首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The sulphydryl reagent thimerosal (50 microM) released Ca2+ from a non-mitochondrial intracellular Ca2+ pool in a dose-dependent manner in permeabilized insulin-secreting RINm5F cells. This release was reversed after addition of the reducing agent dithiothreitol. Ca2+ was released from an Ins(1,4,5)P3-insensitive pool, since release was observed even after depletion of the Ins(1,4,5)P3-sensitive pool by a supramaximal dose of Ins(2,4,5)P3 or thapsigargin. The Ins(1,4,5)P3-sensitive pool remained essentially unaltered by thimerosal. Thimerosal-induced Ca2+ release was potentiated by caffeine. These findings suggest the existence of Ca(2+)-induced Ca2+ release also in insulin-secreting cells.  相似文献   

2.
Elevation in cytoplasmic free Ca2+ concentration ([Ca2+]i) is a common mechanism in signaling events. An increased [Ca2+]i induced by GH, has been observed in relation to different cellular events. Little is known about the mechanism underlying the GH effect on Ca2+ handling. We have studied the molecular mechanisms underlying GH-induced rise in [Ca2+]i in BRIN-BD11 insulin-secreting cells. GH (500 ng/ml, 22 nm) induced a sustained increase in [Ca2+]i. The effect of GH on [Ca2+]i was prevented in the absence of extracellular Ca2+ and was inhibited by the ATP-sensitive K(+)-channel opener diazoxide and the voltage-dependent Ca(2+)-channel inhibitor nifedipine. However, GH failed to induce any changes in Ca2+ current and membrane potential, evaluated by patch-clamp recordings and by using voltage-sensitive dyes. When the intracellular Ca2+ pools had been depleted using the Ca(2+)-ATPase inhibitor thapsigargin, the effect of GH was inhibited. In addition, GH-stimulated rise in [Ca2+]i was completely abolished by ruthenium red, an inhibitor of mitochondrial Ca2+ transport, and caffeine. GH induced tyrosine phosphorylation of ryanodine receptors. The effect of GH on [Ca2+]i was completely blocked by the tyrosine kinase inhibitors genistein and lavendustin A. Interestingly, treatment of the cells with GH significantly enhanced K(+)-induced rise in [Ca2+]i. Hence, GH-stimulated rise in [Ca2+]i is dependent on extracellular Ca2+ and is mediated by Ca(2+)-induced Ca2+ release. This process is mediated by tyrosine phosphorylation of ryanodine receptors and may play a crucial role in physiological Ca2+ handling in insulin-secreting cells.  相似文献   

3.
Different intracellular pools participate in generating Ca(2+) signals in neuronal cells and in shaping their spatio-temporal patterns. They include the endoplasmic reticulum (endowed with different classes of Ca(2+) channels, with distinct functional properties and highly defined expression patterns in the brain), the Golgi apparatus, and the mitochondria. The release of Ca(2+) from intracellular pools plays an important role in controlling processes such as neurite outgrowth, synaptic plasticity, secretion and neurodegeneration.  相似文献   

4.
The Golgi apparatus plays a central role in lipid and protein post-translational modification and sorting. Morphologically the organelle is heterogeneous and it is possible to distinguish stacks of flat cysternae (cis- and medial Golgi), tubular-reticular networks and vesicles (trans-Golgi). These morphological differences parallel a distinct functionality with a selective distribution and complementary roles of the enzymes found in the different compartments.The Golgi apparatus has been also shown to be involved in Ca2+ signalling: it is indeed endowed with Ca2+ pumps, Ca2+ release channels and Ca2+ binding proteins and is thought to participate in determining the spatio-temporal complexity of the Ca2+ signal within the cell, though this role is still poorly understood.Recently, it has been demonstrated that the organelle is heterogeneous in terms of Ca2+ handling and selective reduction of Ca2+ concentration, both in vitro and in a genetic human disease, within one of its sub-compartment results in alterations of protein trafficking within the secretory pathway and of the entire Golgi morphology.In this paper we review the available information on the Ca2+ toolkit within the Golgi, its heterogeneous distribution in the organelle sub-compartments and discuss the implications of these characteristics for the physiopathology of the Golgi apparatus.  相似文献   

