首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Factors determining changes in species composition of arable field weed vegetation in the northeastern part of the Czech Republic were studied. Gradsect sampling, i.e. a priori stratified selection of sampling sites, was used for the field research. Using this method, a data set of 174 vegetation plots, covering a whole range of basic environmental characteristics in the study area, was compiled in 2001–2003. A set of environmental variables (altitude, annual precipitation, mean annual temperature, soil type, soil pH and crop type) together with date of sampling was obtained for each plot. Ordination methods were used to determine the effects of variables on arable weed composition. For each variable, the gross and net effect on weed species composition were calculated. All variables considered in this study had a significant effect on weed species composition and explained 7.25% of the total variation in species data. Major changes in weed species composition in the study area were associated with different crop types. The second most important gradient in the variability of weed vegetation in the study area was associated with altitudinal and climatic changes followed by seasonal changes and different soil types and pH. Our results show that on a regional scale, the relative importance of different crop types and their associated management on changes in arable weed species composition is higher than the relative importance of climatic variables. The relative importance of climatic variables decreases with their decreasing length of gradient.  相似文献   

2.
Question: What are the main broad‐scale spatial and temporal gradients in species composition of arable weed communities and what are their underlying environmental variables? Location: Czech Republic and Slovakia. Methods: A selection of 2653 geographically stratified relevés sampled between 1954–2003 was analysed with direct and indirect ordination, regression analysis and analysis of beta diversity. Results: Major changes in weed species composition were associated with a complex gradient of increasing altitude and precipitation and decreasing temperature and base status of the soils. The proportion of hemicryptophytes increased, therophytes and alien species decreased, species richness increased and beta diversity decreased with increasing altitude. The second most important gradient of weed species composition was associated with seasonal changes, resulting in striking differences between weed communities developed in spring and summer. In summer, weed communities tended to have more neophytes, higher species richness and higher beta diversity. The third gradient reflected long‐term changes in weed vegetation over past decades. The proportion of hemicryptophytes and neophytes increased, while therophytes and archaeophytes decreased, as did species richness over time. The fourth gradient was due to crop plants. Cultures whose management involves less disturbances, such as cereals, harboured less geophytes and neophytes, and had higher species richness but lower beta diversity than frequently disturbed cultures, such as root crops. Conclusions: Species composition of Central European weed vegetation is mainly influenced by broad‐scale climatic and edaphic factors, but its variations due to seasonal dynamics and long‐term changes in agricultural management are also striking. Crop plants and crop‐specific management affect it to a lesser, but still significant extent.  相似文献   

3.
Factors determining the invasibility of different types of anthropogenic vegetation were studied in the Czech Republic. A data set of 3420 vegetation plots recorded between 1945 and 2005, containing 913 species, was used. A set of climatic variables (mean annual temperature and precipitation, together with elevation), propagule pressure (substituted by human population density) and local habitat conditions (substituted by values of CSR life strategies and Ellenberg indicator values of native species) was obtained for each plot. All species were classified as native, archaeophytes (i.e. alien species introduced before 1500), and neophytes (i.e. aliens introduced after 1500) and their relative proportion was calculated for each plot. Regression tree models were used to determine the ecological characteristics of the most invasible man-made habitats in the Czech Republic. The plots contained on average 31.9% archaeophytes and 7.3% neophytes. Correlation between the proportions of archaeophytes and neophytes was positive and significant. Both archaeophytes and neophytes were found predominantly in strongly disturbed habitats with a high nutrient supply located at low elevations in warmer climatic areas of the Czech Republic. Archaeophytes are more influenced by local habitat conditions and preferentially colonize sunny and dry man-made habitats with higher soil reaction. Neophytes have no special preferences for local habitat conditions and their highest proportion was found mainly in disturbed habitats at low elevations. Our results show that for anthropogenic vegetation in the Czech Republic, ecological and habitat characteristics are more important factors for plant invasions than different land use in the surrounding area.  相似文献   

4.
This short note adds to earlier attempts at identifying arable weeds on late Pleistocene/early Holocene sites in the Near East. Nineteen potential arable weed taxa that have no known use were selected. The occurrence of these taxa at sites with morphologically wild cereals was compared to sites with morphologically domestic cereals. The presumed arable weed taxa were as common on three PPNA (Pre Pottery Neolithic A) sites without domestication as they were on Middle PPNB (Pre Pottery Neolithic B) sites with domestication, which lends support to arguments for pre-domestic cultivation at the former sites. Arable weed taxa were less common at Natufian sites but their presence raises the question of whether they originated in cultivated fields or were the ancestors of weeds gathered accidentally alongside wild cereals in their natural habitat.  相似文献   

