首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of plasmid pO157 in biofilm formation was investigated using wild-type and pO157-cured Escherichia coli O157:H7 Sakai. Compared to the wild type, the biofilm formed by the pO157-cured mutant produced fewer extracellular carbohydrates, had lower viscosity, and did not give rise to colony morphology variants that hyperadhered to solid surfaces.Enterohemorrhagic Escherichia coli serotype O157:H7 is a major food-borne pathogen causing hemorrhagic colitis and the hemolytic-uremic syndrome (17). Many E. coli O157:H7 outbreaks have been associated with contaminated undercooked ground beef, vegetables, fruits, and sprouts (20, 31). One of the largest disease outbreaks occurred in Sakai City, Japan, in 1996 with nearly 8,000 confirmed cases. The E. coli isolate responsible for this outbreak, referred to as “Sakai,” is one of the best-characterized isolates and one of only three O157 strains for which the genome has been fully sequenced (8, 16). Because of its importance as a human pathogen and its characterization, Sakai was the focus of this investigation.There is significant phenotypic diversity among E. coli O157:H7 strains, including the ability to form biofilm. Previous studies show that certain E. coli O157:H7 strains form biofilm on various surfaces, and biofilm on food or food-processing surfaces can serve as a source or vehicle of contamination that may result in human infection (6, 18, 25). Biofilm is an organized and structured community of microorganisms that attaches to solid surfaces and contains cells embedded in an extracellular polymer matrix (4, 26). Exopolysaccharide (EPS) is a major component of the biofilm matrix and is required for the development of characteristic biofilm architecture (5, 29). Bacteria gain a variety of advantages from biofilm formation that include attachment, colonization, and protection from adverse environments (4, 11).E. coli O157:H7 carries a 92-kb virulence plasmid (pO157) encoding a number of putative virulence determinants, including ehxA, etpC to etpO, espP, katP, toxB, ecf, and stcE (31). However, the biological role of pO157 is not fully understood, and only 19 genes among the 100 open reading frames (ORFs) in pO157 have been characterized (2, 15). Our previous work indicates that pO157 is a colonization factor in cattle and may regulate several chromosomal genes (14, 24, 31).To investigate the role of pO157 in biofilm formation, we characterized the biofilm of wild-type E. coli O157:H7 strain Sakai and an isogenic pO157-cured Sakai (Sakai-Cu). Both strains were kindly provided by C. Sasakawa (University of Tokyo). Sakai-Cu was generated using a plasmid incompatibility method (27). This method is not prone to secondary mutations and requires minimal passage in laboratory medium. The mini-R plasmid pK2368, harboring a chloramphenicol (CM) resistance gene and being in the same plasmid incompatibility group as pO157, was introduced into wild-type Sakai by transformation. Transformants were isolated on LB agar containing CM and selected for loss of pO157 by agarose gel electrophoresis analysis. CM-resistant transformants were cured of pKP2368 by subculturing in LB broth without CM. The absence of pO157 was confirmed by Southern blot hybridization with a pO157-specific gene probe (derived from ecf1), and chromosomal DNA integrity was confirmed by pulsed-field gel electrophoresis (data not shown).Because E. coli O157:H7 strains are generally not strong biofilm producers, the condition most conducive to biofilm production, a fluorometric flow cell method, was used to compare separately grown Sakai and Sakai-CU (3). The biofilm cultivation systems consisted of seven parts: (i) medium reservoir, (ii) multichannel pump (205S; Watson Marlow, United Kingdom), (iii) bubble trap (BioSurface Technologies Co., Bozeman, MT), (iv) flow cell, (v) outflow reservoir, (vi) air pump (DrsFosterSmith, Rhinelander, WI), and (vii) flow meter (Gilmont, BC Group, St. Louis, MO). The flow cell was constructed from two rectangular acrylic plates that were 104 by 48 mm. Sidewalls (62 by 26 by 5 mm) were glued to the top plate to form an elongated hexagonal growth chamber. There were 56- by 20-mm square openings in the top and bottom rectangular plates that were sealed with 60- by 24-mm glass slides (Fisher, Pittsburgh, PA). The upper and lower plates were assembled with screws and sealed using a microseal B film (MJ Research, Waltham, MA). The flow cell volume was about 10.4 ml, the medium flow rate was 10.5 ml/h, and the hydraulic retention time was 1 h. Under these conditions, the linear surface velocity was about 80 mm/h at the center of the flow cell. The biofilm was grown with BGM2 medium (21). To prepare the inoculums, Sakai and Sakai-Cu were grown at 37°C in BGM2 medium to mid-exponential phase, and cells were harvested by centrifugation and resuspended in 0.85% NaCl. One hundred μl of the resuspended cell solution was inoculated from the effluent side of flow cells through a long stainless steel needle (Fisher, Pittsburgh, PA). The cells were incubated for at least 3 h without supplying fresh medium, and then fresh medium was supplied to the biofilm cultivation system at 30°C.At various times, the resulting biofilms were stained with a green fluorescent dye, wheat germ agglutinin (WGA)- Alexa Fluor 488 (Invitrogen, Carlsbad, CA), and analyzed using the Olympus FluoView confocal laser scanning microscopy system (Olympus, Tokyo, Japan). Using the Olympus FluoView software program, version 1.7b, for analysis, the fluorescence intensities of Sakai and Sakai-Cu biofilm matrices were each analyzed from >20 three-dimensional-complexity images. Fluorescence was greater for Sakai than for Sakai-Cu, with average values of 2,448 ± 668 and 2,022 ± 619, respectively (Student''s t test; P < 0.05). Overhead images from the Sakai-Cu strain biofilm revealed more-compact cell clusters than images from wild-type Sakai (Fig. 1A and B). Comparisons of images taken sideways indicated that the Sakai-Cu biofilms were not as thick as those of wild-type Sakai (Fig. 1C and D), and typical ratios were consistently 9:11, respectively (P < 0.05). A previous study demonstrated that the biofilm of a wcaF::can mutant of E. coli K-12, which is deficient in EPS production, lacked depth and complex architecture (5). Sakai-Cu showed a similar but less dramatic phenomenon. These observations indicated that pO157 influenced biofilm formation and architecture.Open in a separate windowFIG. 1.Wild-type Sakai (A and C) or Sakai-Cu (B and D) biofilms after 3 days of incubation. Both strains were grown at 30°C in an individual flow cell apparatus. The biofilm was stained with WGA-Alexa Fluor 488 and examined by confocal microscopy. Representative overhead (A and B) or sagittal (C and D) images are shown and were generated using the deconvolution software. Bar, 50 μm.To quantitatively compare Sakai and Sakai-Cu biofilms, the contents of each flow cell apparatus were collected at various times and analyzed for bacterial cell number, viscosity, and EPS production. Biofilms were harvested by a standard technique that preserves cell numbers and minimizes viscosity changes (9). Briefly, floating cells in the biofilm were carefully collected with a pipet, and the remaining cells were scraped from the flow cell apparatus with sterilized applicator sticks. Biofilm samples were collected on days 1, 3, 5, 8, and 12, and measurements were means ± standard deviations (SD) of at least triplicate measurements from separately grown biofilms. There was no significant difference in bacterial number (CFU/ml) from Sakai and Sakai-Cu biofilms at any of the times measured (data not shown). A Cannon-Fenske routine viscometer (Size 100; Cannon Instrument Co., Pennsylvania) was used to determine biofilm viscosity. The conversion constant was 0.015 cSt/s (mm2/s2), and viscosities were measured according to the manufacturer''s instructions. Briefly, the viscometer was aligned vertically in the holder, and the sample was charged into the viscometer tube until the sample reached the “F” mark in the tube. A suction bulb was used to draw the sample slightly above mark “E.” The sample was allowed to flow freely, and the efflux time was measured as the time for the meniscus to pass from mark “E” to mark “F.” Measurements were repeated at least six times, and the kinematic viscosity in mm2/s (cSt) of the samples was calculated by multiplying the efflux time in seconds by the viscometer constant. The viscosity of Sakai biofilm was dramatically increased after 8 days (P < 0.001), while there was no significant change in the viscosities of Sakai-Cu biofilms through day 12 (Fig. (Fig.22).Open in a separate windowFIG. 2.Comparison of Sakai and Sakai-Cu biofilm viscosity. Three or four separately grown biofilms were each harvested on the days indicated, and viscosity was measured using a Cannon-Fenske Routine viscometer.Bacterial EPS are associated with attachment to both inanimate surfaces and host cells (29). EPS can be categorized as extracellular carbohydrate complexes (ECC) that are loosely associated with cells and easily removed, referred to as slime (fraction I), or ECC that are closely associated with cells and removed only after heat treatment, referred to as capsule (fraction II) (22). No significant difference in ECC was observed until days eight and 12, when the level of total ECC produced from Sakai biofilms was significantly higher than that from the Sakai-Cu biofilms (P < 0.05) (Fig. (Fig.3).3). Also, by days eight and 12, levels of Sakai ECC fraction I, representing primarily secreted slime carbohydrates, were 5 and 10 times higher than Sakai-Cu ECC fraction I, respectively. These results correlated with the results of increased viscosity in Sakai biofilm samples that had aged for 8 or 12 days.Open in a separate windowFIG. 