首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. J. Burrows  D. J. Carr 《Planta》1967,73(4):369-375
Summary The responses of three types of explants of blue lupin leaves are considered: pulvinar explants, consisting of the pulvinar region alone, petiolar explants, consisting of the pulvinar region plus petiole and laminar explants consisting of the pulvinar region plus leaflets. Abscission is accelerated by removal of the leaflets; removal of the petiole has much less effect. Pulvinar explants fail to abscise in darkness but are the first to abscise in the light. This is in accordance with previous evidence of high light sensitivity of the pulvinar region. Kinetin applied directly to the pulvinar region delays abscission, as does kinetin supplied via the transpiration stream. As shown by experiment, this is probably due to transported kinetin reaching the abscission zones of the pulvinar region. The effects of photoperiodic treatments on explants or whole leaves are described. Abscission in the whole leaf is delayed by short daily photoperiods; the delay reaches a maximum with 8 hours light per day. However, abscission is more rapid in continuous light than in darkness. Removal of the leaflets greatly accelerates abscission even in darkness. The pulvinar explant fails to abscise with photoperiods of 4 hours or less; although it appears to have a long day response, preliminary attempts failed to demonstrate that this is a true photoperiodic response (replacement of a long day by a short day together with a light break). The complex responses of leaves and explants to day length lend further support to the hypothesis that light has effects on abscission other than in photosynthesis.  相似文献   

2.
A comparative study of leaf and leaflet abscission in Acer negundo and Fraxinus americana was undertaken with special emphasis on leaflet abscission. Leaf fall in both species is accomplished by orderly, fragmentary abscission of leaflets followed by petiole abscission. Leaflet fall was presaged by differentiation of a separation layer at leaflet bases 10–15 days prior to leaflet fall, without an accompanying protective layer. Anatomical studies of petiole abscission revealed early differentiation of a protective layer followed by differentiation of a separation layer at petiole bases just prior to petiolar fall. Abscission at both sites was facilitated by cell division and dissolution of cell walls within separation layers.  相似文献   

3.
The leaf and stem of the potato plant (Solanum tuberosum L. cv. Russet Burbank) were studied by light microscopy to determine their morphology and vasculature; scanning electron microscopy provided supplemental information on the leaf's morphology. The morphology of the basal leaves of the potato shoot is quite variable, ranging from simple to pinnately compound. The upper leaves of the shoot are more uniform, being odd pinnate with three major pairs of lateral leaflets and a number of folioles. The primary vascular system of the stem is comprised of six bundles, three large and three small ones. The three large bundles form a highly interconnected system through a repeated series of branchings and arch-producing mergers. Two of the three large bundles give rise to short, lateral leaf traces at each node. Each of the small bundles in the stem is actually a median leaf trace which extends three internodes before diverging into a leaf. The three leaf traces enter the petiole through a single gap; thus the nodel anatomy is three-trace unilacunar. Upon entering the petiole, each of the laterals splits into an upper and a lower lateral. Whereas the upper laterals diverge entirely into the first pair of leaflets, the lower laterals feed all of the lateral leaflets through a series of bifurcations. Prior to their entering the terminal leaflet, the lower laterals converge on the median bundle to form a single vascular crescent which progresses acropetally into the terminal leaflet as the midvein, or primary vein. In the midrib, portions of the midvein diverge outward and continue as secondaries to the margin on either side of the lamina. Near the tip of the terminal leaflet, the midvein consists of a single vascular bundle which is a continuation of the median bundle. Six to seven orders of veins occur in the terminal leaflet.  相似文献   

4.
Studies on the histology and on effects of growth substancesand phenols as well as changes in activities of pectinmethylesterase indicated that the mechanism of abscission of Hevealeaflets infected with Microcyclus ulei differed from the mechanismof abscission of debladed, ethylene treated and senescent leaves.An abscission layer which was formed during abscission of debladed,ethylene-treated and senescent leaves was absent during abscissionof heavily diseased leaves. The ratio of pectinmethyl esteraseactivities in tissues distal to the abscission zone to activitiesin tissues proximal to the zone decreased in debladed and ethylenetreated leaves but such decreases were not detected during abscissionof Hevea leaves infected with M. ulei. Hevea brasiliensis Muell. Arg., rubber, leaf abscission, Microcyclus ulei, ethylene, indol-3-ylacetic acid, kinetin  相似文献   

