首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
We have examined the structural specificity of the puromycin binding sites on the Escherichia coli ribosome that we have previously identified [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Cooperman, B. S. (1982) Biochemistry 19, 3809-3817, and references cited therein] by examining the interactions of a series of adenine-containing compounds with these sites. We have used as measures of such interactions the inhibition of [3H]puromycin photoincorporation into ribosomal proteins from these sites, the site-specific photoincorporation of the 3H-labeled compounds themselves, and the inhibition of peptidyl transferase activity. For the first two of these measures we have made extensive use of a recently developed high-performance liquid chromatography (HPLC) method for ribosomal protein separation [Kerlavage, A. R., Weitzmann, C., Hasan, T., & Cooperman, B.S. (1983) J. Chromatogr. 266, 225-237]. We find that puromycin aminonucleoside (PANS) contains all of the structural elements necessary for specific binding to the three major puromycin binding sites, those of higher affinity leading to photoincorporation into L23 and S14 and that of lower affinity leading to photoincorporation into S7. Although tight binding to the L23 and S7 sites requires both the N6,N6-dimethyl and 3'-amino groups within PANS, only the N6,N6-dimethyl group and not the 3'-amino group is required for binding to the S14 site. Our current results reinforce our previous conclusion that photoincorporation into L23 takes place from the A' site within the peptidyl transferase center and lead us to speculate that the S14 site might be specific for the binding of modified nucleosides. They also force the conclusion that puromycin photoincorporation proceeds through its adenosyl moiety.  相似文献   

2.
Small (30 S) ribosomal subunits from Escherichia coli strain TPR 201 were photoaffinity-labeled with [3H]puromycin in the presence of chloramphenicol under conditions in which more than 1 mol of antibiotic was incorporated per mol of ribosomes. The subunits were than washed with 3 M NH4Cl to yield core particles and a split protein fraction; the split proteins were further fractionated with ammonium sulfate. Subunits were then reconstituted using one fraction (core, split proteins, or ammonium sulfate supernatant) from photoaffinity-modified subunits and other components from unmodified (control) subunits. The distribution of [3H]puromycin in ribosomal proteins was monitored by one-dimensional polyacrylamide gel electrophoresis, and the sites of puromycin binding were visualized by immunoelectron microscopy. Two areas of puromycin binding were identified. A high affinity puromycin site, found on the upper third of the subunit and distant from the platform, is identical to the primary site previously identified (Olson, H. M., Grant, P. G., Glitz, D. G., and Cooperman, B. S. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 890-894). Binding at this site is maximal in subunits reconstituted with high levels of puromycin-modified protein S14, and is decreased when unmodified S14 is incorporated. Because the percentage of antibody binding at the primary site always exceeds the percentage of puromycin label in protein S14, the primary site must include components other than S14. A secondary puromycin site of lower affinity is found on the subunit platform. This site is enriched in subunits reconstituted from puromycin-modified core particles and may include protein S7. Our results demonstrate the feasibility of localizing specifically modified components in reconstituted ribosomal subunits.  相似文献   

3.
In previous work we have shown that both puromycin [Weitzmann, C. J., & Cooperman, B. S. (1985) Biochemistry 24, 2268-2274] and p-azidopuromycin [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Coooperman, B. S. (1982) Biochemistry 21, 3809-3817] site specifically photoaffinity label protein L23 to the highest extent of any Escherichia coli ribosomal protein. In this work we demonstrate that L23 that has been photoaffinity labeled within a 70S ribosome by puromycin (puromycin-L23) can be separated from unmodified L23 by reverse-phase high-performance liquid chromatography (RP-HPLC) and further that puromycin-L23 can reconstitute into 50S subunits when added in place of unmodified L23 to a reconstitution mixture containing the other 50S components in unmodified form. We have achieved a maximum incorporation of 0.5 puromycin-L23 per reconstituted 50S subunit. As compared with reconstituted 50S subunits either containing unmodified L23 or lacking L23, reconstituted 50S subunits containing 0.4-0.5 puromycin-L23 retain virtually all (albeit low) peptidyl transferase activity but only 50-60% of mRNA-dependent tRNA binding stimulation activity. We conclude that although L23 is not directly at the peptidyl transferase center, it is sufficiently close that puromycin-L23 can interfere with tRNA binding. This conclusion is consistent with a number of other experiments placing L23 close to the peptidyl transferase center but is difficult to reconcile with immunoelectron microscopy results placing L23 near the base of the 50S subunit on the side facing away from the 30S subunit [Hackl, W., & St?ffler-Meilicke, M. (1988) Eur. J. Biochem. 174, 431-435].  相似文献   

