首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primer sets were designed to target specific 16S ribosomal DNA (rDNA) sequences of photosynthetic bacteria, including the green sulfur bacteria, the green nonsulfur bacteria, and the members of the Heliobacteriaceae (a gram-positive phylum). Due to the phylogenetic diversity of purple sulfur and purple nonsulfur phototrophs, the 16S rDNA gene was not an appropriate target for phylogenetic rDNA primers. Thus, a primer set was designed that targets the pufM gene, encoding the M subunit of the photosynthetic reaction center, which is universally distributed among purple phototrophic bacteria. The pufM primer set amplified DNAs not only from purple sulfur and purple nonsulfur phototrophs but also from Chloroflexus species, which also produce a reaction center like that of the purple bacteria. Although the purple bacterial reaction center structurally resembles green plant photosystem II, the pufM primers did not amplify cyanobacterial DNA, further indicating their specificity for purple anoxyphototrophs. This combination of phylogenetic- and photosynthesis-specific primers covers all groups of known anoxygenic phototrophs and as such shows promise as a molecular tool for the rapid assessment of natural samples in ecological studies of these organisms.  相似文献   

2.
Seasonal studies of the anoxygenic phototrophic bacterial community of the water column of the saline eutrophic meromictic Lake Shunet (Khakassia) were performed in 2002 (June) and 2003 (February–March and August). From the redox zone down, the lake water was of dark green color. Green sulfur bacteria predominated in every season. The maximum number of green sulfur bacteria was 107 cells/ml in summer and 106 cells/ml in winter. A multi-syringe stratification sampler was applied for the study of the fine vertical distribution of phototrophs in August 2003; the sampling was performed every 5 cm. A 5-cm-thick pink-colored water layer inhabited by purple sulfur bacteria was shown to be located above the layer of green bacteria. The species composition and ratio of purple bacterial species depended on the sampling depth and on the season. In summer, the number of purple sulfur bacteria in the layer of pink water was 1.6 × 108 cells/ml. Their number in winter was 3 × 105 cells/ml. In the upper oxygen-containing layer of the chemocline the cells of purple nonsulfur bacteria were detected in summer. The maximum number of nonsulfur purple bacteria, 5 × 102 cells/ml, was recorded in August 2003. According to the results of the phylogenetic analysis of pure cultures of the isolated phototrophic bacteria, which were based on 16S rDNA sequencing, green sulfur bacteria were close to Prosthecochloris vibrioformis, purple sulfur bacteria, to Thiocapsa and Halochromatium species, and purple nonsulfur bacteria, to Rhodovulum euryhalinum and Pinkicyclus mahoneyensis.  相似文献   

3.
Aerobic anoxygenic phototrophic bacteria (AAnPs) were previously proposed to account for up to 11% of marine bacterioplankton and to potentially have great ecological importance in the world's oceans. Our data show that previously used primers based on the M subunit of anoxygenic photosynthetic reaction center genes (pufM) do not comprehensively identify the diversity of AAnPs in the ocean. We have designed and tested a new set of pufM-specific primers and revealed several new AAnP variants in environmental DNA samples and genomic libraries.  相似文献   

4.
Seasonal studies of the anoxygenic phototrophic bacterial community of the water column of the saline eutrophic meromictic Lake Shunet (Khakassia) were performed in 2002 (June) and 2003 (February-March and August). From the redox zone down, the lake water was of dark green color. Green sulfur bacteria predominated in every season. The maximum number of green sulfur bacteria was 10(7) cells/ml in summer and 10(6) cells/ml in winter. A multi-syringe stratification sampler was applied for the study of the fine vertical distribution of phototrophs in August 2003; the sampling was performed every five centimeters. A five-centimeter-thick pink-colored water layer inhabited by purple sulfur bacteria was shown to be located above the layer of green bacteria. The species composition and ratio of purple bacterial species depended on the sampling depth and on the season. In summer, the number of purple sulfur bacteria in the layer of pink water was 1.6 x 10(8) cells/ml. Their number in winter was 3 x 10(5) cells/ml. In the upper oxygen-containing layer of the chemocline the cells of purple nonsulfur bacteria were detected in summer. The maximum number of nonsulfur purple bacteria, 5 x 10(2) cells/ml, was recorded in August 2003. According to the results of the phylogenetic analysis of pure cultures of the isolated phototrophic bacteria, which were based on 16S rDNA sequencing, green sulfur bacteria were close to Prosthecochloris vibrioformis, purple sulfur bacteria, to Thiocapsa and Halochromatium species, and purple nonsulfur bacteria, to Rhodovulum euryhalinum and Pinkicyclus mahoneyensis.  相似文献   