5.
Reconstruction of crop sowing time and cultivation intensity, based on arable weed ecology, can resolve archaeological questions surrounding land use and cycles of routine activity, but crop processing may introduce systematic ecological biases in the arable weeds represented in products and by-products. Based on previous ethnoarchaeological work, there is a predicted bias against indicators of spring sowing and intensive cultivation in fine sieve products (and a corresponding over-representation of such species in by-products). Recent work on modern weed floras using functional weed ecology has identified distinctive functional attributes associated with different sowing regimes and cultivation intensity levels. Evaluation of the predicted biases using functional attribute data for modern weed survey studies of different sowing regimes (in Germany) and cultivation intensity levels (in Greece) suggests that there is a likely bias against spring sowing indicators in fine sieve products but not (apparently) against intensive cultivation indicators. An archaeological case study is presented in order to illustrate how bias relating to crop sowing time may be identified and interpreted.  相似文献   

6.
Populations of European hares (Lepus europaeus) have experienced a dramatic decline throughout Europe in recent decades. European hares are assumed to prefer weeds over arable crops, and weed abundance was reduced by the intensification of agriculture. Therefore, modern agriculture has been blamed as a major factor affecting European hare populations. However, it is questionable whether European hares select weeds at all, as previous studies had major methodological limitations. By comparing availability and use of plants with Chesson’s Electivity Index, we investigated whether the European hare actually feeds selectively on different plants in arable land. Food availability and use were dominated by cultivated crops (e.g. winter wheat, spring barley and sugar beet). Diet selection analysis revealed that in autumn and winter, European hares predominantly preferred cultivated crops (winter wheat) and food items provided by hunters (tubers of sugar beet and carrot). In spring and summer, apart from soy, only weeds (e.g. clover and corn poppy) were positively selected, especially after cereal crops were harvested. We suggest that the decline in European hare populations throughout Europe was facilitated by the decrease in weed abundance. Wildlife-friendly set-asides in arable land have the potential to reconcile the European Union’s Common Agricultural Policy with wildlife conservation.  相似文献   

7.
This paper reports on the current situation in weed vegetation composition on arable land in selected areas of the Czech Republic, assessment of influence of selected variables: applied management systems (conventional, organic), crops (winter cereals, root crops) and altitude and ranking of the importance of these particular factors. A phytocoenological survey was conducted from 2006 to 2008 during a vegetation period using relevés that were 100 m2 in size, placed in the central part of fields. In total, 202 relevés of agricultural vegetation were recorded. The combined environmental variables explained 10.6% of the variability. Based on the pCCAs, the highest effect was found at altitude, which explains 5.1% of the species composition variability. The second and third most significant factors are crop and management system, which explain 3.3% and 1.8% of the variability, respectively. The lowlands were generally characterised by the thermophilous summer annual weed species. The higher altitudes were populated by species that are typical for colder areas and poor, humid, and acidic soil types, such as cambisoil.  相似文献   

8.
Numerical classification of 2653 geographically stratified relevés of weed vegetation from the Czech and Slovak Republics was performed with cluster analysis. Diagnostic species were determined for each of the seven main clusters using statistical measures of fidelity. The classification reflected clear distinctions between lowland (mostly calcicole) and highland (mostly calcifuge) sites, spring and summer phenological stages, and cereals and root crops. The results of the cluster analysis were compared with traditional phytosociological units. Two clusters corresponded to calcifuge weed vegetation of theScleranthion annui alliance; one cluster represented the vegetation of root crops on moist soils of theOxalidion europaeae alliance; one cluster contained thermophilous weed vegetation of theCaucalidion lappulae alliance; two clusters included weed vegetation of root crops and of stubble fields, which can be assigned to theCaucalidion, Panico-Setarion,Veronico-Euphorbion andEragrostion alliances; one cluster included vernal weed vegetation in little disturbed habitats of theCaucalidion lappulae andScleranthion annui alliances. Our analysis did not support the concept of theSherardion andVeronico-Taraxacion alliances, which were included in earlier overviews of the vegetation units of the Czech Republic and Slovakia.  相似文献   