4.
The effect of ribosomal antibiotics on the photoinduced affinity labeling of Escherichia coli ribosomes by puromycin [Cooperman, B.S., Jaynes, E.N., Brunswick, D.J., & Luddy, M.A. (1975) Proc. Natl. Acad. Sci. U.S.A. 72, 1974; Jaynes, E.N. Jr., Grant, P.G., Giangrande, G., Wieder, R., & Cooperman, B.S. (1978) Biochemistry 17, 561] has been studied. Although blasticidin S, sparsomycin, lincomycin, and erythromycin are essentially without effect, major changes are seen on addition of either chloramphenicol or tetracycline. The products of photoincorporation have been characterized by one- and two-dimensional gel electrophoresis and by specific immunoprecipitation with antibodies to ribosomal proteins. In the presence of chloramphenicol, protein S14 becomes the major labeled protein. In the presence of tetracycline, L23 remains the major labeled protein, but the yield of labeled ribosomes is enormously increased, and the labeling is more specific for L23. These results are discussed in terms of the known modes of action of these antibiotics and the photoreactivity of tetracycline.  相似文献   

5.
6.
Previous work (Nicholson, A. W., Hall, C. C., Strycharz, W. A., and Cooperman, B. S. (1982) Biochemistry 21, 3797-3808) showed that [3H]p-azidopuromycin photoaffinity labeled 70 S Escherichia coli ribosomes and that photoincorporation into 50 S subunit proteins was in the order L23 greater than L18/22 greater than L15. In the present work we report on immunoelectron microscopic studies of the complexes formed by p-azidopuromycin-modified 50 S subunits with antibodies to the N6,N6-dimethyladenosine moiety of the antibiotic. The p-azidopuromycin-modified 50 S subunits appear to be identical to unmodified control subunits in electron micrographs. Complexes of modified subunits with antibodies to the N6,N6-dimethyladenosine moiety of p-azidopuromycin were visualized in micrographs. Individual subunits with a single bound antibody (monomeric complexes) and pairs of subunits cross-linked by a single antibody (dimeric complexes) were separately evaluated and showed similar results. Two regions of p-azidopuromycin photoincorporation were identified. The primary site, seen in about 75% of the complexes, is between the central protuberance and small projection, on the side away from the L7/L12 arm, in a region thought to contain the peptidyltransferase center. The secondary site, of unknown significance, is at the base of the subunit maximally distant from the arm. These placements are essentially identical to those we observed in analyses of puromycin photoincorporation (Olson, H. M., Grant, P. G., Cooperman, B. S., and Glitz, D. G. (1982) J. Biol. Chem. 257, 2649-2656) and quantitatively similar to evaluations of monomeric puromycin-50 S subunit complexes. The data support the placement of proteins L23, L18/22, and L15 at or near the peptidyltransferase center at the primary site and suggest, in addition, that the secondary site includes a genuine area of puromycin affinity.  相似文献   

