首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmids that carry cos lambda, the region necessary for lambda phage packaging and that are as small as four kilobases in size can be packaged into lambda phage heads in head-to-tail tandem oligomeric structures. Multimeric oligomers as large as undecamers have been detected. Oligomer formation depends upon the products of red and gam of lambda, and the general recombination occurs between different plasmids that share homologous DNA regions. The packaging efficiency of plasmids depends on its copy number in cells and its genome size. Upon injection into a cell, the DNA establishes itself as a plasmid in a tandem structure. When such a plasmid in a high oligomeric structure is used as the source of packaging DNA, the packaging efficiency of the plasmids is elevated. The oligomers are stable in recA cells, whereas they drift toward lower oligomers in recA+ cells.  相似文献   

2.
A mini-Mu bacteriophage, containing the cohesive-end packaging site (cos) from a lambda-phi 80 hybrid phage, a high-copy-number plasmid replicon, and a kanamycin-resistance gene for independent selection, was constructed to clone genes in vivo. This mini-Mu element can be derepressed to transpose at a high frequency. DNA segments that become flanked by copies of this mini-Mu element in the same orientation can be packaged by a helper lambda phage. The resulting lambda lysate can be used to infect recipient cells where the injected DNA can circularize by annealing at the cos termini. Drug-resistant transductants obtained carry the mini-Mu-replicon cosmid element with inserts of different nucleotide sequences. These are analogous to recombinant DNA clones generated in vitro with restriction endonuclease cutting and ligase joining reactions replaced by the Mu transposition process. Clones of particular genes were isolated by their ability to complement specific mutations. Both recA+ and recA- recipient cells can be used with equal efficiency. Clones obtained with a helper lambda phage require the presence of the cos site in the mini-Mu replicon. They carry larger inserts than those isolated with the same mini-Mu element and Mu as a helper phage. The mini-Mu replicon-cosmid bacteriophage contains a lac-gene fusing segment for isolating fusions of lac operon DNA to gene control regions in the cloned sequences. Independent clones of a particular gene can be used to prepare a restriction map of the gene and its flanking regions.  相似文献   

3.
We report a simple in vivo technique for introducing an antibiotic resistance marker into phage lambda. This technique could be used for direct selection of lysogens harboring recombinant phages from the Kohara lambda bank (a collection of ordered lambda clones carrying Escherichia coli DNA segments). The two-step method uses homologous recombination and lambda DNA packaging to replace the nonessential lambda DNA lying between the lysis genes and the right cohesive (cos) end with the neomycin phosphotransferase (npt) gene from Tn903. This occurs during lytic growth of the phage on a plasmid-containing host strain. Neomycin-resistant (npt+) recombinant phages are then selected from the lysates containing the progeny phage by transduction of a polA1 lambda lysogenic host strain to neomycin resistance. We have tested this method with two different Kohara lambda phage clones; in both cases, neomycin resistance cotransduced with the auxotrophic marker carried by the lambda clone, indicating complete genetic linkage. Linkage was verified by restriction mapping of purified DNA from a recombinant phage clone. We also demonstrate that insertion of the npt+ recombinant phages into the lambda prophage can be readily distinguished from insertion into bacterial chromosomal sequences.  相似文献   

4.
Bacteriophage lambda grows lytically on Escherichia coli defective for integration host factor, a protein involved in lambda site-specific recombination and the regulation of gene expression. We report the characterization of a mutant, lambda cos154, that, unlike wild-type lambda, is defective for growth in integration host factor-defective E. coli. The cis-dominant mutation in lambda cos154 is a single base pair change in a region of hyphenated dyad symmetry close to the lambda left cohesive end; this mutation prevents DNA packaging. We propose the following two alternative roles for this site in lambda DNA packaging: (i) to bind an E. coli accessory protein required in the absence of integration host factor or (ii) to bind the phage-encoded terminase protein that is essential for DNA packaging.  相似文献   

5.
Terminases are enzymes common to complex double-stranded DNA viruses and are required for packaging of viral DNA into a protective capsid. Bacteriophage lambda terminase holoenzyme is a hetero-oligomer composed of the A and Nu1 lambda gene products; however, the self-association properties of the holoenzyme have not been investigated systematically. Here, we report the results of sedimentation velocity, sedimentation equilibrium, and gel-filtration experiments studying the self-association properties of the holoenzyme. We find that purified, recombinant lambda terminase forms a homogeneous, heterotrimeric structure, consisting of one gpA molecule associated with two gpNu1 molecules (114.2 kDa). We further show that lambda terminase adopts a heterogeneous mixture of higher-order structures, with an average molecular mass of 528(+/-34) kDa. Both the heterotrimer and the higher-order species possess site-specific cos cleavage activity, as well as DNA packaging activity; however, the heterotrimer is dependent upon Escherichia coli integration host factor (IHF) for these activities. Furthermore, the ATPase activity of the higher-order species is approximately 1000-fold greater than that of the heterotrimer. These data suggest that IHF bending of the duplex at the cos site in viral DNA promotes the assembly of the heterotrimer into a biologically active, higher-order packaging motor. We propose that a single, higher-order hetero-oligomer of gpA and gpNu1 functions throughout lambda development.  相似文献   