9.
While studies have explored how habitat amount drives weed assemblages in agroecosystems, knowledge remains limited of the effects of habitat connectivity. The response-effect trait framework provides insights into the mechanisms underpinning the relationship between landscape structure and the taxonomic diversity and abundance of weed assemblages. This study evaluated how habitat connectivity and habitat amount affect weed diversity and abundance in winter cereal fields, and whether these effects are driven by the functional composition of weed assemblages. We sampled weeds in 27 winter cereal fields. We measured habitat connectivity and habitat amount provided by wooded, grassland and cropland elements. We selected five traits related to the dispersal, establishment, and competitive abilities of weed species likely to respond to landscape structure: seed number per plant, type of reproduction, seed dry mass, plant vegetative height and seed germination rate. The functional composition of weed assemblages was assessed using community weighted mean trait values. Weed diversity and abundance were used as proxies of weed management. The taxonomic approach did not reveal any effect of landscape structure on weed diversity and abundance. Only the grassland elements that contributed to habitat connectivity, and to a lesser extent to habitat amount, drove the functional composition of weed assemblages. High habitat amount favoured species with many seeds, while high habitat connectivity favoured species with fewer seeds, a higher ability to reproduce vegetatively and higher seed germination rates. In turn, higher seed germination rates increased weed evenness and reduced weed abundance. Some of these relationships were influenced by the presence of rare species. Overall, high connectivity provided by grassland elements increases weed evenness and reduces weed abundance by shaping weed functional composition. Our study suggests that land-use planning policies that enhance the connectivity provided by grassland elements could be considered as a weed management strategy reconciling ecology and agronomy.  相似文献   

10.
Capsule Expert‐based classification of bird species as habitat specialists and as generalists agrees with objective measures of species’ habitat requirements based on large‐scale monitoring data.

Aims To compare habitat specialization of 137 common bird species breeding in the Czech Republic using three different measures and to test their relationships to species’ abundance and habitat associations.

Methods Data on bird abundance and surveyed habitats were collected through a standardized monitoring scheme of common breeding species in the Czech Republic. From these data we calculated a quantitative species specialization index (SSI). Canonical correspondence analysis (CCA) was applied to calculate species’ habitat niche breadth and the level of association of each species to the main habitats. A panel of 11 local bird experts classified each species as habitat generalist or habitat specialist.

Results Species classified as habitat specialists by expert opinion showed higher habitat specialization according to the SSI, as well as according to CCA‐based habitat niche breadth. These species were also more closely associated with one of the main habitat types. These relationships were significant even after controlling for abundance.

Conclusions As expert opinion accords with the level of species’ habitat specialization expressed using two quantitative objective measures, we suggest that these characteristics reflect real interspecific variation in the breadth of habitat requirements in birds. Interspecific differences in habitat specialization are not caused solely by the variability in abundance among species.  相似文献   

11.
Local abiotic filters and regional processes (i.e., regional pools of species that are dispersal-limited to varying degrees) interactively structure the development of vegetation in human-disturbed habitats, yet their relative contributions to this process are still to be determined. In this study conducted in the Czech Republic, we related plant species diversity and composition of 10 fly ash and 7 mine tailings to local edaphic conditions, and to vegetation from a 100-m perimeter (regional species pool). We found that the species richness and composition on the tailings were significantly associated with diversity and composition of vegetation in the surroundings, but not with the local edaphic conditions. Species from adjacent vegetation that were more abundant and those producing lighter seeds were more likely to establish on the tailings. The same characteristics also enhanced species abundance on the tailings, but the two predictors explained less than 10% in variation of establishment success or of species abundance. A non-significant relationship between species number and tailings size, but a significant association between diversity and time of vegetation development indicate that the study systems are still far from equilibrium. Our study provides evidence for a strong effect of regional processes, with a limited influence of measured edaphic conditions on plant communities developing de novo. It also highlights the necessity to consider the broader spatial context in the analysis of vegetation succession in human-disturbed habitats.  相似文献   

