective efficacy of a vaccine regimen that uses recombinant vaccinia viruses expressing simian immunodeficiency virus (SIV) and HIV-1 structural proteins in combination with intact inactivated SIV and HIV-1 particles. Following virus challenge, control animals experienced a rapid and complete loss of CD4(+) T cells, sustained high viral loads, and developed clinical disease by 17 to 21 weeks. Although all of the vaccinated monkeys became infected, they displayed reduced postpeak viremia, had no significant loss of CD4(+) T cells, and have remained healthy for more than 15 months postinfection. CD8(+) T-cell and neutralizing antibody responses in vaccinated animals following challenge were demonstrable. Despite the control of disease, virus was readily isolated from the circulating peripheral blood mononuclear cells of all vaccinees at 22 weeks postchallenge, indicating that immunologic control was incomplete. Virus recovered from the animal with the lowest postchallenge viremia generated high virus loads and an irreversible loss of CD4(+) T-cell loss following its inoculation into a na?ve animal. These results indicate that despite the protection from SHIV-induced disease, the vaccinated animals still harbored replication-competent and pathogenic virus.  相似文献   

14.
Glycans on human immunodeficiency virus (HIV) envelope protein play an important role in infection and evasion from host immune responses. To examine the role of specific glycans, we introduced single or multiple mutations into potential N-linked glycosylation sites in hypervariable regions (V1 to V3) of the env gene of HIV type 1 (HIV-1) 89.6. Three mutants tested showed enhanced sensitivity to soluble CD4. Mutant N7 (N197Q) in the carboxy-terminal stem of the V2 loop showed the most pronounced increase in sensitivity to broadly neutralizing antibodies (NtAbs), including those targeting the CD4-binding site (IgG1b12) and the V3 loop (447-52D). This mutant is also sensitive to CD4-induced NtAb 17b in the absence of CD4. Unlike the wild-type (WT) Env, mutant N7 mediates CD4-independent infection in U87-CXCR4 cells. To study the immunogenicity of mutant Env, we immunized pig-tailed macaques with recombinant vaccinia viruses, one expressing SIVmac239 Gag-Pol and the other expressing HIV-1 89.6 Env gp160 in WT or mutant forms. Animals were boosted 14 to 16 months later with simian immunodeficiency virus gag DNA and the cognate gp140 protein before intrarectal challenge with SHIV89.6P-MN. Day-of-challenge sera from animals immunized with mutant N7 Env had significantly higher and broader neutralizing activities than sera from WT Env-immunized animals. Neutralizing activity was observed against SHIV89.6, SHIV89.6P-MN, HIV-1 SF162, and a panel of subtype B primary isolates. Compared to control animals, immunized animals showed significant reduction of plasma viral load and increased survival after challenge, which correlated with prechallenge NtAb titers. These results indicate the potential advantages for glycan modification in vaccine design, although the role of specific glycans requires further examination.  相似文献   

15.
A previous study using a Nef-defective human immunodeficiency virus type 1 (HIV-1) mutant suggested that Nef-mediated down-regulation of HLA class I on the infected cell surface affects the cytolytic activity of HIV-1-specific cytotoxic T-lymphocyte (CTL) clones for HIV-1-infected primary CD4(+) T cells. We confirmed this effect by using a nef-mutant HIV-1 strain (NL-M20A) that expresses a Nef protein which does not induce down-regulation of HLA class I molecules but is otherwise functional. HIV-1-specific CTL clones were not able to kill primary CD4(+) T cells infected with a Nef-positive HIV-1 strain (NL-432) but efficiently lysed CD4(+) T cells infected with NL-M20A. Interestingly, CTL clones stimulated with NL-432-infected CD4(+) T cells were able to produce cytokines, albeit at a lower level than when stimulated with NL-M20A-infected CD4(+) T cells. This indicates that Nef-mediated HLA class I down-regulation affects CTL cytokine production to a lesser extent than cytolytic activity. Replication of NL-432 was partially suppressed in a coculture of HIV-1-infected CD4(+) T cells and HIV-1-specific CTL clones, while replication of NL-M20A was completely suppressed. These results suggest that HIV-1-specific CD8(+) T cells are able to partially suppress the replication of HIV-1 through production of soluble HIV-1-suppressive factors such as chemokines and gamma interferon. These findings may account for the mechanism whereby HIV-1-specific CD8(+) T cells are able to partially but not completely control HIV-1 replication in vivo.  相似文献   