3.Comparison of Sakai and Sakai-Cu biofilm extracellular carbohydrate (ECC) production. ECC I was collected from cells by centrifugation, and ECC II was collected by centrifugation after heat treatment on each indicated day. Bar height represents total ECC production from each biofilm sample. The proportion of total ECC that was either ECC I (dark gray) or ECC II (light gray) is shown. Asterisks indicate significant differences between wild-type Sakai (Wt) and Sakai-Cu (Cu); day 8, P < 0.05; day 12, P < 0.001.Interestingly, during biofilm sampling, two colony morphology variants were isolated that are referred to here as sticky and mucoid. These variants were found only in wild-type Sakai biofilms that had aged for ≥8 days and were not found in Sakai-Cu biofilms even after screening of 104 colonies and even among biofilms aged for 18 days. The percentages of sticky and mucoid variants in Sakai biofilms ranged from 5 to 30% and 0 to 5%, respectively. The differences in colony morphology were readily distinguished, as shown in Fig. Fig.4.4. The sticky variant was raised in elevation and shinier than the Sakai parent strain but was not difference in size. When single bacterial colonies grown on agar plates were touched with a sterilized toothpick and that toothpick was gently lifted up, the colonies had a hyperadherence phenotype and elongated to approximately 1 cm between the plate and the toothpick. This phenomenon was unique to the sticky colony variants and was not observed among colonies of the parent Sakai strain (Fig. (Fig.4D).4D). The mucoid colony variants were convex in elevation and shiny in texture, had irregular colony shapes, and were larger than the Sakai parent strain but were not hyperadherent. The motility of variants was determined using 0.3% soft agar, and both sticky and mucoid variants exhibited 30- to 90%-reduced motility compared to the parent Sakai strain (data not shown). The characteristics of both sticky and mucoid variants were inherited, and the variant characteristics were maintained in laboratory subculture through 15 generations.Open in a separate windowFIG. 4.Colony morphologies of wild-type, mucoid, and sticky variants. The wild-type E. coli O157:H7 Sakai strain formed small, flat, and nonsticky colonies on LB agar (A). The mucoid variant formed irregular, large, shiny, mucoid, convex, and nonsticky colonies (B). The sticky variant formed small, slightly raised, and sticky colonies (C). The sticky variant adheres to a toothpick touched to the colony surface (D). Bar, 1 cm.It is known that mutation is a powerful mechanism of adaptation when bacteria are faced with environmental change (1). Like other bacterial variants, the sticky and mucoid phenotypic biofilm variants may provide a survival advantage in specific niches (10, 19). Pseudomonas aeruginosa is a well-known biofilm model, and colony morphology variants are a common biofilm-related phenomenon. Both reduced-motility and hyperadherence variants have been described (10) and have characteristics similar to those of the E. coli O157:H7 biofilm variants described here. However, unlike the P. aeruginosa biofilm variants, the sticky and mucoid Sakai variants were not smaller, rougher, or more wrinkled than the parent colony.Although it is possible that the changes measured in biofilm formation and the generation of hyperadherent variants were not due to the plasmid, it is highly unlikely. The method of plasmid curing by incompatibility is gentle and is not prone to secondary mutation. A powerful and common approach to address possible secondary mutations is complementation; however, it was not used here because reintroduction of the plasmid requires the manipulation of a very large piece of DNA (92 kb) and the procedure itself is likely to introduce mutation. Also, reintroduction of the large 92-kb pO157 plasmid would require antibiotic resistance for efficient selection, and this may influence biofilm formation.Many regulatory mechanisms are involved in biofilm formation (7, 12, 13, 28, 30, 32). Among those mechanisms, the relationship between biofilm formation and acid resistance is well known. Biofilm formation is upregulated after the deletion of the gad or hde gene, which allows bacteria to survive under acidic conditions (12). Previously we showed that an isogenic pO157-cured strain of E. coli O157:H7, ATCC 43894, enhanced acid resistance through increased expression of Gad (14). Similarly, Sakai-Cu has enhanced acid resistance compared to wild-type Sakai (data not shown and J. Y. Lim, B. Hong, H. Sheng, S. Shringi, R. Kaul, and C. J. Hovde, submitted for publication). The link between increased acid resistance and reduced biofilm formation, reduced ESP production, reduced viscosity, and lack of colony morphology variants was not explored here. Comparisons of biofilm formation were not made between these two strains because neither wild-type E. coli O157:H7 ATCC 43894 nor its plasmid-cured strain form significant biofilm under the laboratory conditions tested (data not shown).Two pO157-cured E. coli O157 strains (ATCC 43894 and Sakai) do not colonize cattle as well as their wild-type counterpart (14, 24). The mechanism for this difference may be related to pO157 encoding a set of putative type II secretion genes, etpC to etpM, etpO, and etpS, and these etp genes may be associated with protein secretion required for efficient adherence (23). Tatsuno et al. reported that the toxB gene encoded on pO157 is required for the full epithelial cell adherence phenotype (27). These results may relate to the defect of Sakai-Cu in biofilm formation.In conclusion, this is the first report that pO157 affects biofilm formation of E. coli O157:H7 Sakai through increased EPS production and generation of hyperadherent variants. Further study of biofilm formation under a variety of conditions and comparisons of Sakai with other E. coli O157:H7 strains will be important for understanding the relationship between biofilm formation and E. coli O157:H7 virulence and survival on foods and in the farm environment.  相似文献   