12.
I examined the effect of riparian forest restoration on plant abundance and diversity, including weed species, on agricultural lands along the Sacramento River in California (United States). Riparian forest restoration on the Sacramento River is occurring on a large‐scale, with a goal of restoring approximately 80,000 ha over 160 km of the river. In multiuse habitats, such as the Sacramento River, effects of adjoining habitat types and movement of species across these habitats can have important management implications in terms of landscape‐scale patterns of species distributions. Increased numbers of pest animals and weeds on agricultural lands associated with restored habitats could have negative economic impacts, and in turn affect support for restoration of natural areas. In order to determine the distribution and abundance of weeds associated with large‐scale restoration, I collected seed bank soil samples on orchards between 0 and 5.6 km from adjacent restored riparian, remnant riparian, and agricultural habitats. I determined the abundance, species richness, and dispersal mode of plant species in the seed bank and analyzed these variables in terms of adjacent habitat type and age of restored habitat. I found that agricultural weed species had higher densities at the edge of restored riparian habitat and that native plants had higher densities adjacent to remnant riparian habitat. Weed seed abundance increased significantly on walnut farms adjacent to restored habitat with time since restored. I supply strong empirical evidence that large areas of natural and restored habitats do not lead to a greater penetration of weed species into agricultural areas, but rather that weed penetration is both temporally and spatially limited.  相似文献   

13.
Processes that drive spatial patterning among plant species are of ongoing interest, mostly because these patterns have implications for the structure and function of plant communities. We investigated the spatial strategies of weeds focusing on how spatial patterns of weeds are mediated by agricultural landscape complexity and species life-history attributes. We quantified the spatial distribution of 110 weed species using data collected in ten landscapes in central western France along a gradient of landscape complexity, from structurally complex (numerous small fields) to structurally simple (few large fields). We then related differences observed in species’ distribution patterns to ecological attributes of species for resource exploitation and dispersion. Our study reveals that weeds were spatially aggregated at the landscape scale. Their spatial patterns are related to the frequency of occurrence of weeds but surprisingly not directly to the seed dispersal type, nor to the degree of habitat specialization. We show that landscape complexity had no direct effect on the spatial patterning of weeds but through interactions with species attributes. Our results point to the importance of interactions between landscape complexity and species attributes in the spatial patterning of weed species even in intensively managed fields. These patterns appear to be a consequence of the spatial arrangement of landscape elements as well as the result of landscape filtering on species attributes.  相似文献   

14.
Aim I examine the relationship between geographical range size and three variables (body size, an index of habitat breadth, and an index of local abundance) within a phylogenetic framework in North American species of suckers and sunfishes. Location North America Methods Regressions after independent contrasts of geographical range size, body size, habitat breadth, and local abundance. Results Species with large range sizes tend to be larger-bodied, be more locally abundant, and have higher habitat breadths. Character reconstructions support the prediction that variables associated with rarity (small geographical range size, low local abundance, low niche breadth, and large body size) evolve in unison, although large body size was associated with the opposite traits in these taxa. Gaston & Blackburn (1996a) suggested using visual identification of the lower boundary of the geographical range-body size relationship to identify extinction-prone species; this resulted in thirteen species that are potentially extinction-prone. Main conclusions Similar evolutionary mechanisms appear to operate on body size and other variables related to rarity, even in distantly related taxa.  相似文献   

15.
Abstract Surveying species that are present in low numbers is difficult because often the survey fails to locate any individuals. One strategy to improve the sample design is to survey the site repeatedly. With repeat surveys the abundance of the target species, and hence likelihood of detection, may change between visits. We present a model for deciding on the maximum surveillance interval between repeat surveys so that there is a high probability of detecting the species. We use as an example surveys for new weed infestations and model the chance of detecting the weed before control costs reach a threshold. The maximum surveillance interval depends on the rate of weed growth, the ability to detect the weed, and the cost of controlling the weed. Typically weed growth rates are high. Fast growing plants need to be detected early before they spread, but often weeds are difficult to detect when young and still comparatively cheap to control. Results from the model to determine maximum surveillance intervals are given for five broad habitat types and seven weed types. Surveillance intervals ranged from 1 to 10 years. Longer intervals are appropriate when searching for weeds with slower growth rates, that are easier to detect, and those that can be controlled cheaply.  相似文献   