16.
Cytotoxic T lymphocytes play a central role in the control of persistent human CMV (HCMV) infection and reactivation. In healthy virus carriers, the specific CD8(+) CTL response is almost entirely directed against the virion tegument protein pp65 and/or the 72-kDa major immediate early protein, IE1. Studies that included a large panel of HCMV(+) donors suggested that immunorelevance of pp65 and IE1 was directly related with individual HLA haplotype difference. Nevertheless, there are no data on the incidence of HCMV natural polymorphism on virus-specific CTL responses. To assess the impact of IE1 polymorphism on CTL response, we have sequenced in 103 clinical isolates the DNA region corresponding to IE1(315-324), an immunodominant epitope presented by HLA-A*0201 molecules. Seven peptidic variants were found with extensive difference in their frequencies. The response of four HLA-A*0201-restricted anti-IE1 T lymphocyte clones, which were previously generated from one donor against autologous B lymphoblastoid cells expressing a recombinant clinical variant of IE1, was then evaluated using target cells loaded with mutant synthetic peptides or expressing rIE1 variants. One of four clones, which have been sorted 19 times among 22 clones targeted against IE1(315-324), recognized six of the seven tested variant epitopes. All three other clones showed distinct reactivity patterns to target cells loaded with the different mutant peptides or expressing IE1 variants. Therefore, in the HLA-A2 context, clonal expansions of anti-IE1 memory CTLs may confer a protection against HCMV successive infections and reactivations by killing cells presenting most of the naturally occurring IE1(315-324) epitope variants.  相似文献   

17.
Functional hepatitis B virus (HBV)-specific T cells are significantly diminished in individuals chronically infected with HBV compared to individuals with self-limiting HBV infection or those on anti-HBV therapy. In individuals infected with human immunodeficiency virus type 1 (HIV-1), coinfection with HBV is associated with an increased risk of worsening liver function following antiviral therapy and of more rapid HBV disease progression. Total HBV-specific T-cell responses in subjects with diverse genetic backgrounds were characterized by using a library of 15-mer peptides overlapping by 11 amino acids and spanning all HBV proteins. The magnitude and breadth of CD4(+) and CD8(+) T-cell responses to HBV in peripheral blood were examined by flow cytometry to detect gamma interferon production following stimulation with HBV peptide pools. Chronic HBV carriers (n = 34) were studied, including individuals never treated for HBV infection (n = 7), HBV-infected individuals receiving anti-HBV therapy (n = 13), and HIV-1-HBV-coinfected individuals receiving anti-HBV therapy (n = 14). CD4(+) and CD8(+) HBV-specific T-cell responses were more frequently detected and the CD8(+) T-cell responses were of greater magnitude and breadth in subjects on anti-HBV treatment than in untreated chronic HBV carriers. There was a significant inverse correlation between detection of a HBV-specific T-cell response and HBV viral load. HBV-specific CD4(+) and CD8(+) T-cell responses were significantly (fivefold) reduced compared with HIV-specific responses. Although, the frequency and breadth of HBV-specific CD8(+) T-cell responses were comparable in the monoinfected and HIV-1-HBV-coinfected groups, HBV-specific CD4(+) T-cell responses were significantly reduced in HIV-1-HBV-coinfected individuals. Therefore, HIV-1 infection has a significant and specific effect on HBV-specific T-cell immunity.  相似文献   

