首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Immunocytochemical methods with an antiserum against neuronal nitric oxide synthase (NOS) were applied to identify the morphology and synaptic connectivity of NOS-like immunoreactive neurons in the guinea pig retina. In the present study, two types of amacrine cells were labeled with anti-NOS antisera. Type 1 cells had large somata located in the inner nuclear layer (INL) with long, sparsely branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). The somata of type 2 cells (smaller diameters) were located in the INL. Some displaced amacrine cells in the ganglion cell layer were labeled. The soma size of the displaced amacrine cells was similar to that of the type 2 amacrine cells. However, processes originating from type 2 amacrine cells and displaced amacrine cells stratified mainly in strata 1 and 5, respectively. Some cone bipolar cells were weakly NOS-immunoreactive. The synaptic connectivity of NOS-like immunoreactive amacrine cells was identified in the IPL by electron microscopy. NOS-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in all strata of the IPL. The most frequent postsynaptic targets of NOS-immunoreactive amacrine cells were other amacrine cell processes. Cone bipolar cells were postsynaptic to NOS-labeled amacrine cells in all strata of the IPL. Labeled amacrine cells synapsing onto ganglion cells were found only in sublamina b. A few synaptic contacts were observed between labeled cell processes. In the outer plexiform layer, dendrites of labeled bipolar cells made basal contact with cone pedicles or formed a synaptic triad opposed to a synaptic ribbon of cone pedicles.  相似文献   

2.
 Interrelationships between dopaminergic afferents and somatostatinergic neurons of the rat central amygdaloid nucleus were studied using tyrosine hydroxy-lase/somatostatin double immunolabeling for light and electron microscopy. Additionally, morphological features of somatostatin neurons in different subnuclei of the central nucleus were studied, and the results were complemented by codistribution studies of somatostatin and D1 and D2 dopamine receptor mRNA expression. Dense axonal immunolabeling for tyrosine hydroxylase was colocalized with somatostatin-immunoreactive or somatostatin mRNA-reactive neurons in the medial and the central lateral part of the central nucleus. The number of somatostatinergic neurons detected was higher using in situ hybridization than using immunolabeling. Somatostatin-immunoreactive neurons of the medial central nucleus possessed deeply indented nuclei, and immunoreaction product was confined to the Golgi apparatus and its vicinity. On the other hand, those in the central lateral subnucleus possessed nuclei without indentations and showed diffuse staining of the cytoplasm and/or in large vesicles. Double labeling showed that in the central lateral central nucleus, somatostatin-immunoreactive neurons were contacted by tyrosine hydroxylase-immunoreactive terminals, and on the electron microscopic level synaptic contacts between differently labeled structures were observed. D1 and D2 receptor mRNA-reactive neurons were differentially distributed in central nucleus subnuclei. D1 receptor mRNA-expressing neurons were found only in the medial subnucleus, while D2 receptor mRNA was expressed by a number of neurons in the lateral central and a few in the medial one. Thus, the study proves that somatostatin-immunoreactive neurons of the central lateral central nucleus are directly innervated by dopaminergic afferents and may express the D2 dopamine receptor. Accepted: 2 July 1996  相似文献   

3.
Summary The distribution and morphology of neurons reacting with antisera against dopamine (DA), tyrosine hydroxylase (TH) and histamine (HA) were analyzed in the blowflies Calliphora erythrocephala and Phormia terraenovae. TH-immunoreactive (THIR) and HA-immunoreactive (HAIR) neurons were also mapped in the fruitfly Drosophila melanogaster. The antisera against DA and TH specifically labeled the same neurons in the blowflies. About 300 neurons displayed DA immunoreactivity (DAIR) and THIR in the brain and subesophageal ganglion of the blowflies. Most of these neurons were located in bilateral clusters; some were distributed as bilateral pairs, and two ventral unpaired median (VUM) neurons were seen in the subesophageal ganglion. Immunoreactive processes were found in all compartments of the mushroom bodies except the calyces, in all divisions of the central body complex, in the medulla, lobula and lobula plate of the optic lobe, and in non-glomerular neuropil of protocerebrum, tritocerebrum and the subesophageal ganglion. No DA or TH immunoreactivity was seen in the antennal lobes. In Drosophila, neurons homologous to the blowfly neurons were detected with the TH antiserum. In Phormia and Drosophila, 18 HA-immunoreactive neurons were located in the protocerebrum and 2 in the subesophageal ganglion. The HAIR neurons arborized extensively, but except for processes in the lobula, all HAIR processes were seen in non-glomerular neuropil. The deuto- and tritocerebrum was devoid of HAIR processes. Double labeling experiments demonstrated that TH and HA immunoreactivity was not colocalized in any neuron. In some regions there wasm however, substantial superposition between the two systems. The morphology of the extensively arborizing aminergic neurons described suggests that they have modulatory functions in the brain and subesophageal ganglion.  相似文献   

4.
K M Knigge  D T Piekut 《Peptides》1985,6(1):97-101
The distribution of CRF and tyrosine hydroxylase (TH)-immunoreactive neurons was examined in the brainstem of the chicken. Very dense populations of both CRF and TH-immunoreactive (-ir) perikarya are co-extensive in separate neuronal systems throughout a large field of the rostral brainstem, encompassing locus ceruleus, the mesencephalic reticular formation, parabrachial nucleus, and the dorsal and ventral tegmental areas. They are present also in nucleus tractus solitarius, and sparsely in the ventral and lateral areas of the medulla. This co-distribution suggests that the effects of CRF upon central autonomic activity may be mediated via brainstem catecholamine systems. CRF-ir neurons alone are present also in midline nuclei, including n. centralis superior, n.annularis, n.linearis caudalis, and the raphe.  相似文献   

5.
Summary We examined the immunocytochemical distribution of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis, in the di-and mesencephalon of developing bullfrog tadpoles. Special attention was given to catecholaminergic innervation of the median eminence and pituitary. In premetamorphic tadpoles, tyrosine hydroxylase-immunoreactive neurons were visualized in the suprachiasmatic and infundibular hypothalamus, the ventral thalamus, and midbrain tegmentum by Taylor-Kollros stage V. The number of labeled neurons in all these areas increased as metamorphosis progressed. By mid-prometamorphosis, labeled neurons appeared in the preoptic recess organ as well as in the posterior thalamic nucleus. The majority of cells in the preoptic recess organ, as well as occasional neurons in the suprachiasmatic nucleus, exhibited labeled processes which projected through the ependymal lining of the preoptic recess to contact cerebrospinal fluid. The modified CSF-contacting neurons of the nucleus of the periventricular organ were devoid of specific staining. By late prometamorphosis, labeled fibers from the suprachiasmatic nucleus were observed projecting caudally to enter the hypothalamo-hypophysial-tract en route to innervating the median eminence and pituitary. Labeled fibers arising from the dorsal infundibular nucleus projected ventrolaterally to contribute to catecholaminergic innervation of the median eminence and pituitary. Immunoperoxidase staining of tyrosine hydroxylase-immunoreactive fibers and terminal arborizations in the median eminence were restricted to non-ependymal layers, while labeled fibers in the pituitary were observed in the pars intermedia and pars nervosa. Staining of tyrosine hydroxylase-immunoreactive fibers in the median eminence and pituitary was sparse or absent in premetamorphic tadpoles, but became increasingly more intense as metamorphosis progressed.  相似文献   

6.
Substance P (SP) immunoreactivity in the guinea pig retina was studied by light and electron microscopy. The morphology and distribution of SP-immunoreactive neurons was defined by light microscopy. The SP-immunoreactive neurons formed one population of amacrine cells whose cell bodies were located in the proximal row of the inner nuclear layer. A single dendrite emerged from each soma and descended through the inner plexiform layer toward the ganglion cell layer. SP-immunoreactive processes ramified mainly in strata 4 and 5 of the inner plexiform layer. SP-immunoreactive amacrine cells were present at a higher density in the central region around the optic nerve head and at a lower density in the peripheral region of the retina. The synaptic connectivity of SP-immunoreactive amacrine cells was identified by electron microscopy. SP-labeled amacrine cell processes received synaptic inputs from other amacrine cell processes in all strata of the inner plexiform layer and from bipolar cell axon terminals in sublamina b of the same layer. The most frequent postsynaptic targets of SP-immunoreactive amacrine cells were the somata of ganglion cells and their dendrites in sublamina b of the inner plexiform layer. Amacrine cell processes were also postsynaptic to SP-immunoreactive neurons in this sublamina. No synaptic outputs onto the bipolar cells were observed.  相似文献   