5.
The adjustment of Ca2+ entry in cardiac cells is critical to the generation of the force necessary for the myocardium to meet the physiological needs of the body. In this review, we present the concept that Ca2+ can promote its own entry through Ca2+ channels by different mechanisms. We refer to it under the general term of ‘Ca2+-induced Ca2+ entry’ (CICE). We review short-term mechanisms (usually termed facilitation) that involve a stimulating effect of Ca2+ on the L-type Ca2+ current (ICa-L) amplitude (positive staircase) or a lessening of Ca2+-dependent inactivation of ICa-L. This latter effect is related to the amount of Ca2+ released by ryanodine receptors (RyR2) of the sarcoplasmic reticulum (SR). Both effects are involved in the control of action potential (AP) duration. We also describe a long-term mechanism based on Ca2+-dependent down-regulation of the Kv4.2 gene controlling functional expression of the repolarizing transient outward K+ current (Ito) and, thereby, AP duration. This mechanism, which might occur very early during the onset of hypertrophy, enhances Ca2+ entry by maintaining Ca2+ channel activation during prolonged AP. Both Ca2+-dependent facilitation and Ca2+-dependent down-regulation of Ito expression favour AP prolongation and, thereby, promote sustained voltage-gated Ca2+ entry used to enhance excitation–contraction (EC) coupling (with no change in the density of Ca2+ channels per se). These self-maintaining mechanisms of Ca2+ entry have significant functions in remodelling Ca2+ signalling during the cardiac AP. They might support a prominent role of Ca2+ channels in the establishment and progression of abnormal Ca2+ signalling during cardiac hypertrophy and congestive heart failure.  相似文献   

6.
The association of L-type Ca(2+) channels to the secretory granules and its functional significance to secretion was investigated in mouse pancreatic B cells. Nonstationary fluctuation analysis showed that the B cell is equipped with <500 alpha1(C) L-type Ca(2+) channels, corresponding to a Ca(2+) channel density of 0.9 channels per microm(2). Analysis of the kinetics of exocytosis during voltage-clamp depolarizations revealed an early component that reached a peak rate of 1.1 pFs(-1) (approximately 650 granules/s) 25 ms after onset of the pulse and is completed within approximately 100 ms. This component represents a subset of approximately 60 granules situated in the immediate vicinity of the L-type Ca(2+) channels, corresponding to approximately 10% of the readily releasable pool of granules. Experiments involving photorelease of caged Ca(2+) revealed that the rate of exocytosis was half-maximal at a cytoplasmic Ca(2+) concentration of 17 microM, and concentrations >25 microM are required to attain the rate of exocytosis observed during voltage-clamp depolarizations. The rapid component of exocytosis was not affected by inclusion of millimolar concentrations of the Ca(2+) buffer EGTA but abolished by addition of exogenous L(C753-893), the 140 amino acids of the cytoplasmic loop connecting the 2(nd) and 3(rd) transmembrane region of the alpha1(C) L-type Ca(2+) channel, which has been proposed to tether the Ca(2+) channels to the secretory granules. In keeping with the idea that secretion is determined by Ca(2+) influx through individual Ca(2+) channels, exocytosis triggered by brief (15 ms) depolarizations was enhanced 2.5-fold by the Ca(2+) channel agonist BayK8644 and 3.5-fold by elevating extracellular Ca(2+) from 2.6 to 10 mM. Recordings of single Ca(2+) channel activity revealed that patches predominantly contained no channels or many active channels. We propose that several Ca(2+) channels associate with a single granule thus forming a functional unit. This arrangement is important in a cell with few Ca(2+) channels as it ensures maximum usage of the Ca(2+) entering the cell while minimizing the influence of stochastic variations of the Ca(2+) channel activity.  相似文献   