18.
A replication-competent rhabdovirus-based vector expressing human immunodeficiency virus type 1 (HIV-1) Gag protein was characterized on human cell lines and analyzed for the induction of a cellular immune response in mice. We previously described a rabies virus (RV) vaccine strain-based vector expressing HIV-1 gp160. The recombinant RV was able to induce strong humoral and cellular immune responses against the HIV-1 envelope protein in mice (M. J. Schnell et al., Proc. Natl. Acad. Sci. USA 97:3544-3549, 2000; J. P. McGettigan et al., J. Virol. 75:4430-4434, 2001). Recent research suggests that the HIV-1 Gag protein is another important target for cell-mediated host immune defense. Here we show that HIV-1 Gag can efficiently be expressed by RV on both human and nonhuman cell lines. Infection of HeLa cells with recombinant RV expressing HIV-1 Gag resulted in efficient expression of HIV-1 precursor protein p55 as indicated by both immunostaining and Western blotting. Moreover, HIV-1 p24 antigen capture enzyme-linked immunosorbent assay and electron microscopy showed efficient release of HIV-1 virus-like particles in addition to bullet-shaped RV particles in the supernatants of the infected cells. To initially screen the immunogenicity of this new vaccine vector, BALB/c mice received a single vaccination with the recombinant RV expressing HIV-1 Gag. Immunized mice developed a vigorous CD8(+) cytotoxic T-lymphocyte response against HIV-1 Gag. In addition, 26.8% of CD8(+) T cells from mice immunized with RV expressing HIV-1 Gag produced gamma interferon after challenge with a recombinant vaccinia virus expressing HIV-1 Gag. These results further confirm and extend the potency of RV-based vectors as a potential HIV-1 vaccine.  相似文献   

19.
Numerous studies now support that human immunodeficiency virus type 1 (HIV-1) evolution is influenced by immune selection pressure, with population studies showing an association between specific HLA alleles and mutations within defined cytotoxic T-lymphocyte epitopes. Here we combine sequence data and functional studies of CD8 T-cell responses to demonstrate that allele-specific immune pressures also select for mutations flanking CD8 epitopes that impair antigen processing. In persons expressing HLA-A3, we demonstrate consistent selection for a mutation in a C-terminal flanking residue of the normally immunodominant Gag KK9 epitope that prevents its processing and presentation, resulting in a rapid decline in the CD8 T-cell response. This single amino acid substitution also lies within a second HLA-A3-restricted epitope, with the mutation directly impairing recognition by CD8 T cells. Transmission of the mutation to subjects expressing HLA-A3 was shown to prevent the induction of normally immunodominant acute-phase responses to both epitopes. However, subsequent in vivo reversion of the mutation was coincident with delayed induction of new CD8 T-cell responses to both epitopes. These data demonstrate that mutations within the flanking region of an HIV-1 epitope can impair recognition by an established CD8 T-cell response and that transmission of these mutations alters the acute-phase CD8(+) T-cell response. Moreover, reversion of these mutations in the absence of the original immune pressure reveals the potential plasticity of immunologically selected evolutionary changes.  相似文献   

20.
Infection with Ebola virus causes a severe disease accompanied by high mortality rates, and there are no licensed vaccines or therapies available for human use. Filovirus vaccine research efforts still need to determine the roles of humoral and cell-mediated immune responses in protection from Ebola virus infection. Previous studies indicated that exposure to Ebola virus proteins expressed from packaged Venezuelan equine encephalitis virus replicons elicited protective immunity in mice and that antibody-mediated protection could only be demonstrated after vaccination against the glycoprotein. In this study, the murine CD8(+) T-cell responses to six Ebola virus proteins were examined. CD8(+) T cells specific for Ebola virus glycoprotein, nucleoprotein, and viral proteins (VP24, VP30, VP35, and VP40) were identified by intracellular cytokine assays using splenocytes from vaccinated mice. The cells were expanded by restimulation with peptides and demonstrated cytolytic activity. Adoptive transfer of the CD8(+) cytotoxic T cells protected filovirus na?ve mice from challenge with Ebola virus. These data support a role for CD8(+) cytotoxic T cells as part of a protective mechanism induced by vaccination against six Ebola virus proteins and provide additional evidence that cytotoxic T-cell responses can contribute to protection from filovirus infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号