5.
To detect anoxygenic bacteria containing either type 1 or type 2 photosynthetic reaction centers in a single PCR, we designed a degenerate primer set based on the bchY gene. The new primers were validated in silico using the GenBank nucleotide database as well as by PCR on pure strains and environmental DNA.Anoxygenic photosynthetic bacteria are diverse and important members of microbial communities (11, 13, 17, 20). There are five bacterial phyla containing anoxygenic phototrophs: Proteobacteria (purple bacteria), Chlorobi (green sulfur bacteria), Chloroflexi (green nonsulfur bacteria), Acidobacteria (“Candidatus Chloracidobacterium thermophilum” [7]), and Firmicutes (heliobacteria). While Heliobacterium modesticaldum, Chlorobi, and “Ca. Chloracidobacterium thermophilum” have a type 1 reaction center (RC1) similar to photosystem I in Cyanobacteria and higher plants, Chloroflexi and Proteobacteria possess a type 2 reaction center (RC2) similar to photosystem II of oxygenic phototrophs (7, 16).Primers based on pufM, the gene encoding the M subunit of RC2, have been widely used to detect phototrophic purple bacteria (1, 4, 12, 19). However, phototrophic bacteria that do not possess RC2 are not retrieved when pufM is used as the target. Achenbach and coworkers (1) developed primers targeting rRNA genes of Chlorobi, Chloroflexi, and heliobacteria, while Alexander and coworkers (2) have developed primers to specifically detect green sulfur bacteria (Chlorobi) by using 16S rRNA and fmoA as gene targets and applied these primers in environmental studies (3). No currently available primer set can simultaneously target phototrophs containing either RC1 or RC2.Since it is well established that both RC1- and RC2-containing anoxygenic phototrophs synthesize bacteriochlorophylls (BChls), we searched for a universal anoxygenic photosynthesis gene marker among all enzymes involved in BChl biosynthetic pathways. All known pathways for chlorophyll and BChl biosynthesis branch from the heme biosynthesis pathway at protoporphyrin IX and continue to chlorophyllide a (Chlide a) through the same intermediates (9). Chlide a is the branching point that separates chlorophyll and BChl biosynthetic pathways. Moreover, pathways for the synthesis of different BChls are also split at this stage: chlorophyllide oxidoreductase converts Chlide a to 3-vinyl-bacteriophyllide a, which is the precursor for BChls a, b, and g, while a yet unknown enzyme reduces Chlide a to 3-vinyl-bacteriophyllide d, a precursor for antenna BChls c, d, and e in Chlorobium spp. (9). Since 3-vinyl-bacteriophyllide a is the last common intermediate in the synthesis of BChl a and BChl g, and the latter is the only BChl in heliobacteria (14, 15), chlorophyllide oxidoreductase is the only enzyme that is (i) present in anoxygenic phototrophic bacteria and not in oxygenic phototrophs and (ii) common to all known anoxygenic phototrophic bacterial species (with the exception of “Ca. Chloracidobacterium thermophilum,” where the pathway for BChl synthesis is not yet known). Analyzing multiple alignments of the subunits of chlorophyllide oxidoreductase, we found that only the Y subunit (encoded by the BchY gene) had two conserved regions distinguishing this protein from its closest homologs; therefore, the bchY gene was chosen as a universal marker for anoxygenic photosynthesis.Due to likely codon variations coding identical amino acid sequences in different genomes (19), degenerate BchY primers were designed by reverse translation of two conserved regions of the BchY alignment (Fig. (Fig.1):1): bchY_fwd (5′-CCNCARACNATGTGYCCNGCNTTYGG-3′ [26 bases; 2,048 variants; corresponding amino acid sequence, PQTMCPAFG]) and bchY_rev (5′-GGRTCNRCNGGRAANATYTCNCC-3′ [23 bases; 4,096 variants; corresponding amino acid sequence, GE{I/M}FP{A/ V}DP]). Each primer had no more than two bases deviating from known bchY sequences in the GenBank nr database (except for H. modesticaldum) as well as to environmental BchY variants in the GenBank env_nr database. None of these deviations were located in the 3′ ends of the primers (see Tables S2 and S3 in the supplemental material). These primers, therefore, were predicted to amplify a wide diversity of bchY genes under nonstringent PCR conditions (50 to 52°C annealing temperature). The lengths of the expected PCR products were either 480 bp (for green sulfur, green nonsulfur bacteria, and heliobacteria) or 510 bp (for purple bacteria).Open in a separate windowFIG. 1.Multiple-amino-acid alignment of BchY proteins. Sequence abbreviations: R.den, Roseobacter denitrificans (gi|110677524); R.gel, Rubrivivax gelatinosus (gi|29893484); R.cap, Rhodobacter capsulatus (gi|114868); C.lit, Congregibacter litoralis KT 71 (gi|88706663); H.hal, Halorhodospira halophila (gi|121998388); C.aur, Chloroflexus aurantiacus (gi|163849328); C.tep, Chlorobium tepidum (gi|66576270); and H.mod, Heliobacterium modesticaldum (gi|167629410).In order to check primer specificity in silico, a screening procedure was developed. Putative primer sites (tags) for both the bchY_fwd and the bchY_rev primers were gathered from the GenBank nucleotide collection (nt) by BLAST with relaxed search conditions; the tags having mismatches at the 3′ end or more than five overall mismatches from their primer were filtered out, and the remaining tags were mapped to their sequences mimicking PCR primer annealing. Fragments ranging from 300 to 700 bp (virtual “PCR products”) were retrieved from GenBank and annotated (see Table S4 in the supplemental material). All bchY genes present in the GenBank nt database were virtually “amplified,” pointing to the robustness of the primers and our in silico PCR analysis. On the other hand, all nonspecific “amplicons” have major deviations from the primer sequences and would likely not be amplified by a real PCR. The same screening procedure was performed against the GenBank environmental nucleotide collection (env_nt) (see Table S5 in the supplemental material), and as in the case with the nt database, only bchY fragments were virtually “amplified.”The BchY primer set was validated using five key control organisms, including the RC2-containing the purple sulfur bacterium Allochromatium vinosum and the purple nonsulfur bacterium Rhodobacter capsulatus as well as the RC1-containing green sulfur bacterium Chlorobium limicola, green nonsulfur bacterium Chloroflexus aurantiacus, and the heliobacterium H. modesticaldum. Amplifications yielded the predicted products of 510 bp from the purple bacteria and 480 bp from the green sulfur and nonsulfur bacteria and H. modesticaldum. Negative-control Escherichia coli and Synechocystis sp. strain PCC 6803 did not yield amplification products when the bchY primers were used.The designed BchY primer set successfully amplified bchY genes from DNA obtained from both marine (East Mediterranean Sea) and freshwater (Lake Kinneret) environments (see Table S6 in the supplemental material for best BLASTX hits for selected sequenced fragments). These habitats were chosen for testing due to the previously reported wide diversity of their anoxygenic phototrophs (8, 10, 18, 19). A phylogenetic tree of bchY gene fragments amplified from both freshwater and marine DNA samples is shown in Fig. Fig.22.Open in a separate windowFIG. 2.BchY phylogenetic tree based on a maximum likelihood tree to which short sequences were added by ARB parsimony. The branches that appeared on the original maximum likelihood tree are shown with thicker lines. Bootstrap values greater than 50% are indicated next to the branches. Sequences obtained in this study are shown in bold. For reasons of clarity, not all BchY sequences retrieved are shown in the tree. For cases in which a BchY fragment was found in more than three clones, the numbers of clones are given in parentheses. Clones m21_2 and m21_3 are identical to the bchY gene of Hoeflea phototrophica strain DFL-43 (6); the m20_2 clone was identical to the bchY gene of Dinoroseobacter shibae (5).Our study underlines the utility of the bchY gene as a molecular marker for revealing genetic heterogeneity in phototrophic microbial populations. Using both wide-scale bioinformatic analysis and PCR on control strains and naturally occurring microbial community DNA, we have confirmed the specificity and coverage of the proposed degenerate BchY primers.  相似文献   