7.
Using immunocytochemistry, morphometry and electron microscopy, we have investigated the distribution and characteristics of CD15-immunoreactive (IR) neurons in the guinea pig retina. In the present study, two types of amacrine cells, including interplexiform cells in the inner nuclear layer (INL) and some cells in the ganglion cell layer (GCL), were labeled with anti-CD15 antisera. Type 1 amacrine cells had large somata located in the INL, with long and branched processes ramifying mainly in strata 4 and 5 of the inner plexiform layer (IPL). Somata of type 2 cells had smaller diameters, and were also located in the INL. Their processes stratified in stratum 1. The densities of type I and type 2 amacrine cells increased from 152.8+/-36.7/mm2 and 160.6+/-61.7/mm2 in the peripheral retina, to 404.3+/-41.5/mm2 and 552.2+/-72.2/mm2 in the central retina, respectively. Cells in the GCL exhibiting CD15 immunoreactivity were rarely observed. Colocalization experiments, using consecutive semi-thin sections, demonstrated that these CD15-IR amacrine cells exhibited gamma-aminobutyric acid (GABA) immunoreactivity. In addition, the processes of the type 1 cells formed one member of the postsynaptic dyads that are formed in the axon terminals of rod bipolar cells. Most of these processes made reciprocal synapses back to the axon terminals of the rod bipolar cells. Thus, CD15-IR amacrine cells constitute a subpopulation of GABAergic amacrine cells in the guinea pig retina, and the type 1 cells among them provide the inhibitory input to rod bipolar cells.  相似文献   

8.
Numbers of catecholaminergic neurons are known to decline with aging. Whether projections of these neurons to the forebrain are similarly affected is not known. High densities of tyrosine hydroxylase-immunoreactive (TH-ir) fibers are found in the hippocampal formation (CA1-3, dentate gyrus) and in the amygdala of normal adult mice. We report here that densities of TH-ir fibers in the amygdala and hippocampus in aged mice (21-26 months) decrease dramatically and in a subregion-specific fashion. There is a reduction of 35% in the dentate gyrus, while hippocampal regions CA1 through CA3 are almost entirely spared. In the amygdala the lateral, basolateral, basomedial, and central nucleus were affected, with fiber reduction ranging from 19% to 34%. These results indicate that the age-related decline of TH-ir catecholaminergic cell bodies in the substantia nigra and the ventral tegmental area induces substantial losses of TH-ir fibers in the amygdala and dentate gyrus, but not in other areas of the hippocampal formation. This suggests that region-specific factors may be implicated in the regulation of maintenance vs. degeneration of TH-ir fibers during aging.  相似文献   

9.
The distribution of calbindin and calretinin in the retina of the sturgeon Acipenser baeri was studied with immunocytochemistry. Western blot analysis of brain extracts, together with immunocytochemical results in the retina and brain, indicated the presence of the two calcium-binding proteins in sturgeon. Calbindin immunocytochemistry revealed only a large displaced bipolar cell type with narrowly stratified axons, similar to some mixed rod and cones bipolar cells described in teleosts. The plexus formed by the axons of these cells in the inner plexiform sublayer was similar to that formed by calbindin-immunoreactive diffuse bipolar cells of some mammals. Calretinin immunocytochemistry also stained these displaced bipolar cells, most ganglion cells including displaced ganglion cells (Dogiel cells), and some amacrine cells of the inner nuclear layer. The distribution of calbindin and calretinin immunoreactivities in the retina of a primitive bony fish indicates that these proteins are highly specific to the cell type.  相似文献   