5.
Inhibition of Abscission of Bean Petiole Explants by Lepidimoide   总被引:1,自引:0,他引:1  
The effect of lepidimoide on the process leading to abscission was studied in bean (Phaseolus vulgaris L. cv. Masterpiece) petiole explants. The assays, involving observations on the junction of the petiole of primary leaves and the pulvinus, were conducted in the light. Lepidimoide, at concentrations of 1 μm or higher, delayed the abscission process; however, the progression of abscission proceeded at normal rates, and complete abscission resulted. On the other hand indoleacetic acid inhibited the normal senescence resulting in greatly decreased abscission during the observation period. These observations show that lepidimoide only delays abscission, and the kinetics seem to indicate that lepidimoide and indoleacetic acid affect abscission through different mechanisms. Received March 1, 1996; accepted November 4, 1996  相似文献   

6.
The senescence of detached leaves of tropaeolum   总被引:1,自引:0,他引:1       下载免费PDF全文
Thimann KV 《Plant physiology》1985,79(4):1107-1110
The senescence of detached Tropaeolum majus leaves was compared with that described earlier for Avena. Tropaeolum was chosen as being not only a dicot but also as having a nearly circular leaf, thus needing only the smallest minimum of wounding, since wounding delays the loss of chlorophyll and protein in darkness. Tropaeolum resembles Avena in that closing the stomata osmotically or with ABA causes rapid senescence in light. As in Avena also, n-hexanol and α,α′-dipyridyl delay senescence in darkness but cause `bleaching' of chlorophyll in light. Unlike Avena, however, kinetin and gibberellic acid, which delay senescence in the dark in both species, do so in Tropaeolum without causing any significant stomatal opening. The senescence of Tropaeolum leaves is actually promoted by fusicoccin, which powerfully delays senescence in Avena, although fusicoccin does cause stomatal opening in darkness in both species. Thus, many of the phenomena of senescence are alike in the monocot and dicot, but there are several significantly different responses to the senescence-modifying reagents. It is concluded that while stomatal closure accelerates senescence in both species, stomatal opening is not directly linked to the prevention of leaf senescence.  相似文献   

7.
Dimethylsulfoxide (DMSO) acts on dark- and light-induced movements exhibited by leaflets of isolated leaves of Cassia fasciculate Michx. The closing movement (scotonasty), induced when the leaves are placed in darkness during the normal period of daylight, was inhibited, whereas the opening movement (photonasty), when the leaves arc transferred to light during the normal period of darkness, was promoted. The concentration for significant effects of DMSO was 1% (v/v) when applied over a 3-h period. After five days, a necrosis of the leaflets was observed for DMSO concentrations as small as 0.1%, applied over a 6-h period. Complete abscission took place if 3% DMSO was applied for more than 30 min.  相似文献   

8.
Thomson , Betty F., and Pauline Monz Miller . (Connecticut Coll., New London.) The role of light in histogenesis and differentiation in the shoot of Pisum sativum, II. The leaf. Amer. Jour. Bot. 49(4): 383–387. Illus. 1962.—Development of the form and anatomy of leaves was studied in plants of Pisum sativum grown in vermiculite under constant conditions and exposed daily to red or white light or kept in continuous darkness. The red light used had an intensity in the morphogenetically active red region of the spectrum of 70–75% that of the white light. Light had no effect on the manner of initiation or early development of leaf primordia. Quantitative data from older leaves showed that light has no effect on the pattern of later development but does affect the rate and extent of development. Under all light conditions, the length of the leaflet is closely correlated with the state of its internal anatomy. “Mature” etiolated leaves duplicate young stages of light-grown leaves. Mature leaves grown in red light duplicate not-quite-mature leaves grown in white light. The difference between white-light and red-light leaves is attributed here to light intensity and resembles that between sun and shade leaves.  相似文献   

9.
Diurnal phototropism has not been reported in ferns. In this study we found that the four leaflets of the amphibious fern Marsilea quadrifolia are capable of adjusting their leaflet angle and leaflet azimuth in response to changes in the position of the sun’s direct beam, exhibiting more diaphototropic movements (orienting the plane of the lamina perpendicular to incident light) in the morning and late afternoon, and more paraphototropic movements (orienting the plane of the lamina parallel to incident light) at noon. In addition, by cutting off the leaflet lamina and covering portions of leaflets with black tape, the junction between the leaflet and petiole was found to be responsible for light reception. Among the light spectrum investigated, blue light was the most effective at inducing diaphototropism. The role of diurnal phototropism in enhancing carbon return and ameliorating photoinhibition was also evaluated. It was concluded that diurnal phototropic leaf movement represents one of the plastic responses enabling this amphibious fern to grow under terrestrial conditions.  相似文献   