6.
The phylogenetic heterogeneity of anoxygenic phototrophic bacteria has been revealed by 16S rRNA sequence analysis, the results of which have led to extensive taxonomic rearrangements within previously defined taxa of phototrophs and stimulated interest in this group of organisms. Anoxygenic photosynthetic bacteria can be found within 4 of the 12 phylogenetic lineages, and in some cases are highly related to non-photosynthetic members of these groups. The largest number of phototrophs are found in the class Proteobacteria. Comparative phylogenetic analysis using 23S rDNA sequences generally supports the topology obtained from 16S rDNA sequences. The photosynthetic reaction centers are conserved in all photosynthetic bacteria, and are of two types. One is shared by the Proteobacteria and Chloroflexus aurantiacus and is similar to Photosystem II of cyanobacteria, while heliobacteria and Chlorobium and relatives possess a reaction center similar to the cyanobacterial Photosystem I. These similarities are supported by sequence analysis of core reaction center peptides, but contradict phylogenies reconstructed from rRNA sequence analysis. Genome analysis by means of physical mapping has been performed for only three species of anoxygenic phototrophs. Some conservation of operon structure and gene sequence has been found within the Proteobacteria, but does not extend to other phototrophs. Received: 29 December 1995 / Accepted: 19 July 1996  相似文献   