10.
Calcium-binding proteins are present in different neuron populations in the Central Nervous System. As concerns the Enteric Nervous System, only a few studies have been performed. In the present work we investigated immunohistochemically the localization of Calretinin in neurons of the human intestinal wall. Our results showed the presence of stained cell bodies and fibers with antibodies against Calretinin in the Auerbach plexus. Since most of the enteric neurons are characterized by a slow phase after hyperpolarization caused by Ca2+ dependent K+ channels, the role of Calretinin could be to modulate this particular electrophysiological behaviour.  相似文献   

11.
12.
The fine structure and specialized neuronal, vascular and ventricular relations of tyrosine hydroxylase (TH)-immunopositive neurons and processes were examined in the hypothalamus of the crested newt. TH-immunoreactive neurons form a well developed system. Its possible role in the hypothalamic neuroendocrine mechanisms is discussed.  相似文献   

13.
Summary The mudpuppy retina was investigated with the histofluorescence method of Falck and Hillarp in normal animals and in animals injected intraocularly with -methylnoradrenaline, 5,6-dihydroxytryptamine, or a combination of the two drugs. Catecholaminergic amacrine cells were found to form a thin layer of terminals at the border between the inner nuclear and the inner plexiform layers. Catecholaminergic interplexiform cells were not found. Indoleamine-accumulating amacrine cells were also observed. They are fifteen to twenty times more numerous than the catecholaminergic cells, and their terminals occur diffusely throughout the inner plexiform layer. In a number of eyes the majority of the indoleamine-accumulating terminals were eliminated with intraocular injections of the neurotoxin, 5,7-dihydroxytryptamine, but the reproducibility of this effect was not consistent. Intravitreal injections of 5,6-dihydroxytryptamine were used to label both types of neurons for electron microscopy. They were found to make conventional type synapses on amacrine cells and, less frequently, on bipolar cells.  相似文献   

14.
15.
Summary The adrenergic retinal neurons of perch and trout were studied with the fluorescence microscopical method of Falck and Hillarp. Pilot studies were also performed on pike, plaice, cod, eel, goldfish, cunner, black moor, cichlid and carp. Only minor differences were noted between the species.Adrenergic varicose terminals occur in three sublayers of the inner plexiform layer. The layer adjacent to the ganglion cells is the most elaborate. Adrenergic perikarya occur in the innermost cell rows of the inner nuclear layer, sending branches to all sublayers of the inner plexiform layer. Adrenergic perikarya also occur among the ganglion cells, sending their branches to the innermost sublayer of adrenergic fibres in the inner plexiform layer. Weakly fluorescent adrenergic fibres can be seen running through the entire depth of the inner nuclear layer. They originate from the adrenergic perikarya of the inner nuclear layer, and they end in an elaborate plexus of adrenergic terminals among the horizontal cells. Either of the horizontal cell types can be in contact with adrenergic terminals, but the middle horizontal cells have the greatest density about them, being surrounded by baskets of adrenergic terminals of presumably synaptic character. It cannot be excluded that some horizontal cells contain a catecholamine.Microspectrofluometry revealed dopamine in the perch and trout retinal neurons.The research reported in this document has been sponsored by USPHS Grant No. 06092 and by a Research Professorship from Research to Prevent Blindness, Inc. to A.M.L. and by the Swedish Medical Research Council (B69-14X-712-04C and B68-14X-2321-01).  相似文献   

16.
The goal of this study was to determine the immunohistochemical characteristics of peripheral adrenergic OBR-immunoreactive (OBR-IR) neurons innervating adipose tissue in a pig. The retrograde tracer, Fast Blue (FB), was injected into either the subcutaneous, perirenal, or mesentery fat tissue depots of three male and three female pigs each with approximately 50 kg body weight. Sections containing FB(+) neurons were stained for OBR, tyrosine hydroxylase (TH) or neuropeptide Y (NPY) using a double labeling immunofluorescence method. OBR, TH, and NPY immunoreactivities were present in the thoracic (T) and lumbar (L) ganglia of the sympathetic chain, as well as in the coeliac superior mesenteric ganglion (CSMG), inferior mesenteric ganglion (IMG), intermesenteric ganglia (adrenal-ADG, aorticorenal-ARG, and ovarian-OG or testicular-TG ganglion). These results indicate that, in addition to neuroendocrine functions, leptin may affect peripheral tissues by acting on receptors located in sympathetic ganglion neurons.  相似文献   