10.
The loss of the antiethylene activity of Ag+ on leaf abscission by incubation in the dark was investigated. When primary leaves were removed from cuttings of Vigna radiata previously sprayed with AgNO3, dark-induced abscission of the petioles was inhibited, compared to untreated leafless controls, in the presence or absence of ethephon, an ethylene-releasing compound. Malformin did not negate inhibition of petiole abscission induced by Ag+. Although leaf removal restored the antiethylene activity of Ag+ in the dark, macerates of leaves from dark-aged cuttings did not negate the ability of Ag+ to inhibit petiole abscission in the dark. Abscisic acid completely abolished the ability of Ag+ to counteract ethephon-induced leaf abscission in the light, and almost completely abolished the Ag+-induced inhibition of petiole abscission from explants in the dark. It is proposed that the phytochrome requirement for the antiethylene activity of Ag+ on ethephon-induced leaf abscission involves prevention of the formation, accumulation, or transport of a substance in leaves in the dark which negates Ag+ activity. This substance may be abscisic acid or another substance with similar biological activity.  相似文献   

11.
Leaf and root control of stomatal closure during drying in soybean   总被引:2,自引:0,他引:2  
The stomatal conductance of an illuminated 2.5 cm2 area of an intact soybean leaflet was the same whether the rest of the shoot was in light or darkness. This was true throughout soil drying cycles. Water potential of tissue immediately outside the illuminated area consistently decreased about 0.3 MPa upon illumination of the shoot. This erroneously suggested that stomatal conductance during soil drying did not respond to diurnal reductions in leaf water potential, but was controlled by root or soil water status. Tests showed that the water potential of tissue in the illuminated area did not change in the steady-state upon illumination of the rest of the shoot. Water potentials of shaded sections of leaves were not different from predawn water potentials, and were higher than leaf xylem pressure potentials as determined with a pressure chamber. These steep local gradients of leaf water potential suggest that there is minimal interchange of water among xylem elements leading from roots to different sections of leaves. The relationship between stomatal conductance and leaf water potential was the same whether leaf water potential was reduced by soil drying, application of polyethylene glycol (PEG) to the root system, lowering root temperature, or leaf excision. In the root cooling experiment, there was no soil drying, and with leaf excision, there was no root drying. The similarity of stomatal responses to leaf water potential in all cases strongly suggests control of conductance by a signal produced by local leaf water potential rather than root or soil water status in these experiments.  相似文献   

12.
Cycling of stomatal conductance in three hybrid poplar ( Populus sp.) cultivars was observed under a variety of conditions. Illumination of plants kept previously in the dark induced very large oscillations with a period of about 40 min and large oscillations with a shorter period (< 10 min) were superimposed on the longer cycles. During these oscillations, large changes in conductance could occur very rapidly (1.0 cm s−1 in 3 min). Plants in constant light also displayed both long and short term cycles in conductance, but these were smaller in amplitude than those induced by sudden illumination. Stomatal oscillations were also observed in darkness and after darkening of previously illuminated plants. These oscillations had shorter (< 30 min) and less regular periods than those observed in the light. Such cycling in the dark is rare. Cycling of the two leaf surfaces was sometimes in synchrony in the light, and more so after a perturbation. Little synchrony between the two surfaces was observed in the dark. Stomatal movements of different leaves on a plant were usually relatively independent. Transient stomatal opening occurred following leaf excision in the light or dark, and often after sudden darkening of intact leaves. Also, stomata of intact leaves sometimes transiently closed following illumination.  相似文献   