7.
Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, and salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54°C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected in the samples from both the thermophilic and mesophilic mats. Cultures of nonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolated from the mats developed at high (50.6–49.4°C) and low temperatures (45–20°C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealed in low-temperature mats. Truly thermophilic purple and green sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfur communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophyll a-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20°C) mat is of interest.  相似文献   

8.
The community structure of pink-colored microbial mats naturally occurring in a swine wastewater ditch was studied by culture-independent biomarker and molecular methods as well as by conventional cultivation methods. The wastewater in the ditch contained acetate and propionate as the major carbon nutrients. Thin-section electron microscopy revealed that the microbial mats were dominated by rod-shaped cells containing intracytoplasmic membranes of the lamellar type. Smaller numbers of oval cells with vesicular internal membranes were also found. Spectroscopic analyses of the cell extract from the biomats showed the presence of bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Ubiquinone-10 was detected as the major quinone. A clone library of the photosynthetic gene, pufM, constructed from the bulk DNA of the biomats showed that all of the clones were derived from members of the genera Rhodobacter and Rhodopseudomonas. The dominant phototrophic bacteria from the microbial mats were isolated by cultivation methods and identified as being of the genera Rhodobacter and Rhodopseudomonas by studying 16S rRNA and pufM gene sequence information. Experiments of oxygen uptake with lower fatty acids revealed that the freshly collected microbial mats and the Rhodopseudomonas isolates had a wider spectrum of carbon utilization and a higher affinity for acetate than did the Rhodobacter isolates. These results demonstrate that the microbial mats were dominated by the purple nonsulfur bacteria of the genera Rhodobacter and Rhodopseudomonas, and the bioavailability of lower fatty acids in wastewater is a key factor allowing the formation of visible microbial mats with these phototrophs.  相似文献   

9.
A novel selective enrichment method is described for phototrophic green sulfur bacteria even in the presence of purple sulfur and purple nonsulfur bacteria using sulfanilate, which was discovered during efforts to selectively isolate sulfanilate-metabolizing anoxygenic phototrophic bacteria from marine habitats. Samples for these experiments were obtained from beaches, saltpans, subsurface mangrove soils, fish and prawn aquaculture ponds and backwaters of the East and West coasts of India. Photoorganoheterotrophic and photolithoautotrophic enrichments in the absence of sulfanilate predominantly yielded purple bacterial enrichments. In contrast, photolithoautotrophic enrichments in the presence of sulfanilate yielded green-colored enrichments from the same samples. Whole cell absorption spectra of the enrichment cultures revealed the presence of bacteriochlorophyll c and thus green phototrophic bacteria. Microscopic observation demonstrated the presence of sulfur globules outside the bacterial cells and the presence of non-motile cells, some of which had prosthecae. 16S rDNA sequences obtained from green sulfur bacterial strains isolated from enrichment cultures confirmed the presence of representatives of the green sulfur bacterial genera Prosthecochloris and Chlorobaculum. The selective pressure of sulfanilate exerted through inhibition of phototrophic purple sulfur bacteria was demonstrated by inhibition studies using the purple sulfur bacteria Marichromatium indicum JA100 and Marichromatium sp. JA120 (JCM 13533) and the green sulfur bacterium Prosthecochloris sp. JAGS6 (JCM 13299).  相似文献   

10.
Green sulfur bacteria possess a complex photosynthetic machinery. The dominant light harvesting systems are chlorosomes, which consist of bacteriochlorophyll c, d or e oligomers with small amounts of protein. The chlorosomes are energetically coupled to the membrane-embedded iron sulfur-type reaction center via a bacteriochlorophyll a-containing baseplate protein and the Fenna-Matthews-Olson (FMO) antenna protein. The fluorescence yield and spectral properties of these photosynthetic complexes were investigated in intact cells of several species of green sulfur bacteria under physiological, anaerobic conditions. Surprisingly, green sulfur bacteria show a complex modulation of fluorescence yield upon illumination that is very similar to that observed in oxygenic phototrophs. Within a few seconds of illumination, the fluorescence reaches a maximum, which decreases within a minute of illumination to a lower steady state. Fluorescence spectroscopy reveals that the fluorescence yield during both processes is primarily modulated on the FMO-protein level, while the emission from chlorosomes remains mostly unchanged. The two most likely candidates that modulate bacteriochlorophyll fluorescence are (1) direct excitation quenching at the FMO-protein level and (2) indirect modulation of FMO-protein fluorescence by the reduction state of electron carriers that are part of the reaction center.  相似文献   