2.
Several natural isolates of Escherichia coli O157:H7 have previously been shown to exhibit stationary-phase-dependent variation in their resistance to inactivation by high hydrostatic pressure. In this report we demonstrate that loss of the stationary-phase-inducible sigma factor RpoS resulted in decreased resistance to pressure in E. coli O157:H7 and in a commensal strain. Furthermore, variation in the RpoS activity of the natural isolates of O157:H7 correlated with the pressure resistance of those strains. Heterogeneity was noted in the rpoS alleles of the natural isolates that may explain the differences in RpoS activity. These results are consistent with a role for rpoS in mediating resistance to high hydrostatic pressure in E. coli O157:H7.  相似文献   

3.

Background  

Enteropathogenic Escherichia coli (EPEC), mainly causing infantile diarrhoea, represents one of at least six different categories of diarrheagenic E. coli with corresponding distinct pathogenic schemes. The mechanism of EPEC pathogenesis is based on the ability to introduce the attaching-and-effacing (A/E) lesions and intimate adherence of bacteria to the intestinal epithelium. The role and the epidemiology of non-traditional enteropathogenic E. coli serogroup strains are not well established. E. coli O157:H45 EPEC strains, however, are described in association with enterocolitis and sporadic diarrhea in human. Moreover, a large outbreak associated with E. coli O157:H45 EPEC was reported in Japan in 1998. During a previous study on the prevalence of E. coli O157 in healthy cattle in Switzerland, E. coli O157:H45 strains originating from 6 fattening cattle and 5 cows were isolated. In this study, phenotypic and genotypic characteristics of these strains are described. Various virulence factors (stx, eae, ehxA, astA, EAF plasmid, bfp) of different categories of pathogenic E. coli were screened by different PCR systems. Moreover, the capability of the strains to adhere to cells was tested on tissue culture cells.  相似文献   

4.
Aims: Rapid detection and selective isolation of E. coli O157:H7 strains have been difficult owing to the potential interference from background microflora present in high background food matrices. To help selectively isolate E. coli O157H7 strains, a useful plating technique that involved acidifying the cultures to pH 2 was evaluated with a large number of E. coli O157:H7 strains to ensure response to treatment was consistent across strains. Methods and Results: Escherichia coli O157, 46 strains including ATCC 35150, were acidified to pH 2 following enrichment and plated onto Tryptic Soy Agar + 0·6% Yeast Extract (TSA‐YE) and Sorbitol MacConkey Agar + cefixime and tellurite (CT‐SMAC). Samples were enumerated and modest decreases in plate counts were observed on TSA‐YE media, with a greater reduction observed on CT‐SMAC. Conclusions: The acid‐resistant character of E. coli O157:H7 is a consistent trait and may be used for improved isolation of the organism from mixed cultures. Significance and Impact of the Study: There was little difference observed between the commonly used laboratory strain E. coli O157:H7 35150 and 45 other strains of E. coli O157 when subjected to acidifying conditions prior to plating, demonstrating that an acid rinse procedure was equally effective across a wide variety of E. coli O157 strains and broadly applicable for isolating unknown strains from food samples.  相似文献   

5.
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.  相似文献   

6.
Aim: To investigate the effect of curli expression on cell hydrophobicity, biofilm formation and attachment to cut and intact fresh produce surfaces. Methods and Results: Five Escherichia coli O157:H7 strains were evaluated for curli expression, hydrophobicity, biofilm formation and attachment to intact and cut fresh produce (cabbage, iceberg lettuce and Romaine lettuce) leaves. Biofilm formation was stronger when E. coli O157:H7 were grown in diluted tryptic soy broth (1 : 10). In general, strong curli‐expressing E. coli O157:H7 strains 4406 and 4407 were more hydrophobic and attached to cabbage and iceberg lettuce surfaces at significantly higher numbers than other weak curli‐expressing strains. Overall, E. coli O157:H7 populations attached to cabbage and lettuce (iceberg and Romaine) surfaces were similar (P > 0·05), indicating produce surfaces did not affect (P < 0·05) bacterial attachment. All E. coli O157:H7 strains attached rapidly on intact and cut produce surfaces. Escherichia coli O157:H7 attached preferentially to cut surfaces of all produce types; however, the difference between E. coli O157:H7 populations attached to intact and cut surfaces was not significant (P > 0·05) in most cases. Escherichia coli O157:H7 attachment and attachment strength (SR) to intact and cut produce surfaces increased with time. Conclusions: Curli‐producing E. coli O157:H7 strains attach at higher numbers to produce surfaces. Increased attachment of E. coli O157:H7 on cut surfaces emphasizes the need for an effective produce wash to kill E. coli O157:H7 on produce. Significance and Impact of the Study: Understanding the attachment mechanisms of E. coli O157:H7 to produce surfaces will aid in developing new intervention strategies to prevent produce outbreaks.  相似文献   