7.
In this work we report the synthesis of a radioactive, photolabile oligodeoxyribonucleotide probe and its exploitation in identifying 50S ribosomal subunit components neighboring its target site in 23S rRNA. The probe is complementary to 23S rRNA nucleotides 2497-2505, a single-stranded sequence that has been shown to fall within the peptidyltransferase center of Escherichia coli ribosomes [Cooperman, B. S., Weitzmann, C. J., & Fernandez, C. L. (1990) in The Ribosome: Structure, Function, & Evolution (Hill, W. E., Dahlberg, A., Garrett, R. A., Moore, P. B., Schlesinger, D., & Warner, J. R., Eds.) pp 491-501, American Society of Microbiology, Washington]. On photolysis in the presence of 50S ribosomes, it site-specifically incorporates into protein L3 (identified by both SDS-PAGE and immunological methods) and into three separate 23S rRNA regions: specifically, nucleotides 2454; 2501, 2502, 2505, 2506; and 2583, 2584. These results provide clear evidence that G-2505 in 23S rRNA is within 24 A (the distance between G-2505 and the photogenerated nitrene) of protein L3 and of each of the nucleotides mentioned above and are of obvious importance in the construction of detailed three-dimensional models of ribosomal structure. The approach we present is general and can be applied to determining ribosomal components neighboring regions of rRNA that are susceptible to binding by complementary oligodeoxyribonucleotides, both in intact 30S and 50S subunits and in subunits at various stages of reconstitution.  相似文献   

8.
The photoincorporation of p-azido[3H]puromycin [6-(dimethylamino)-9-[3'-deoxy-3'-[(p-azido-L-phenylalanyl)amino]-beta-D-ribofuranosyl]purine] into specific ribosomal proteins and ribosomal RNA [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Cooperman, B. S. (1982) Biochemistry (preceding paper in this issue)] is decreased in the presence of puromycin, thus demonstrating that labeling is site specific. The magnitudes of the decreases in incorporation into the major labeled 50S proteins found on addition of different potential ribosome ligands parallel the abilities of these same ligands to inhibit peptidyltransferase. This result provides evidence that p-azidopuromycin photoincorporation into these proteins occurs at the peptidyltransferase center of the 50S subunit, a conclusion supported by other studies of ribosome structure and function. A striking new finding of this work is that puromycin aminonucleoside is a competitive inhibitor of puromycin in peptidyltransferase. The photoincorporation of p-azidopuromycin is accompanied by loss of ribosomal function, but photoincorporated p-azidopuromycin is not a competent peptidyl acceptor. The significance of these results is discussed. Photolabeling of 30S proteins by p-azidopuromycin apparently takes place from sites of lower puromycin affinity than that of the 50S site. The possible relationship of the major proteins labeled, S18, S7, and S14, to tRNA binding is considered.  相似文献   

9.
Escherichia coli small ribosomal subunits have been reconstituted from RNA and high performance liquid chromatography-purified proteins including protein S19 that had been modified at its amino-terminal proline residue with 1-fluoro-2,4-dinitrobenzene. As detailed in the accompanying paper (Olah, T. V., Olson, H. M., Glitz, D. G., and Cooperman, B. S. (1988) J. Biol. Chem. 263, 4795-4800), dinitrophenyl (DNP)-S19 was efficiently incorporated into the site ordinarily occupied by S19. Antibodies to DNP bound effectively to the reconstituted subunits and did not cause dissociation of the modified protein from the subunit. Electron microscopy of the immune complexes was used to localize the modified protein on the subunit surface. More than 95% of the antibody binding sites seen were consistent with a single location of protein S19 on the upper portion or head of the subunit, on the surface that faces the 50 S particle in a 70 S ribosome, and in an area relatively distant from the subunit platform. The S19 site is close to the region in which 30 S subunits are photoaffinity labeled with puromycin. Protein S19 is thus near protein S14 in the small subunit and in proximity to the peptidyl transferase center of the 70 S ribosome.  相似文献   