11.
The spatial distribution and composition of anoxygenic phototrophic bacteria in the enriched bacterial communities from different depths of karst lakes Kirkilai and Ramunelis was studied using spectrophotometric analysis, as well as microbiological and molecular methods. In Lake Kirkilai, the highest bacterial abundance was measured in the metalimnion and near the bottom (up to 10.7 × 106 cell/mL); in Lake Ramunelis it was in the anoxic hypolimnion (up to 22.4 × 106 cell/mL). Increased water mineralization (0.5–1.2 g/L) with the domination of SO 4 2? and Ca2+ ions created favorable conditions for the development of sulfate-reducing bacteria; hydrogen sulfide produced as a result of their life activity facilitated the development of sulfur-oxidizing bacteria. The pigment analysis of phototrophic green and purple sulfur bacteria showed the domination of green sulfur bacteria in the enrichment culture. The results of phylogenetic analysis showed that Chlorobium limicola dominated in the enrichment culture for the green sulfur bacteria, whereas purple nonsulfur bacteria of the genus Rhodopseudomonas dominated in the enrichment culture for the purple sulfur bacteria.  相似文献   

12.
Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge.  相似文献   

13.
Enrichment cultures for purple nonsulfur and sulfur photosynthetic bacteria were prepared from soil samples collected in central and northern Minnesota. The purple nonsulfur bacteria were found in most wetland soils sampled but were uncommon in woodland and grassland soils. The pH range of the soils in which these bacteria occurred was 3.8 to 7.8, and the oxidation-reduction potential (E(h)) range was +510 to -65 mV. Soils with a pH below 5.0 or an E(h) above +370 mV had few purple nonsulfur bacteria (<10/g of soil). Rhodopseudomonas viridis, a photosynthetic bacterium containing bacteriochlorophyll b, and the purple sulfur bacteria were common only in low-acidity wetland soils that were usually being reduced.  相似文献   

14.
The complete nucleotide sequences of the genes coding for L, M protein subunits and part of cytochrome subunit of the photosynthetic reaction center were determined for the thermophilic purple sulfur bacterium t Chromatium tepidum (t Chr. tepidum) which belongs to the subclass. The DNA fragments with 860 bp and 1900 bp were amplified by the Polymerase Chain Reaction (PCR) with the primers designed on the basis of amino acid sequences according to chemical sequence analysis of the proteins. The deduced amino acid sequences of these genes showed a significantly high degree of homology with those from purple non-sulfur bacteria. The L subunit consisted of 280 amino acids and had a molecular mass of 31,393. The M subunit consisted of 324 amino acids and had a molecular mass of 36,299. The aligned sequences of the L subunits of other purple bacterial reaction center polypeptides, showed the insertion of 8 amino acids in t Chr. tepidum in the connection of the first and second membrane-spanning helices different from those of purple non-sulfur bacteria. The aligned sequences of the L, M and cytochrome subunits were compared with other species and discussed in terms of phylogenetic trees.  相似文献   

15.
Green sulfur bacteria and heliobacteria are strictly anaerobic phototrophs that have homodimeric type 1 reaction center complexes. Within these complexes, highly reducing substances are produced through an initial charge separation followed by electron transfer reactions driven by light energy absorption. In order to attain efficient energy conversion, it is important for the photooxidized reaction center to be rapidly rereduced. Green sulfur bacteria utilize reduced inorganic sulfur compounds (sulfide, thiosulfate, and/or sulfur) as electron sources for their anoxygenic photosynthetic growth. Membrane-bound and soluble cytochromes c play essential roles in the supply of electrons from sulfur oxidation pathways to the P840 reaction center. In the case of gram-positive heliobacteria, the photooxidized P800 reaction center is rereduced by cytochrome c-553 (PetJ) whose N-terminal cysteine residue is modified with fatty acid chains anchored to the cytoplasmic membrane.  相似文献   