7.
Insulin secretion from glucose-stimulated pancreatic beta-cells is oscillatory, and this is thought to result from oscillations in glucose metabolism. One of the primary metabolic stimulus-secretion coupling factors is the ATP/ADP ratio, which can oscillate as a result of oscillations in glycolysis. Using a novel multiwell culture plate system, we examined oscillations in insulin release and the ATP/ADP ratio in the clonal insulin-secreting cell lines HIT T-15 and INS-1. Insulin secretion from HIT cells grown in multiwell plates oscillated with a period of 4 min, similar to that seen previously in perifusion experiments. Oscillations in the ATP/ADP ratio in cells grown under the same conditions also occurred with a period of 4 min, as did oscillations in [Ca(2+)](i) monitored by fluorescence microscopy. In INS-1 cells oscillations in insulin secretion, the ATP/ADP ratio, and [Ca(2+)](i) were also seen, but with a shorter period of about 1.5 min. These observations of oscillations in the ATP/ADP ratio are consistent with their proposed role in driving the oscillations in [Ca(2+)](i) and insulin secretion. Furthermore, these data show that, at least in the clonal beta-cell lines, cell contact or even circulatory connection is not necessary for synchronous oscillations induced by a rise in glucose.  相似文献   

8.
Experiments were designed to differentiate the mechanisms of bradykinin receptors mediating the changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in canine cultured corneal epithelial cells (CECs). Bradykinin and Lys-bradykinin caused an initial transient peak of [Ca(2+)](i) in a concentration-dependent manner, with half-maximal stimulation (pEC(50)) obtained at 6.9 and 7.1, respectively. Pretreatment of CECs with pertussis toxin (PTX) or cholera toxin (CTX) for 24 h did not affect the bradykinin-induced [Ca(2+)](i) changes. Application of Ca(2+) channel blockers, diltiazem and Ni(2+), inhibited the bradykinin-induced Ca(2+) mobilization, indicating that Ca(2+) influx was required for the bradykinin-induced responses. Addition of thapsigargin (TG), which is known to deplete intracellular Ca(2+) stores, transiently increased [Ca(2+)](i) in Ca(2+)-free buffer, and subsequently induced Ca(2+) influx when Ca(2+) was readded to this buffer. Pretreatment of CECs with TG completely abolished bradykinin-induced initial transient [Ca(2+)](i), but had slight effect on bradykinin-induced Ca(2+) influx. Pretreatment of CECs with 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF96365) and 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) inhibited the bradykinin-induced Ca(2+) release and Ca(2+) influx, consistent with the inhibition of receptor-gated Ca(2+) channels and phospholipase C (PLC) in CECs, respectively. These results demonstrate that bradykinin directly stimulates B(2) receptors and subsequently Ca(2+) mobilization via a PTX-insensitive G protein in canine CECs. These results suggest that bradykinin-induced Ca(2+) influx into the cells is not due to depletion of these Ca(2+) stores, as prior depletion of these pools by TG has no effect on the bradykinin-induced Ca(2+) influx that is dependent on extracellular Ca(2+) in CECs.  相似文献   

9.
Traynor D  Milne JL  Insall RH  Kay RR 《The EMBO journal》2000,19(17):4846-4854
Dictyostelium cells can move rapidly towards a source of cyclic-AMP (cAMP). This chemoattractant is detected by G-protein-linked receptors, which trigger a signalling cascade including a rapid influx of Ca(2+). We have disrupted an inositol 1,4,5-trisphosphate (InsP(3)) receptor-like gene, iplA, to produce null cells in which Ca(2+) entry in response to chemoattractants is abolished, as is the normal increase in free cytosolic Ca(2+) ([Ca(2+)](c)) that follows chemotactic stimulation. However, the resting [Ca(2+)](c) is similar to wild type. This mutant provides a test for the role of Ca(2+) influx in both chemotaxis and the signalling cascade that controls it. The production of cyclic-GMP and cAMP, and the activation of the MAP kinase, DdERK2, triggered from the cAMP receptor, are little perturbed in the mutant; mobilization of actin into the cytoskeleton also follows similar kinetics to wild type. Mutant cells chemotax efficiently towards cAMP or folic acid and their sensitivity to cAMP is similar to wild type. Finally, they move at similar speeds to wild-type cells, with or without chemoattractant. We conclude that Ca(2+) signalling is not necessary for chemotaxis to cAMP.  相似文献   