10.
The antitumoral and antibacterial drug pactamycin can be radioactively labeled by iodination without loss of biological activity. Using the labeled pactamycin, the ribosomal binding site of the drug on rat liver ribosomes has been studied by affinity labeling techniques taking advantage of the photoreactive acetophenone group present in the molecule. When 40 S ribosomal subunits are labeled, one major spot of radioactivity is found associated to protein S25. In addition, weaker spots related to proteins S14/15, S10, S17 and S7 can also be detected in the autoradiogram of the two-dimensional gel slab. Since pactamycin inhibits protein synthesis initiation, the proteins forming its binding site must be related to some step of this process. By comparison with results from pactamycin affinity labeling of Escherichia coli ribosomes (Tejedor, F., Amils, R. and Ballesta, J.P.G. (1985) Biochemistry 24, 3667-3672) these proteins could lie in the mRNA and initiation factors binding region of the rat liver ribosome.  相似文献   

11.
Two monoclonal antibodies against different epitopes in Escherichia coli ribosomal protein L7/L12 were prepared and characterized as reported previously (Sommer, A., Etchison, J.R., Gavino, G., Zecherle, N., Casiano, C., and Traud, R.R. (1985) J. Biol. Chem. 260, 6522-6527). Both antibodies strongly inhibited polyuridylic acid-directed polyphenylalanine synthesis, ribosome-dependent GTPase activity, and the binding of elongation factor G to the ribosome at mole ratios over ribosomes of 4:1 or less. One epitope was shown to be within residues 1-73 (Ab 1-73) and the other within 74-120 (Ab 74-120). Incubation of 50 S ribosomal subunits or 70 S ribosomes with Ab 1-73, but not with Ab 74-120, leads to a partial loss of L7/L12 from the particle with no loss of any other protein. The experiment was repeated with ribosomes reconstituted with pure radioactive L7/L12 of determined specific activity in order to quantify the L7/L12 in the antibody-treated particle. The protein-deficient core particles isolated by sucrose gradient centrifugation after incubation with Ab 1-73 were found to contain, on average, two copies of L7/L12 and one Ab 1-73. The constancy of this stoichiometry in many experiments and the demonstration of Ab 1-73 on all particles indicate the presence of a homogeneous population of ribosomes, each with only one of the two L7/L12 dimers originally present. The results show a difference in the interactions of the two dimers with the ribosome and present a means of preparing ribosomes with one dimer in a specific binding site. The accompanying paper (Olson, H.M., Sommer, A., Tewari, D. S., Traut, R.R., and Glitz, D.G. (1986) J. Biol. Chem. 261, 6924-6932) shows by immune electron microscopy the location of the two antibody-binding sites and the effect of Ab 1-73 on structure.  相似文献   

12.
Previous studies have shown that the 30S ribosomal subunit of Escherichia coli can be reconstituted in vitro from individually purified ribosomal proteins and 16S ribosomal RNA, which were isolated from natural 30S subunits. We have developed a 30S subunit reconstitution system that uses only recombinant ribosomal protein components. The genes encoding E. coli ribosomal proteins S2-S21 were cloned, and all twenty of the individual proteins were overexpressed and purified. Reconstitution, following standard procedures, using the complete set of recombinant proteins and purified 16S ribosomal RNA is highly inefficient. Efficient reconstitution of 30S subunits using these components requires sequential addition of proteins, following either the 30S subunit assembly map (Mizushima & Nomura, 1970, Nature 226:1214-1218; Held et al., 1974, J Biol Chem 249:3103-3111) or following the order of protein assembly predicted from in vitro assembly kinetics (Powers et al., 1993, J MoI Biol 232:362-374). In the first procedure, the proteins were divided into three groups, Group I (S4, S7, S8, S15, S17, and S20), Group II (S5, S6, S9, Sll, S12, S13, S16, S18, and S19), and Group III (S2, S3, S10, S14, and S21), which were sequentially added to 16S rRNA with a 20 min incubation at 42 degrees C following the addition of each group. In the second procedure, the proteins were divided into Group I (S4, S6, S11, S15, S16, S17, S18, and S20), Group II (S7, S8, S9, S13, and S19), Group II' (S5 and S12) and Group III (S2, S3, S10, S14, and S21). Similarly efficient reconstitution is observed whether the proteins are grouped according to the assembly map or according to the results of in vitro 30S subunit assembly kinetics. Although reconstitution of 30S subunits using the recombinant proteins is slightly less efficient than reconstitution using a mixture of total proteins isolated from 30S subunits, it is much more efficient than reconstitution using proteins that were individually isolated from ribosomes. Particles reconstituted from the recombinant proteins sediment at 30S in sucrose gradients, bind tRNA in a template-dependent manner, and associate with 50S subunits to form 70S ribosomes that are active in poly(U)-directed polyphenylalanine synthesis. Both the protein composition and the dimethyl sulfate modification pattern of 16S ribosomal RNA are similar for 30S subunits reconstituted with either recombinant proteins or proteins isolated as a mixture from ribosomal subunits as well as for natural 30S subunits.  相似文献   