17.
The aim of the present study was to examine quantitatively whether two calcium-binding proteins, calbindin D28k and calretinin, are localized in oxytocin and vasopressin neurons of the supraoptic nucleus of the male rat. We used a triple-labeling immunofluorescence method with a confocal laser scanning microscope. Of the oxytocin-labeled cells, 70% were stained for both calbindin D28k and calretinin, 15% were stained for only calbindin D28k, 13% were stained for only calretinin, and 2% were stained for neither protein. Of the vasopressin-labeled cells, 73% were stained for neither calbindin D28k nor calretinin, 21% were stained for only calbindin D28k, 4% were stained for only calretinin, and 2% were stained for both proteins. Calbindin D28k and calretinin have been shown previously to contribute to calcium homeostasis by buffering [Ca2+]i. Therefore, these findings suggest that most of the oxytocin neurons may have a higher Ca(2+)-buffering capacity than most of the vasopressin neurons.  相似文献   

18.
We examined dopaminergic neurons in the guinea pig retina; antisera against tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT) and an antiserum against gamma-aminobutyric acid (GABA) were used. In the present study, two types of amacrine cells were labeled with an anti-TH antiserum. However, no DBH and PNMT immunoreactivities were seen. The type 1 cell had a larger-sized soma located in the inner nuclear layer with processes ramifying mainly in stratum 1 of the inner plexiform layer (IPL). The type 2 cell had a smaller-sized soma and processes branching in stratum 3 of the IPL. The mean densities were 56.4 +/- 11.5/mm2 for the type 1 cell and 166.6 +/- 30.3/mm2 for the type 2 cell. Double immunocytochemistry using an antiserum against GABA revealed that while none of the type 1 cells showed GABA immunoreactivity, all of the type 2 cells displayed GABA immunoreactivity. Our results suggest that, in the guinea pig retina, the type 1 amacrine cells are pure dopaminergic and the type 2 cells are dopaminergic elements that use GABA as their second transmitter.  相似文献   

19.
Somatostatin and VIP neurons in the retina of different species   总被引:6,自引:0,他引:6  
Neurons displaying somatostatin or vasoactive intestinal polypeptide (VIP) immunoreactivity were detected among the amacrine cells in the retina of baboon, cynomolgus monkey, squirrel monkey, cow, pig, cat, rabbit, guinea-pig, rat, mouse, frog and goldfish. Generally, immunoreactive cell bodies were located in the inner nuclear layer with processes ramifying in three more or less well-defined sublayers in the inner plexiform layer. The density of the sublayers and their location varied with the peptide and species investigated. In most cases there was a sublayer in the outermost part (Ramon y Cajal's sublamina 1) of the inner plexiform layer and this sublayer was usually the best developed. In some species a few somatostatin fibres were also detected in the outer plexiform layer, suggesting that some interplexiform cells contain somatostatin. In the baboon VIP was found exclusively in interstitial amacrine cells which have their cell bodies and processes entirely within the inner plexiform layer.  相似文献   

20.
Summary Neurons displaying somatostatin or vasoactive intestinal polypeptide (VIP) immunoreactivity were detected among the amacrine cells in the retina of baboon, cynomolgus monkey, squirrel monkey, cow, pig, cat, rabbit, guinea-pig, rat, mouse, frog and goldfish. Generally, immunoreactive cell bodies were located in the inner nuclear layer with processes ramifying in three more or less well-defined sublayers in the inner plexiform layer. The density of the sublayers and their location varied with the peptide and species investigated. In most cases there was a sublayer in the outermost part (Ramon y Cajal's sublamina 1) of the inner plexiform layer and this sublayer was usually the best developed. In some species a few somatostatin fibres were also detected in the outer plexiform layer, suggesting that some interplexiform cells contain somatostatin. In the baboon VIP was found exclusively in interstitial amacrine cells which have their cell bodies and processes entirely within the inner plexiform layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号