10.
Pancreatic acinar cells possess a very large Ca2+ store in the endoplasmic reticulum, but also have extensive acidic Ca2+ stores. Whereas the endoplasmic reticulum is principally located in the baso-lateral part of the cells, although with extensions into the granular area, the acidic stores are exclusively present in the apical part. The two types of stores can be differentiated pharmacologically because the endoplasmic reticulum accumulates Ca2+ via SERCA pumps, whereas the acidic pools require functional vacuolar H+ pumps in order to maintain a high intra-organellar Ca2+ concentration. The human disease acute pancreatitis is initiated by trypsinogen activation in the apical pole and this is mostly due to either complications arising from gall bladder stones or excessive alcohol consumption. Attention has therefore been focussed on assessing the acute effects of bile acids as well as alcohol metabolites. The evidence accumulated so far indicates that bile acids and fatty acid ethyl esters - the non-oxidative products of alcohol and fatty acids - exert their pathological effects primarily by excessive Ca2+ release from the acidic stores. This occurs by opening of the very same release channels that are also responsible for normal stimulus-secretion coupling, namely inositol trisphosphate and ryanodine receptors. The inositol trisphosphate receptors are of particular importance and the results of gene deletion experiments indicate that the fatty acid ethyl esters mainly utilize sub-types 2 and 3.  相似文献   

11.
The secretory response of the intact islet is greater than the response of individual beta-cells in isolation, and functional coupling between cells is critical in insulin release. The changes in intracellular Ca(2+)([Ca(2+)](i)) which initiate insulin secretory responses are synchronized between groups of cells within the islet, and gap-junctions are thought to play a central role in coordinating signalling events. We have used the MIN6 insulin-secreting cell line, to examine whether uncoupling gap-junctions alters the synchronicity of nutrient- and non-nutrient-evoked Ca(2+)oscillations, or affects insulin secretion. MIN6 cells express mRNA species that can be amplified using PCR primers for connexin 36. A commonly used gap-junctional inhibitor, heptanol, inhibited glucose- and tolbutamide-induced Ca(2+)-oscillations to basal levels in MIN6 cell clusters at concentrations of 0.5 mM and greater, and it had similar effects in pseudoislets when used at 2.5 mM. Lower heptanol concentrations altered the frequency of Ca(2+)transients without affecting their synchronicity, in both monolayers and pseudoislets. Heptanol also had effects on insulin secretion from MIN6 pseudoislets such that 1 mM enhanced secretion while 2.5 mM was inhibitory. These data suggest that heptanol has multiple effects in pancreatic beta-cells, none of which appears to be related to uncoupling of synchronicity of Ca(2+)signalling between cells. A second gap-junction uncoupler, 18 alpha-glycyrrhetinic acid, also failed to uncouple synchronized Ca(2+)-oscillations, and it had no effect on insulin secretion. These data provide evidence that Ca(2+)signalling events occur simultaneously across the bulk mass of the pseudoislet, and suggest that gap-junctions are not required to coordinate the synchronicity of these events, nor is communication via gap junctions essential for integrated insulin secretory responses.  相似文献   

12.
A minimal model for calcium controlled oscillations is presented. The model considers only an exchange of potassium and calcium ions over the plasma membrane. Calcium ions leak into the cell through a potential dependent channel and is extruded by a pump. Potassium leaks out through a calcium dependent, but voltage independent, channel. The cytosolic calcium concentration is buffered, so a fixed fraction is free. Inactivation, membrane capacity, and time delays for the conductance changes are not included, so the time dependence is solely introduced through the temporal changes of the intracellular Ca(2+)-concentration. With continuous parameter changes the model can switch between five states: (1) a non-excitable, stable state; (2) single-spike excitability; (3) slow, spontaneous oscillations; (4) reverse-spike excitability; and (5) another non-excitable, stable state. One of the key parameters for this switching behavior is the rate constant for the calcium pump.  相似文献   