7.
Escherichia coli O157:H7 causes hemorrhagic colitis and hemolytic-uremic syndrome in humans, and its major reservoir is healthy cattle. An F-like 92-kb plasmid, pO157, is found in most E. coli O157:H7 clinical isolates, and pO157 shares sequence similarities with plasmids present in other enterohemorrhagic E. coli serotypes. We compared wild-type (WT) E. coli O157:H7 and an isogenic ΔpO157 mutant for (i) growth rates and antibiotic susceptibilities, (ii) survival in environments with various acidity, salt, or heat conditions, (iii) protein expression, and (iv) survival and persistence in cattle following oral challenge. Growth, metabolic reactions, and antibiotic resistance of the ΔpO157 mutant were indistinguishable from those of its complement and the WT. However, in cell competition assays, the WT was more abundant than the ΔpO157 mutant. The ΔpO157 mutant was more resistant to acidic synthetic bovine gastric fluid and bile than the WT. In vivo, the ΔpO157 mutant survived passage through the bovine gastrointestinal tract better than the WT but, interestingly, did not colonize the bovine rectoanal junction mucosa as well as the WT. Many proteins were differentially expressed between the ΔpO157 mutant and the WT. Proteins from whole-cell lysates and membrane fractions of cell lysates were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis. Ten differentially expressed ~50-kDa proteins were identified by quadrupole-time of flight mass spectrometry and sequence matching with the peptide fragment database. Most of these proteins, including tryptophanase and glutamate decarboxylase isozymes, were related to survival under salvage conditions, and expression was increased by the deletion of pO157. This suggested that the genes on pO157 regulate some chromosomal genes.  相似文献   

8.
Verotoxin-producing Escherichia coli (VTEC) strains are the cause of food-borne and waterborne illnesses around the world. Traditionally, surveillance of the human population as well as the environment has focused on the detection of E. coli O157:H7. Recently, increasing recognition of non-O157 VTEC strains as human pathogens and the German O104:H4 food-borne outbreak have illustrated the importance of considering the broader group of VTEC organisms from a public health perspective. This study presents the results of a comparison of three methods for the detection of VTEC in surface water, highlighting the efficacy of a direct VT immunoblotting method without broth enrichment for detection and isolation of O157 and non-O157 VTEC strains. The direct immunoblot method eliminates the need for an enrichment step or the use of immunomagnetic separation. This method was developed after 4 years of detecting low frequencies (1%) of E. coli O157:H7 in surface water in a Canadian watershed, situated within one of the FoodNet Canada integrated surveillance sites. By the direct immunoblot method, VTEC prevalence estimates ranged from 11 to 35% for this watershed, and E. coli O157:H7 prevalence increased to 4% (due to improved method sensitivity). This direct testing method provides an efficient means to enhance our understanding of the prevalence and types of VTEC in the environment. This study employed a rapid evidence assessment (REA) approach to frame the watershed findings with watershed E. coli O157:H7 prevalences reported in the literature since 1990 and the knowledge gap with respect to VTEC detection in surface waters.  相似文献   

9.
Shiga toxin (Stx)-producing Escherichia coli (STEC) are important causes of diarrhoea and the haemolytic uremic syndrome (HUS). The most common STEC serotype implicated worldwide is E. coli O157:H7 that is diagnosed using procedures based on its typical phenotypic feature, the lack of sorbitol fermentation. In addition to E. coli O157:H7, a variety of non-O157:H7 STEC strains that usually ferment sorbitol and are thus missed by using the diagnostic protocol for E.coli O157:H7 have been isolated from patients. Among these sorbitol-fermenting (SF) non-O157:H7 STEC, SF E. coli O157:H and non-O157 STEC strains of serogroups O26, O103, O111 and O145 have emerged as significant causes of HUS and diarrhoea in continental Europe and have been associated with human disease in other parts of the world. Microbiological diagnosis of non-O157:H7 STEC strains is difficult due to their serotype diversity and the absence of a simple biochemical property that distinguishes such strains from the physiological intestinal microflora. Screening for non-O157:H7 STEC and their isolation from stools is presently based on the detection of Stx production or stx genes that are common characteristics of such strains. Molecular subtyping of the most frequent non-O157 STEC demonstrated that strains of serogroups O26, O103 and O111 belong to their own clonal lineages and show unique virulence profiles. SF STEC O157:H strains that have been isolated mostly in Central Europe represent a new clone within E. coli O157 serogroup which has its own typical combination of virulence factors. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
Single-base-pair csgD promoter mutations in human outbreak Escherichia coli O157:H7 strains ATCC 43894 and ATCC 43895 coincided with differential Congo red dye binding from curli fiber expression. Red phenotype csgD::lacZ promoter fusions had fourfold-greater expression than white promoter fusions. Cloning the red variant csgDEFG operon into white variants induced the red phenotype. Substrate utilization differed between red and white variants.  相似文献   