13.
Photolysis of [3H]tetracycline in the presence of Escherichia coli ribosomes results in an approximately 1:1 ratio of labelling ribosomal proteins and RNAs. In this work we characterize crosslinks to both 16S and 23S RNAs. Previously, the main target of photoincorporation of [3H]tetracycline into ribosomal proteins was shown to be S7, which is also part of the one strong binding site of tetracycline on the 30S subunit. The crosslinks on 23S RNA map exclusively to the central loop of domain V (G2505, G2576 and G2608) which is part of the peptidyl transferase region. However, experiments performed with chimeric ribosomal subunits demonstrate that peptidyltransferase activity is not affected by tetracycline crosslinked solely to the 50S subunits. Three different positions are labelled on the 16S RNA, G693, G1300 and G1338. The positions of these crosslinked nucleotides correlate well with footprints on the 16S RNA produced either by tRNA or the protein S7. This suggests that the nucleotides are labelled by tetracycline bound to the strong binding site on the 30S subunit. In addition, our results demonstrate that the well known inhibition of tRNA binding to the A-site is solely due to tetracycline crosslinked to 30S subunits and furthermore suggest that interactions of the antibiotic with 16S RNA might be involved in its mode of action.  相似文献   

14.
The chemically reactive analog of U-G-A, 5'-(4-(Bromo-[2-14C] acetamido) phenylphospho) - uridylyl-(3'-5') - guanylyl-(3'-5') adenosine has a 20 fold lower affinity to 70S ribosomes than the corresponding analog of A-U-G though the U-G-A analog also preferentially reacts with protein S18 of 70S ribosomes. This reaction programs ribosomes for EF-T dependent Trp-tRNATrp-suIII binding. Therefore, it is concluded that this protein is part of the A'-site of the ribosomal codon binding site. Reaction of the U-G-A analog with 30S subunits lead to a predominant crosslinking of U-G-A to proteins S4 and S18. In contrast, a comparable reaction of the A-U-G analog with 30S subunits lead to a predominant crosslinking of A-U-G to proteins S4 and S12 (Pongs, O., Stoffler, G.A., Lanka, E., (1975) J. Mol. Biol. 99, 301). Since protein S12 is located at the 'P' site of the ribosomal codon binding site, it is proposed that the U-G-A analog does not bind at this site.  相似文献   