13.
Depletion of agonist-sensitive Ca2+ stores results in activation of capacitative Ca2+ entry (CCE) in endothelial cells. The proportion of Ca2+ stores contributing to the regulation of CCE is unknown. In fura-2/am loaded single endothelial cells freshly isolated from bovine left circumflex coronary arteries, we investigated whether a resting period in a Ca(2+)-free environment results in emptying of bradykinin-sensitive Ca2+ stores (BsS) and activation of CCE. In a Ca(2+)-free environment, depletion of BsS occurred in a time-dependent manner (59% after 10 min in Ca(2+)-free solution). This effect was prevented by inhibition of the Na(+)-Ca2+ exchange but not by a blockade of ryanodine-sensitive Ca2+ release (RsCR). In contrast to BsS, mitochondrial Ca2+ content remained unchanged in the Ca(2+)-free environment. Remarkably, activity of CCE (monitored as Mn2+ influx) did not increase after depletion of BsS in the Ca(2+)-free environment. In contrast to Mn2+ influx, the effect of re-addition of Ca2+ to elevate bulk Ca2+ concentration ([Ca2+]b) decreased with the time the cells rested in Ca(2+)-free buffer. This decrease was prevented by an inhibition of RsCR. In low Na+ conditions the effect of Ca2+ on [Ca2+]b was reduced while it did not change the time the cells rested in Ca(2+)-free solution. After a 2 min period in low Na+ conditions, ryanodine-induced Ca2+ extrusion was markedly diminished. Inhibition of RsCR re-established the effect of Ca2+ on [Ca2+]b in low Na+ conditions. Collapsing subplasmalemmal Ca2+ stores with nocodazole, increased the effect of Ca2+ on [Ca2+]b. In nocodazole-treated cells, the effect of Ca2+ on [Ca2+]b was not reduced in Ca(2+)-free environment. These data indicate that activation of CCE is not associated with the agonist-sensitive Ca2+ pools that deplete rapidly in a Ca(2+)-free environment. Subplasmalemmal ryanodine-sensitive Ca2+ stores (RsS) are emptied in Ca(2+)-free/low Na+ solution and re-sequester Ca2+ which enters the cells prior an increase in [Ca2+]b occurs. Thus, in endothelial cells there are differences in the functions of various subplasmalemmal Ca2+ stores (i.e. BsS and RsS), which include either activation of CCE or regulation of subplasmalemmal Ca2+.  相似文献   

14.
Signaling patterns measured in large cell populations are the sum of differing signals from separate cells, and thus, the detailed kinetics of Ca(2+) pulses can often be masked. In an effort to evaluate whether the cytosolic Ca(2+) pulses previously reported in populations of elicitor- and stress-stimulated tobacco cells accurately represent the pulses that occur in individual cells, a study of single cell Ca(2+) fluxes in stress-stimulated tobacco cells was undertaken. Individual aequorin-transformed cells were isolated from a tobacco suspension culture and placed directly on a sensitive photo-multiplier tube mounted in a dark chamber. Ca(2+)-dependent luminescence was then monitored after stimulation with hypo- or hyper-osmotic shock, cold shock, or defense elicitors (oligogalacturonic acid and harpin). Hypo-osmotic shock induced a biphasic Ca(2+) transient in 67% of the single cells tested that exhibited similar kinetics to the biphasic pulses measured repeatedly in 1ml cell suspensions. In contrast, 33% of the stimulated cells displayed Ca(2+) flux patterns that were not previously seen in cell suspension studies. Additionally, because only 29% of the cells tested responded with measurable Ca(2+) pulses to oligogalacturonic acid and 33% to the harpin protein, we conclude that not all cells in a suspension are simultaneously sensitive to stimulation with defense elicitors. In contrast, all cells tested responded with an immediate Ca(2+) influx after cold or hyperosmotic shock. We conclude that in many cases the Ca(2+) signaling patterns of single cells are accurately represented in the signaling patterns of large populations, but that single cell measurements are still required to characterize the Ca(2+) fluxes of the less prominent cell populations.  相似文献   

15.
16.
The effect of gossypol on Ca(2+) signaling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Gossypol evoked a rise in cytosolic free Ca(2+) levels ([Ca(2+)](i)) concentration-dependently between 2 and 20 microM. The response was decreased by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with gossypol nearly abolished the [Ca(2+)](i) increase induced by carbonylcyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, and thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with CCCP and thapsigargin only partly inhibited gossypol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) increase after pretreatment with 5 microM gossypol in Ca(2+)-free medium. This Ca(2+) entry was decreased by 25 microM econazole, 50 microM SKF96365 and 40 microM aristolochic acid (a phospholipase A(2) inhibitor). Pretreatment with aristolochic acid inhibited 5 microM gossypol-induced internal Ca(2+) release by 55%, but suppression of phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) had no effect. Gossypol (5 microM) also increased [Ca(2+)](i) in human bladder cancer cells and neutrophils. Collectively, we have found that gossypol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple Ca(2+) stores in a manner independent of the production of inositol-1,4,5-trisphosphate, followed by Ca(2+) influx from external space.  相似文献   