11.
Prophages make up 12% of the enterohemorrhagic Escherichia coli genome and play prominent roles in the evolution and virulence of this food-borne pathogen. Acquisition and loss of and rearrangements within prophage regions are the primary causes of differences in pulsed-field gel electrophoresis (PFGE) patterns among strains of E. coli O157:H7. Sp11 and Sp12 are two tandemly integrated and putatively defective prophages carried by E. coli O157:H7 strain Sakai. In this study, we identified 3 classes of deletions that occur within the Sp11-Sp12 region, at a frequency of ca. 7.74 × 10−4. One deletion resulted in a precise excision of Sp11, and the other two spanned the junction of Sp11 and Sp12. All deletions resulted in shifts in the XbaI fragment pattern observed by PFGE. We sequenced the inducible prophage pool of Sakai but did not identify any mature phage particles corresponding to either Sp11 or Sp12. Deletions containing pchB and psrC, which are Sp11-carried genes encoding proteins known or suspected to regulate type III secretion, did not affect the secretion levels of the EspA or EspB effector. Alignment of the Sp11-Sp12 DNA sequence with its corresponding regions in other E. coli O157:H7 and O55:H7 strains suggested that homologous recombination rather than integrase-mediated excision is the mechanism behind these deletions. Therefore, this study provides a mechanism behind the previously observed genetic instability of this genomic region of E. coli O157:H7.  相似文献   

12.
Acid resistance (AR) is important to survival of Escherichia coli O157:H7 in acidic foods and may play a role during passage through the bovine host. In this study, we examined the role in AR of the rpoS-encoded global stress response regulator ςS and its effect on shedding of E. coli O157:H7 in mice and calves. When assayed for each of the three AR systems identified in E. coli, an rpoS mutant (rpoS::pRR10) of E. coli O157:H7 lacked the glucose-repressed system and possessed reduced levels of both the arginine- and glutamate-dependent AR systems. After administration of the rpoS mutant and the wild-type strain (ATCC 43895) to ICR mice at doses ranging from 101 to 104 CFU, we found the wild-type strain in feces of mice given lower doses (102 versus 103 CFU) and at a greater frequency (80% versus 13%) than the mutant strain. The reduction in passage of the rpoS mutant was due to decreased AR, as administration of the mutant in 0.05 M phosphate buffer facilitated passage and increased the frequency of recovery in feces from 27 to 67% at a dose of 104 CFU. Enumeration of E. coli O157:H7 in feces from calves inoculated with an equal mixture of the wild-type strain and the rpoS mutant demonstrated shedding of the mutant to be 10- to 100-fold lower than wild-type numbers. This difference in shedding between the wild-type strain and the rpoS mutant was statistically significant (P ≤ 0.05). Thus, ςS appears to play a role in E. coli O157:H7 passage in mice and shedding from calves, possibly by inducing expression of the glucose-repressed RpoS-dependent AR determinant and thus increasing resistance to gastrointestinal stress. These findings may provide clues for future efforts aimed at reducing or eliminating this pathogen from cattle herds.  相似文献   

13.
The influence of heat adaptation (growth at 42 and 45°C) on changes in membrane lipid composition and verotoxin concentration of Escherichia coli O157:H7 (ATCC 43895), an rpoS mutant of ATCC 43895 (FRIK 816-3), a verotoxin mutant E. coli O157:H7 (B6-914), and nonpathogenic E. coli (ATCC 25922) was investigated. D values (57°C) of heat-adapted cells were up to 3.9 min longer than those of control cells for all four strains. Heat adaptation increased the amounts of palmitic acid (16:0) and cis-vaccenic acid (18:1ω7c) in membrane lipids of ATCC 43895 and the rpoS mutant, whereas there was a reduction and no change in the amount of cis-vaccenic acid in nonpathogenic and verotoxin mutant E. coli, respectively. The ratio of palmitic to cis-vaccenic acids decreased in ATCC 43895 and in the rpoS mutant, whereas the ratio increased in nonpathogenic E. coli and was not different in the verotoxin mutant with elevated growth temperature. Total verotoxin concentration decreased due to a reduction in intracellular verotoxin amount in heat-adapted ATCC 43895 and rpoS mutant strains. However, extracellular verotoxin concentration increased in heat-adapted cells. The rpoS gene did not influence membrane lipid composition changes although it did affect heat resistance. Results suggest that increased membrane fluidity may have caused increased verotoxin secretion.  相似文献   