16.
The spectral irradiance from 400 to 1,100 nm was measured with depth in the intertidal sand mats at Great Sippewissett Salt Marsh, Mass. These mats contained at least four distinct layers, composed of cyanobacteria, purple sulfur bacteria containing bacteriochlorophyll a (Bchl a), purple sulfur bacteria containing Bchl b, and green sulfur bacteria. Spectral irradiance was measured directly by layering sections of mat on a cosine receptor. Irradiance was also approximated by using a calibrated fiber-optic tip. With the tip, irradiance measurements could be obtained at depth intervals less than 250 μm. The irradiance spectra were correlated qualitatively and quantitatively with the distribution of the diverse chlorophyll pigments in this mat and were compared with spectra recorded in plain sand lacking pigmented phototrophs. We found that the shorter wavelengths (400 to 550 nm) were strongly attenuated in the top 2 mm of the mat. The longer wavelengths (red and near infrared) penetrated to much greater depths, where they were attenuated by Bchl a, b, and c-containing anoxygenic phototrophic bacteria. The specific attenuation bands in the irradiance spectra correlated with the specific in vivo absorption bands of the Bchl-protein complexes in the bacteria. We concluded that the pigments in the phototrophs had a profound affect on the light environment within the mat. It seems likely that the diverse Bchl-protein complexes found in the anoxygenic phototrophs evolved in dense mat environments as a result of competition for light.  相似文献   

17.
True marine and halophilic anoxygenic phototrophic bacteria   总被引:7,自引:0,他引:7  
Anoxygenic phototrophic bacteria are widely distributed in marine sediments and shallow waters of the coastal zone, where they often form intensely colored mass developments. The phototrophic bacteria have adapted to the whole spectrum of salt concentrations, from freshwater to saturated brines, and it is apparent that individual species have adapted well to particular habitats and mineral salts compositions, both qualitatively and quantitatively. This adaptation is reflected not only in the demand for defined ranges of salt concentrations, but also in the phylogenetic relationships of these bacteria, as established by 16S rDNA sequences. Major phylogenetic branches of purple sulfur bacteria are represented by: (1) marine and extremely halophilic Ectothiorhodospiraceae, (2) truly marine and halophilic Chromatiaceae and (3) freshwater Chromatiaceae, some of which are tolerant to low salt concentrations and are successful competitors in brackish and marine habitats. Quite similarly, salt-dependent green sulfur bacteria form distinct phylogenetic lines. In addition, also among the phototrophic alpha-Proteobacteria (purple nonsulfur bacteria), distinct phylogenetic lines of salt-dependent species are recognized. Available data give rise to the assumption that salt concentrations of natural habitats are an important selective factor that determines the development of a selected range of phototrophic bacteria in an exclusive way. As a consequence, the salt responses of these bacteria are reflected in their phylogenetic relationships.  相似文献   

18.
The common ancestor of all photosynthetic prokaryotes and organelles contained chlorophyll (Chl) a. All green and purple photosynthetic bacteria descended from a common bacteriochlorophyll (Bchl) a-containing ancestor which diverged from the Chl a line. Separate PS-I and PS-II reaction centers may have evolved before the appearance of Bchl a. When the transition to Bchl a occurred, the resultant organism contained two types of reaction center, “PS-I” and “PS-II.” One line of development eliminated “PS-II” and evolved into the green bacteria. The other line eliminated “PS-I” and became the purple bacteria. In the Chl a-containing organisms the evolution of PS-II continued until oxygen evolution was achieved.  相似文献   

19.
Thirteen new isolates of bacteriochlorophyll b-containing purple nonsulfur bacteria were isolated from four freshwater habitats using specific enrichment methods including the use of long wavelength filters and extincting dilution of the inoculum. The new isolates were compared with the type strain of Blastochloris viridis, strain DSM 133(T), as regards pigments, morphology, carbon nutrition, and phylogeny. All new isolates were budding bacteria, and phototrophic mass cultures were green, brown, or brown-green in color. The pattern of carbon sources photocatabolized were similar in all strains; however, sugars, both mono- and disaccharides, were widely used by the new isolates while they did not support growth of strain DSM 133(T). Phylogenetic analysis showed all new strains to cluster tightly with the type strain with the exception of one brown-colored strain and a mildly thermophilic strain. The results suggest that in contrast to purple nonsulfur bacteria containing bacteriochlorophyll a, those containing bacteriochlorophyll b may not be morphologically or phylogenetically diverse, and group into a tight phylogenetic clade distinct from all other anoxygenic phototrophs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号