13.
Incubation of excised Avena leaves in a wet chamber in darkness resulted in an increase in both soluble and particle-bound Rnase activities. Illumination promoted the increase in the total RNase which occurred upon leaf excision. The light-induced increase in total RNase was due to an increase in soluble RNase. The increase in RNase activity in the particulate fraction was inhibited by illumination. Feeding 2 per cent sucrose to the tissues in the dark increased the level of soluble RNase and decreased the activity found in the particulate fraction. Treatment of the illuminated tissues with 10?4M dichlorophenyldimethylurea (DCMU) inhibited the effects of light on the RNase level. It is concluded that the light-effect is explained at least in part by the photosynthetic production of sugars. In excised leaves kept in darkness the RNA content rapidly decreased. Feeding sugars to or illumination of the tissues lowered the rate of RNA breakdown due to leaf excision. DCMU counteracted the light effect. In general, the decrease of RNA was repressed by all treatments leading to an inhibition of the increase of particulate RNase. On the other hand, the observed changes of the soluble RNase were not related with the variations of RNA. Treatment with 3 M urea increased the RNase activity both in the particulate and the soluble fractions. The RNase activity of soluble preparations, partially purified on a Sephadex G-50 column or by (NH4)2SO4 fractionation, was also stimulated by 3 M urea. Treatment with 10?5M kinetin repressed the increase in RNase activity due to leaf excision both in the soluble and the particulate fractions.  相似文献   

14.
The pulvinus, located at the base of soybean leaflets, is both the light perception and motor organ for heliotropic leaf movements. Our objective was to investigate the role of plasma membrane H+/ATPase and TEA-sensitive K+ channels in mediating pulvinar response to light. The plasma membrane H+/ATPase activator, fusicoccin, plasma membrane H+/ATPase inhibitors, vanadate and erythrosin-B, and the K+ channel blocker TEA were introduced to the intact pulvinus through the transpiration stream. The pulvinus was illuminated by a vertical light beam of 1,400 μmol m-2 s-1 to stimulate leaf movement. Leaf orientation was measured every 5 min for 60 min of illumination. All compounds tested inhibited pulvinar bending, but concentration and uptake time required for inhibition varied: 12.5 μM fusicoccin reduced leaf movement after 3 hr uptake, 2 mM vanadate reduced leaf movement after 6 hr uptake, 100 μM erythrosin-B reduced leaf movement after 3 hr uptake, and 15 mM TEA reduced leaf movement after 6 hr uptake. In all cases final leaf angle was reduced by higher concentrations and/or increased time for uptake of the chemical into the pulvinus. Results support the hypothesis that the proximal mechanism of heliotropic movement is similar to that of nyctinastic movements.  相似文献   

15.
In the development of tomato compound leaves, local auxin maxima points, separated by the expression of the Aux/IAA protein SlIAA9/ENTIRE (E), direct the formation of discrete leaflets along the leaf margin. The local auxin maxima promote leaflet initiation, while E acts between leaflets to inhibit auxin response and lamina growth, enabling leaflet separation. Here, we show that a group of auxin response factors (ARFs), which are targeted by miR160, antagonizes auxin response and lamina growth in conjunction with E. In wild‐type leaf primordia, the miR160‐targeted ARFs SlARF10A and SlARF17 are expressed in leaflets, and SlmiR160 is expressed in provascular tissues. Leaf overexpression of the miR160‐targeted ARFs SlARF10A, SlARF10B or SlARF17, led to reduced lamina and increased leaf complexity, and suppressed auxin response in young leaves. In agreement, leaf overexpression of miR160 resulted in simplified leaves due to ectopic lamina growth between leaflets, reminiscent of e leaves. Genetic interactions suggest that E and miR160‐targeted ARFs act partially redundantly but are both required for local inhibition of lamina growth between initiating leaflets. These results show that different types of auxin signal antagonists act cooperatively to ensure leaflet separation in tomato leaf margins.  相似文献   

16.
The pinnately compound, indeterminate leaves of G. glabra and G. guidonia were air layered, detached from their original shoots, and grown on their own adventitious root systems for up to 58 mo and 26 mo, respectively. The detached leaves grew in the same indeterminate manner and reached sizes similar to attached leaves. Although detached leaves grew autonomously, they never produced shoot buds. Leaves of both species were grafted onto their own stems and cut free of their original leaf bases. Leaf scions survived and grew for up to 29 mo and 20 mo, respectively, similar to ungrafted leaves. Axillary branches were grafted onto subtending leaves. Branch scions grew on their leaf stocks for over 30 mo and 24 mo, respectively, after being cut free from the branch bases. Secondary growth of the leaf axis (petiole) was promoted, and vascular tissues of leaf and branch axes were continuous. However, the unlignified basal region of the leaf, including the abscission zone, remained unchanged after grafting. The results indicate that proximity of roots and bypassing the abscission zone did not enhance leaf longevity or pinna production. The presence of a growing branch on a leaf did not modify the structure of the abscission zone, which suggests that the zone is strongly committed or developmentally fixed.  相似文献   