14.
Escherichia coli O157 antigen-specific bacteriophages were isolated and tested to determine their ability to lyse laboratory cultures of Escherichia coli O157:H7. A total of 53 bovine or ovine fecal samples were enriched for phage, and 5 of these samples were found to contain lytic phages that grow on E. coli O157:H7. Three bacteriophages, designated KH1, KH4, and KH5, were evaluated. At 37 or 4°C, a mixture of these three O157-specific phages lysed all of the E. coli O157 cultures tested and none of the non-O157 E. coli or non-E. coli cultures tested. These results required culture aeration and a high multiplicity of infection. Without aeration, complete lysis of the bacterial cells occurred only after 5 days of incubation and only at 4°C. Phage infection and plaque formation were influenced by the nature of the host cell O157 lipopolysaccharide (LPS). Strains that did not express the O157 antigen or expressed a truncated LPS were not susceptible to plaque formation or lysis by phage. In addition, strains that expressed abundant mid-range-molecular-weight LPS did not support plaque formation but were lysed in liquid culture. Virulent O157 antigen-specific phages could play a role in biocontrol of E. coli O157:H7 in animals and fresh foods without compromising the viability of other normal flora or food quality.  相似文献   

15.
16.
Shiga toxin-producing Escherichia coli (STEC) O157 is a formidable human pathogen with the capacity to cause large outbreaks of gastrointestinal illness. The known virulence factors of this organism are encoded on phage, plasmid and chromosomal genes. There are also likely to be novel, as yet unknown virulence factors in this organism. Many of these virulence factors have been acquired by E. coli O157 by transfer from other organisms, both E. coli and non-E. coli species. By examination of biochemical and genetic characteristics of various E. coli O157 strains and the relationships with other organisms, an evolutionary pathway for development of E. coli O157 as a pathogen has been proposed. E. coli O157 evolved from an enteropathogenic E. coli ancestor of serotype O55:H7, which contained the locus of enterocyte effacement containing the adhesin intimin. During the evolutionary process, Shiga toxins, the pO157 plasmid and other characteristics which enhanced virulence were acquired and other functions such as motility, sorbitol fermentation and β-glucuronidase activity were lost by some strains. It is likely that E. coli O157 is constantly evolving, and changes can be detected in genetic patterns during the course of infection. A variety of mechanisms may be responsible for the development of the virulent phenotype that we see today. Such changes include uptake of as yet uncharacterised virulence factors, possibly enhanced by a mutator phenotype, recombination within virulence genes to produce variant genes with different properties, loss of large segments of DNA (black holes) to enhance virulence and possible adaptation to different hosts. Although little is known about the evolution of non-O157 STEC it is likely that the most virulent clones evolved in a similar manner to E. coli O157. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7, derived froman outbreak in Sakai city, Japan in 1996, possesses two kindsof plasmids: a 93-kb plasmid termed pO157, found in clinicalEHEC isolates world-wide and a 3.3-kb plasmid termed pOSAK1,prevalent in EHEC strains isolated in Japan. Complete nucleotidesequences of both plasmids have been determined, and the putativefunctions of the encoded proteins and the cis-acting DNA sequenceshave been analyzed. pO157 shares strikingly similar genes andDNA sequences with F-factor and the transmissible drug-resistantplasmid R100 for DNA replication, copy number control, plasmidsegregation, conjugative functions and stable maintenance inthe host, although it is defective in DNA transfer by conjugationdue to the truncation and deletion of the required genes andDNA sequences. In addition, it encodes several proteins implicatedin EHEC pathogenicity such as an EHEC hemolysin (HlyA), a catalase-peroxidase(KatP), a serine protease (EspP) and type II secretion system.pOSAK1 possesses a ColE1-like replication system, and the DNAsequence is extremely similar to that of a drug-resistant plasmid,NTP16, derived from Salmonella typhimurium except that it lacksdrug resistance transposons.  相似文献   

18.
Entero‐haemorrhagic Escherichia coli O157:H7 is a zoonotic pathogen, responsible for a relatively small number of food poisoning and illness outbreaks each year, when compared with other food‐borne bacteria capable of causing infections in the population. Nevertheless, E. coli O157:H7 is a bacterial pathogen associated with severe human illnesses including bloody diarrhoea and haemolytic uremic syndrome occurring in both outbreak and sporadic settings. In England and Wales approximately 1% of all laboratory‐confirmed cases of food poisoning are the result of E. coli O157:H7; however, in Scotland this figure increases to 3%. When the size of the population is taken into account and the rate of E. coli O157:H7 confirmed cases per 100 000 population is examined, the rate of E. coli 0157:H7 infections in Scotland is much greater than England and Wales. The routes of transmission have changed over time, with new routes of transmission such as farm visits emerging. The prevalence of E. coli O157:H7 has a seasonal dependency, with greater faecal shedding of the organism in the warmer months; this is directly mirrored in the increased reporting of E. coli O157:H7 infection among hospitalized patients. This review attempts to suggest why this phenomenon occurs, paying particular attention to weather, animal movement and private water supplies.  相似文献   