15.
M A Buck  B S Cooperman 《Biochemistry》1990,29(22):5374-5379
In previous work we showed that on photolysis of Escherichia coli ribosomes in the presence of [3H]tetracycline (TC) the major protein labeled is S7, and we presented strong evidence that such labeling takes place from a high-affinity site related to the inhibitory action of TC [Goldman, R. A., Hasan, T., Hall, C. C., Strycharz, W. A., & Cooperman, B. S. (1983) Biochemistry 22, 359-368]. In this work we use single protein omission reconstitution (SPORE) experiments to identify those proteins that are important for high-affinity TC binding to the 30S subunit, as measured by both cosedimentation and filter binding assays. With respect to both sedimentation coefficients and relative Phe-tRNAPhe binding, the properties of the SPORE particles we obtain parallel very closely those measured earlier [Nomura, M., Mizushima, S., Ozaki, M., Traub, P., & Lowry, C. V. (1969) Cold Spring Harbor Symp. Quant. Biol. 34, 49-61], with the exception of the SPORE particle lacking S13. A total of five proteins, S3, S7, S8, S14, and S19, are shown to be important for TC binding, with the largest effects seen on omission of proteins S7 and S14. Determination of the protein compositions of the corresponding SPORE particles demonstrates that the observed effects are, for the most part, directly attributable to the omission of the given protein rather than reflecting an indirect effect of omitting one protein on the uptake of another. A large body of evidence supports the notion that four of these proteins, S3, S7, S14, and S19, are included, along with 16S rRNA bases 920-1396, in one of the major domains of the 30S subunit.  相似文献   

16.
We recently described the use of reverse phase high performance liquid chromatography for the separation of the proteins of the 30 S subunit of Escherichia coli ribosomes (Kerlavage, A. R., Kahan, L., and Cooperman, B. S. (1982) Anal. Biochem. 123, 342-348). In the present studies we report improvements in the technique and its extension to the separation of the proteins of the 50 S subunit and of 70 S ribosomes. Using an octadecasilyl silica column and a trifluoroacetic acid/acetonitrile solvent system, the 21 proteins of the 30 S subunit have been resolved into 17 peaks, the 33 proteins of the 50 S subunit into 22 peaks, and the 53 proteins of the 70 S ribosome into 31 peaks. The proteins present in each peak have been identified by polyacrylamide gel electrophoresis, by comparison with previously standardized chromatograms, and by calibration with authentic samples of purified proteins. All of the known ribosomal proteins have been identified on the chromatograms with the exception of L31 and its variant, L31'. Three protein peaks, not corresponding to known ribosomal proteins, have been observed in preparations from the total protein from 50 S subunits and 70 S ribosomes, but the significance of these peaks is unclear. The reverse phase high performance liquid chromatography technique has the potential for purifying all ribosomal proteins, as demonstrated by the increase in resolution we obtain when a peak isolated under standard gradient conditions and containing several proteins is reapplied to the column and eluted with a shallower gradient. Its utility in preparing proteins for functional studies is demonstrated by a reconstitution of active 30 S particles using 30 S proteins prepared by reverse phase high performance liquid chromatography.  相似文献   

17.
We have partially purified two 16S rRNA-specific methyltransferases, one of which forms m2G966 (m2G MT), while the other one makes m5C967 (m5C MT). The m2G MT uses unmethylated 30S subunits as a substrate, but not free unmethylated 16S rRNA, while the m5C MT functions reciprocally, using free rRNA but not 30S subunits (Nègre, D., Weitzmann, C. and Ofengand, J. (1990) UCLA Symposium: Nucleic Acid Methylation (Alan Liss, New York), pp. 1-17). We have now determined the basis for this unusual inverse specificity at adjacent nucleotides. Binding of ribosomal proteins S7, S9, and S19 to unmodified 16S rRNA individually and in all possible combinations showed that S7 plus S19 were sufficient to block methylation by the m5C MT, while simultaneously inducing methylation by the m2G MT. A purified complex containing stoichiometric amounts of proteins S7, S9, and S19 bound to 16S rRNA was isolated and shown to possess the same methylation properties as 30S subunits, that is, the ability to be methylated by the m2G MT but not by the m5C MT. Since binding of S19 requires prior binding of S7, which had no effect on methylation when bound alone, we attribute the switch in methylase specificity solely to the presence of RNA-bound S19. Single-omission reconstitution of 30S subunits deficient in S19 resulted in particles that could not be efficiently methylated by either enzyme. Thus while binding of S19 is both necessary and sufficient to convert 16S rRNA into a substrate of the m2G MT, binding of either S19 alone or some other protein or combination of proteins to the 16S rRNA can abolish activity of the m5C MT. Binding of S19 to 16S rRNA is known to cause local conformational changes in the 960-975 stem-loop structure surrounding the two methylated nucleotides (Powers, T., Changchien, L.-M., Craven, G. and Noller, H.F. (1988) J. Mol. Biol. 200, 309-319). Our results show that the two ribosomal RNA MTs studied in this work are exquisitely sensitive to this small but nevertheless functionally important structural change.  相似文献   