17.
Multiple mechanisms that maintain Ca(2+) homeostasis and provide for Ca(2+) signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca(2+) clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca(2+) homeostatic molecules on cytosolic Ca(2+) ([Ca(2+)](i)) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca(2+)](i) dynamics. When bathing the cells in a Na(+)-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca(2+)-ATPase (PMCA), La(3+), all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca(2+)](i) transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca(2+) transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca(2+) homeostatic pathways, the Na(+)/Ca(2+) exchanger, the endoplasmic reticulum Ca(2+) pump, the plasmalemmal Ca(2+) pump and mitochondria, are complementary in actively clearing Ca(2+) from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca(2+)](i) dynamics; (iii) there is (are) Ca(2+) clearance mechanism(s) distinct from the four outlined above; and (iv) Ca(2+) homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.  相似文献   

18.
Intracellular Ca(2+) regulates the cellular iron uptake in K562 cells   总被引:1,自引:0,他引:1  
Ci W  Li W  Ke Y  Qian ZM  Shen X 《Cell calcium》2003,33(4):257-266
Fluorescence quenching was used to study the kinetics of the transferrin receptor (TfR)-mediated iron uptake in the calcein-loaded K562 cells. It was found that elevation of intracellular free Ca(2+) ([Ca(2+)](i)) by thapsigargin (TG) speeds up the initial rate of iron uptake and increases the overall capacity of the cells in taking up iron. Depletion of intracellular Ca(2+) or complete chelation of extracellular Ca(2+) results in complete inhibition of the iron uptake in cells. To gain insight into molecular mechanism, IANBD-labeled transferrin (Tf) and microscopic fluorescence imaging were used to observe the endocytosis and recycling of the Tf-TfR complex in single live cells. The study showed that the preincubation of cells with TG or phorbol myristate acetate (PMA), the direct activator of protein kinase C (PKC), accelerated the endocytosis and recycling of the complex in a dose-dependent manner. W-7, the calmodulin antagonist, and GF109203X, a selected cell-permeant inhibitor of PKC, can reverse the acceleration. Analysis of actin polymerization in controlled, [Ca(2+)](i)-elevated and W-7-treated cells revealed that the actin polymerization is enhanced as [Ca(2+)](i) is raised, but reduced by W-7. The results suggest that the regulation of actin polymerization by intracellular Ca(2+) may play a central role in Ca(2+)-dependent iron uptake.  相似文献   

19.
In contrast to previous studies, a new fluorescent method was used to accurately determine the Ca(2+) concentration in test solutions used to activate skinned rat cardiac cells. This method used the calcium green-2 fluorescent indicator, which is shown to change its fluorescence over the Ca(2+) range responsible for Ca(2+) activation of force and ATPase. The dissociation constant (K(d)) of calcium green-2 for Ca(2+) was determined for three different Mg(2+) concentrations in solutions similar to those used in the experiment. Increasing Mg(2+) concentration from 1.0 to 8.0 mM had no significant effect on the Ca(2+) sensitivity of either force or actomyosin ATPase activity, in contrast to previous reported studies on force. The ATPase activity was activated at lower Ca(2+) concentration than the force. The ratio (ATPase/force) is proportional to the dissociation rate of force-generating myosin cross bridges and decreased during Ca(2+) activation. These findings are consistent with the hypothesis that cardiac muscle contraction is activated by a single Ca(2+)-specific binding site on troponin C.  相似文献   

20.
Cofilin is one of the major actin depolymerizing proteins in eukaryotic cells and involved in many membrane modulating activities, such as cell growth and motility. Here we examined whether cofilin is activated upon Ca(2+) regulated noradrenalin secretion from bovine adrenal chromaffin cells. We found that triggering exocytosis by nicotine causes a dephosphorylation and thereby activation of cofilin. Furthermore, in permeabilized chromaffin cells the addition of Ca(2+) alone is sufficient to trigger both, regulated exocytosis and cofilin activation. This is consistent with cofilin activation being required for actin reorganization during exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号