17.
Experiments were done to examine the phototrophic response of sun-tracking leaves of Lupinus succulentus Dougl. to fixed beams of white and broad band light. Upon irradiation with 15 W m−2 white light that struck the laminae at an angle of 45°, there was a 45–60 min lag period prior to leaf movement. The greatest rate of movement was 15° h−1, and reorientation ceased when leaves attained a position within 15° of perpendicular to the light beam. Laminar movement was largely pulvinar, and a 60 min inductive light treatment was sufficient to activate a maximum pulvinar response in subsequent darkness. Light striking the lamina at angles between 20 and 70° induced similar maximum pulvinar responses and only light that struck the upper (adaxial) leaf surface was effective. Leaf tracking was fully activated by blue light but not by red or yellow light.  相似文献   

18.
A transducer was developed to record the circadian movement of the individual leaflets in Oxalis regnellii Mig. The method can easily be adapted to measure other kinds of plant movements as well. It is based on the detection of the shadow each leaflet casts on the small side of a specially formed Perspex plate. The light is guided through the Perspex and collected by a phototransistor, which provides an electrical signal that is proportional to the light intensity falling onto it. The output signal can be made a linear function of the leaf angle. This equipment was used in experiments to study the coupling between the 3 leaflets in Oxalis . Pulses of 4 h of red light were given to one of the leaflets, the two others were shielded from the light. A phase response curve was determined for each leaflet, but there was no significant difference in the phase response between the 3 leaflets. Experiments were also made in which the 3 leaflets were separated physically by cuts along the petiole between the pulvini. In this case ultradian oscillations were observed.  相似文献   

19.
In the glasshouse, large differences in concentrations of glucose and sucrose were observed between leaves of inbred sugar-beet lines that are known to differ from each other in resistance to pests and diseases. Differences between these lines in concentrations of fructose, glucose and sucrose were more pronounced in the petiole than in the lamina. The concentrations of glucose and fructose were lower in the first two leaves (primary leaves) than in those produced subsequently (secondary leaves); both types of leaf contained similar concentrations of sucrose. Secondary leaves from plants that had been kept in darkness for 17 h contained less fructose, glucose and sucrose than those of plants kept in sunlight for 5 h. Longer period of darkness lowered the concentrations of monosaccharides in the leaves further but did not affect the sucrose content. Primary and secondary leaves from the same sugar-beet plant often differ in non-race-specific resistance to pests and diseases; and darkness can affect suscetibility of beet to downy mildew and to the aphid Myzus persicae. The results of the sugar determinations therefore support the hypothesis that the concentrations of certain carbohydrates in sugar-beet leaves are important in non-race-specific resistance to pests and diseases.  相似文献   

20.
Ethylene production or content was compared to leaflet abscission in detached, compound leaves of Mèlia azédarach L. In late autumn, when abscission was progressing from basal leaves upward, the oldest leaves both produced ethylene at the highest rates and abscised their leaflets first. When C2H4 levels were measured in intercellular air removed immediately after leaves were harvested, C2H4 levels were also highest in basal leaves and declined progressively in more apical leaves. Levels as high as 1.8 microliters C2H4 liter−1 air were observed. Earlier in the season groups of leaves demonstrated a pattern of sequential initiation of abscission from base to apex, but the peak rates of C2H4 production followed an opposite trend, being highest in the youngest leaves. Peak rates of C2H4 production occurred after the initiation of leaflet abscission and presumably are related to either the auxin content or a climacteric-like, autocatalytic phase of C2H4 production not directly involved in the initiation of abscission. In these experiments, the early abscission of the older leaflets reflects their greater sensitivity to C2H4, presumably due to lower auxin content. C2H4 production rates in all experiments, with rare exceptions, exceeded 3 microliters per kilogram fresh weight per hour at least 24 hours before leaflet abscission reached 10%. This achieving of a threshold internal C2H4 level is viewed as an initiating event in leaflet abscission. Hypobaric conditions, to facilitate the escape of endogenous C2H4, delayed abscission compared to controls, and termination of hypobaric exposure allowed a normal progression of abscission as well as normal C2H4 synthesis rates. All of the data indicate that C2H4 initiates leaflet abscission in intact but detached leaves of Mèlia azédarach L. The seasonal patterns observed suggest that C2H4, in concert with those hormones which govern sensitivity to C2H4, regulate autumn leaf fall in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号