18.
Previous studies have shown that iodination of 30 S subunits causes inactivation for both enzymatic fMet-tRNA and non-enzymatic phe-tRNA binding activities. This inactivation was shown to be due to the modification of three to five ribosomal proteins [1]. In this report the role of these proteins in tRNA binding activity has been further studied. Purified ribosomal proteins, isolated from modified subunits, are re-assembled into otherwise unmodified 30 S ribosomes and assayed for tRNA binding capacity. The presence of modified S 3, S 14 and S 19 (S 15) in the reconstituted particle results in substantial reduction of both fMet-tRNA and phe-tRNA binding activities. This reduction in tRNA binding activity does not appear to be due to an assembly defect.  相似文献   

19.
An in vitro system developed for the site-specific mutagenesis of 16S RNA of Escherichia coli ribosomes [Krzyzosiak et al. (1987) Biochemistry 26, 2353-2364] was used to make 10 single base changes around C1400, a residue known to be at the decoding site. C1400 was replaced by U, A, or G, five single base deletions at and to either side of C1400 were made, and C or U was inserted next to C1400. Another mutant possessed seven additional nucleotides at the 3' end of the 16S RNA such that a stem and loop involving the anti-Shine-Dalgarno sequence could form. Each of the mutant RNAs was reconstituted with a complete mixture of 30S proteins to yield 30S ribosomes. Modified in vitro reconstitution conditions were required to obtain assembly of all of the synthetic ribosomes. Quantitative HPLC analysis of the protein content of each mutant showed that all of the proteins were present. The ability of synthetic 30S to form 70S particles under functional assay conditions was about 75% that of natural 30S and was unchanged by any of the mutations except for the deletion of G1401, which decreased the association activity under the standard conditions to 35-40% of synthetic 30S. That part of the ribosomal P site which interacts with the anticodon loop of tRNA was investigated by near-UV (greater than 300 nm) induced cross-linking of AcVal-tRNA. Cross-linking depended on both 30S subunits and the correct codon. The cross-linking yield of all mutants with a pyrimidine at position 1400 was equal to control isolated 30S, and the first-order rate constants for cross-linking of those mutants tested were like reconstituted natural 30S. The site of cross-linking for mutants with a C or U insertion between C1400 and G1401 was shifted to the inserted residue. Cross-linking to the base 5' to G1401 rather than to the residue 3' to C1399 indicates that G1401 is an important structural determinant of the P site.  相似文献   

20.
M Gilly  M Pellegrini 《Biochemistry》1985,24(21):5781-5786
[3H]Puromycin covalently incorporates into the protein and to a much lesser extent into the RNA components of Drosophila ribosomes in the presence of 254-nm light. The photoincorporation reaction takes place with a small number of large- (L2 and L17) and small- (S8 and S22) subunit proteins as determined by two-dimensional gel analysis. More quantitative one-dimensional gel results show that puromycin reacts with each of these proteins in a functional site specific manner. The small percentage of the total labeling that occurs with rRNA also appears to be site specific. The rRNA labeling arises from a puromycin-mediated cross-linking of ribosomal protein and rRNA. Ionic conditions shift the pattern of puromycin-labeled ribosomal proteins. These results suggest that puromycin can occupy two distinct sites on Drosophila 80S ribosomes. The pattern of ribosomal proteins labeled by puromycin is affected by the presence of other antibiotics such as emetine, anisomycin, and trichodermin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号