16.
Research into Plant Invasions in a Crossroads Region: History and Focus   总被引:1,自引:0,他引:1  
The Czech Republic is a central European country whose geographical location, natural conditions, history of human settlement, and present land-use management make it relatively prone to plant invasions, hence it represents a convenient model for their study. Research in plant invasions, which date to the late 19th century, is reviewed in the present paper. A long-term floristic tradition allowed for the accumulation of a large body of floristic data on alien plants. During the 1960s–1970s, the main research focus was on their distribution. In this period, attempts were also made to predict potential invasiveness of weeds of arable land. The success rate of this prediction was about 39%. Considerable effort was put into a detailed classification of human-accompanying plants and the terminology associated with the issue. There is a high level of taxonomic research conducted in the country, and the new Flora of the Czech Republic treats the immigration status of taxa with reasonable care and detail. A complete, serious catalogue of the alien plants of the country has been published recently: there are currently 1378 alien plants (33.4% of the total flora). The core of present research in plant invasions is in ecological, biological, and biogeographical studies, focussed on (i) the history of invasion of particular species since their introduction, (ii) the role and importance of alien species in vegetation, including their participation in succession, and (iii) the major invasive species of the Czech flora and comparison of congeners. Reynoutria spp., Heracleum mantegazzianum, Oenothera spp., Pinus strobus, and Bidens frondosa are among the taxa most intensively studied in recent time. A complete list of 69 invasive plants in the Czech flora introduced after the year 1500 [following the definition of Richardson et al. (2000a) Diversity and Distributions 6: 93–107] is given. The available legal instruments relevant to the issue are reviewed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Effects of genetically modified herbicide-tolerant (GMHT) and conventional crop management on invertebrate trophic groups (herbivores, detritivores, pollinators, predators and parasitoids) were compared in beet, maize and spring oilseed rape sites throughout the UK. These trophic groups were influenced by season, crop species and GMHT management. Many groups increased twofold to fivefold in abundance between early and late summer, and differed up to 10-fold between crop species. GMHT management superimposed relatively small (less than twofold), but consistent, shifts in plant and insect abundance, the extent and direction of these effects being dependent on the relative efficacies of comparable conventional herbicide regimes. In general, the biomass of weeds was reduced under GMHT management in beet and spring oilseed rape and increased in maize compared with conventional treatments. This change in resource availability had knock-on effects on higher trophic levels except in spring oilseed rape where herbivore resource was greatest. Herbivores, pollinators and natural enemies changed in abundance in the same directions as their resources, and detritivores increased in abundance under GMHT management across all crops. The result of the later herbicide application in GMHT treatments was a shift in resource from the herbivore food web to the detritivore food web. The Farm Scale Evaluations have demonstrated over 3 years and throughout the UK that herbivores, detritivores and many of their predators and parasitoids in arable systems are sensitive to the changes in weed communities that result from the introduction of new herbicide regimes.  相似文献   

18.
The extreme habitats of dry grasslands are suitable for investigations of the response of vegetation to local climate changes. The impact of weather variability on the dynamics of a plant community in a dry grassland was studied. Correlations were found between different functional groups of species and individual species and weather variability. During a 9-year study in five nature reserves in Prague (Czech Republic), the following responses of dry grassland vegetation to weather conditions were observed: (i) wetter conditions, especially in the winter, affected the dominance and species richness of perennial grass species and the decline of rosette plants; (ii) the year-to-year higher temperatures in the winter produced a decline in the dominance of short graminoids and creeping forbs; (iii) spring drought adversely impacted the overall abundance, especially the abundance of dicotyledonous species, and the species richness. However, these relationships may be manifested in different ways in different locations, and in some cases the vegetation of different locations may respond to weather conditions in opposite manners.  相似文献   

19.
A large proportion of the land surface area of Great Britain (GB) is used for arable agriculture. Due to changes in farm management practices over the last 50 years, there have been marked declines in the abundance of arable wildlife groups of conservation importance, including weeds, invertebrates and birds. Here we ask whether changes in weed species composition, driven by changes in management, such as a change in crop or a modification in herbicide regime, might be expected to lead to changes in the species compositions of other wildlife groups, including invertebrates. Using multivariate analyses, on data from eight crop and herbicide management groups sampled across 266 arable fields, we show that the weed composition changes with the crop and herbicide management adopted and the invertebrate composition changes with the crop grown. We conclude that each conventional crop sampled had a unique composition of weeds and invertebrates, and expect this to be true for all conventional arable crops. Changes in weed species composition, driven by changes in crop or herbicide management, will lead to changes in the compositions of invertebrates, and possibly other wildlife groups. However, these changes will probably be buffered by the effect of functional redundancy, the crop and dispersal. Handling editor: Gimme Walter.  相似文献   

20.

Background and Aims

Both regional and local plant abundances are driven by species'' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden.

Methods

Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates.

Key Results

After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level.

Conclusions

Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden performance parameters provide a practical approach to assessing the roles of clonal growth morphological traits (and LHS traits) for large sets of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号