19.
Previous reports have shown that Escherichia coli O157:H7 infection is strongly modified by intestinal microbes. In this paper, we examined whether bifidobacteria protect against E. coli O157:H7 infections using gnotobiotic mice di-associated with Bifidobacterium strains (6 species, 9 strains) and E. coli O157:H7. Seven days after oral administration of each Bifidobacterium strain, the mice were orally infected with E. coli O157:H7 and their mortality was examined. Bifidobacterium longum subsp. infantis 157F-4-1 (B. infantis 157F) and B. longum subsp. longum NCC2705 (B. longum NS) protected against the lethal infection, while mice associated with all other Bifidobacterium strains, including type strains of B. longum subsp. infantis and B. longum subsp. longum, died. There were no significant differences in the numbers of E. coli O157:H7 in the faeces among the Bifidobacterium-associated mouse groups. However, the Shiga toxin concentrations in the cecal contents and sera of the GB mice associated with B. infantis 157F and B. longum NS were significantly lower than those of the other groups. However, there were no significant differences in the volatile fatty acid concentrations and histopathological lesions between these two groups. These data suggest that some strains of B. longum subsp. longum/infantis can protect against the lethal infections of E. coli O157:H7 by preventing Shiga toxin production in the cecum and/or Shiga toxin transfer from the intestinal lumen to the bloodstream.  相似文献   

20.
Characterization of an Escherichia coli O157 strain collection (n = 42) derived from healthy Hungarian cattle revealed the existence of diverse pathotypes. Enteropathogenic E. coli (EPEC; eae positive) appeared to be the most frequent pathotype (n = 22 strains), 11 O157 strains were typical enterohemorrhagic E. coli (EHEC; stx and eae positive), and 9 O157 strains were atypical, with none of the key stx and eae virulence genes detected. EHEC and EPEC O157 strains all carried eae-gamma, tir-gamma, tccP, and paa. Other virulence genes located on the pO157 virulence plasmid and different O islands (O island 43 [OI-43] and OI-122), as well as espJ and espM, also characterized the EPEC and EHEC O157 strains with similar frequencies. However, none of these virulence genes were detected by PCR in atypical O157 strains. Interestingly, five of nine atypical O157 strains produced cytolethal distending toxin V (CDT-V) and carried genes encoding long polar fimbriae. Macro-restriction fragment enzyme analysis (pulsed-field gel electrophoresis) revealed that these E. coli O157 strains belong to four main clusters. Multilocus sequence typing analysis revealed that five housekeeping genes were identical in EHEC and EPEC O157 strains but were different in the atypical O157 strains. These results suggest that the Hungarian bovine E. coli O157 strains represent at least two main clones: EHEC/EPEC O157:H7/NM (nonmotile) and atypical CDT-V-producing O157 strains with H antigens different from H7. The CDT-V-producing O157 strains represent a novel genogroup. The pathogenic potential of these strains remains to be elucidated.Escherichia coli O157:H7 is a food- and waterborne zoonotic pathogen with serious effects on public health. E. coli O157:H7 causes diseases in humans ranging from uncomplicated diarrhea to hemorrhagic colitis and hemolytic-uremic syndrome (HUS) (30). Typically, enterohemorrhagic E. coli (EHEC) strains express two groups of important virulence factors: one or more Shiga toxins (Stx; also called verotoxins), encoded by lambda-like bacteriophages, and a pathogenicity island called the locus of enterocyte effacement (LEE) encoding all the proteins necessary for attaching and effacing lesions of epithelial cells (41). Comparative genomic studies of E. coli O157:H7 strains revealed extensive genomic diversity related to the structures, positions, and genetic contents of bacteriophages and the variability of putative virulence genes encoding non-LEE effector proteins (29, 43).Ruminants and, in particular, healthy cattle are the major reservoir of E. coli O157:H7, although the prevalence of O157:H7 strains in cattle may vary widely, as reviewed by Caprioli et al. (12). E. coli O157:H7 has been found to persist and remain infective in the environment for a long time, e.g., for at least 6 months in water trough sediments, which may be an important environmental niche.In Hungary, infections with E. coli O157 and other Shiga toxin-producing E. coli (STEC) strains in humans in cases of “enteritidis infectiosa” have been notifiable since 1998 on a case report basis. Up to now, the disease has been sporadic, and fewer than 100 (n = 83) cases of STEC infection among 2,700 suspect cases have been reported since 2001. However, until the present study, no systematic, representative survey of possible animal sources had been performed.In this study, our aim was to investigate healthy cattle in Hungary for the presence of strains of E. coli O157 and the genes encoding Shiga toxins (stx1 and stx2) and intimin (eae) and a wide range of putative virulence genes found in these strains. In addition, the phage type (PT) was determined, and pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to further compare the strains at the molecular level. Shiga toxin and cytolethal distending toxin (CDT) production was also examined, and phage induction experiments were conducted. The high incidence of enteropathogenic E. coli (EPEC; eae-positive) O157:H7 strains and atypical (eae- and stx-negative) O157 strains indicates that cattle are a major reservoir of not only EHEC O157 but also EPEC O157 and atypical E. coli O157 strains. These atypical, non-sorbitol-fermenting O157 strains frequently produced CDT-V and may represent a novel O157 clade as demonstrated by MLST and PFGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号