6.
U Zuber  W Schumann 《Gene》1991,103(1):69-72
A method for the rapid restriction mapping of large plasmids has been developed. A 400-bp fragment of phage lambda DNA containing the cos region has been inserted into Tn5. After in vivo transposition of this Tn5cos element into the plasmid of choice, the plasmid is isolated and linearized at its cos site with phage lambda terminase (Ter). Such Ter linearization was about 70% efficient. After partial digestion of the linear molecules with the appropriate restriction enzyme, the products are selectively labelled at the right or left cohesive phage lambda DNA termini by hybridization with digoxygenin (DIG)-11-dUTP-labelled (using terminal transferase) oligodeoxyribonucleotides complementary to the single-stranded cos ends. After pulsed field gel electrophoresis, the labelled fragments are visualized in the dried gel using a DIG-detection kit. The restriction map can be directly determined from the 'ladder' of partial digestion products.  相似文献   

7.
T Miwa  K Matsubara 《Gene》1982,20(2):267-279
Several species of DNA molecules are packaged into lambda phage heads if they carry the region around the cohesive end site of lambda phage (cos lambda). The minimal functional sequence around cos lambda needed for packaging was examined by cloning in pBR322. The results showed that the minimal region contained 85 bp around cos lambda; 45 bp of the left arm of lambda phage and 40 bp of the right arm. A 75-bp region located to the right of the minimal region seems to enhance packaging. A 223-bp fragment containing these regions can be used as a portable element for plasmid DNA packaging into lambda phage heads. Plasmid ppBest 322, a derivative of pBR322 carrying this portable packager and both amp and tet genes, was constructed. This plasmid is useful for cloning of large DNA fragments.  相似文献   

8.
A Davidson  P Yau  H Murialdo    M Gold 《Journal of bacteriology》1991,173(16):5086-5096
The terminase enzyme of bacteriophage lambda is a hetero-oligomeric protein which catalyzes the site-specific endonucleolytic cleavage of lambda DNA and its packaging into phage proheads; it is composed of the products of the lambda Nul and A genes. We have developed a simple method to select mutations in the terminase genes carried on a high-copy-number plasmid, based on the ability of wild-type terminase to kill recA strains of Escherichia coli. Sixty-three different spontaneous mutations and 13 linker insertion mutations were isolated by this method and analyzed. Extracts of cells transformed by mutant plasmids displayed variable degrees of reduction in the activity of one or both terminase subunits as assayed by in vitro lambda DNA packaging. A method of genetically mapping plasmid-borne mutations in the A gene by measuring their ability to rescue various lambda Aam phages showed that the A mutations were fairly evenly distributed across the gene. Mutant A genes were also subcloned into overproducing plasmid constructs, and it was determined that more than half of them directed the synthesis of normal amounts of full-length A protein. Three of the A gene mutants displayed dramatically reduced in vitro packaging activity only when immature (uncut) lambda DNA was used as the substrate; therefore, these mutations may lie in the endonuclease domain of terminase. Interestingly, the putative endonuclease mutations mapped in two distinct locations in the A gene separated by a least 400 bp.  相似文献   

9.
The control of lambda DNA terminase synthesis.   总被引:4,自引:0,他引:4       下载免费PDF全文
Nu1 and A, the genes coding for bacteriophage lambda DNA terminase, rank among the most poorly translated genes expressed in E. coli. To understand the reason for this low level of translation the genes were cloned into plasmids and their expression measured. In addition, the wild type DNA sequences immediately preceding the genes were reduced and modified. It was found that the elements that control translation are contained in the 100 base pairs upstream from the initiation codon. Interchanging these upstream sequences with those of an efficiently translated gene dramatically increased the translation of terminase subunits. It seems unlikely that the rare codons present in the genes, and any feature of their mRNA secondary structure play a role in the control of their translation. The elimination of cos from plasmids containing Nu1 and A also resulted in an increase in terminase production. This result suggests a role for cos in the control of late gene expression. The terminase subunit overproducer strains are potentially very useful for the design of improved DNA packaging and cosmid mapping techniques.  相似文献   

10.
Phasmid lambda pMYF131, a hybrid of phage lambda vectors and plasmid pUC19, was constructed. The phasmid and its derivatives were shown to be efficient vectors for construction and analysis of gene libraries in Escherichia coli cells. The lambda pMYF131 DNA molecule contains all the genes and regions essential for phage lytic development. The plasmid cannot be packaged either in the monomeric or the oligomeric form due to its specific length. Elongation of the DNA molecule by ligation with fragments of foreign DNA can make it packageable and this is easily detected by plaque formation. Hence, the procedures used to construct genomic libraries can be simplified by selection of only recombinant DNA molecules just at the time and on the basis of their packaging in vitro. The output of recombinant clones per vector molecule was several times higher for vector lambda pMYF131, compared to phage vector lambda L47.1AB, and attained 3 x 10(6) clones per micrograms DNA. Vector and recombinant phasmids can be obtained in large quantities in plasmid form. lambda pMYF131 contains nine unique restriction sites which allow the cloning of DNA fragments with blunt ends and of fragments with various types of cohesive ends, obtained by digestion with 14 prototype restriction enzymes. The maximal size of the cloned DNA fragments is approx. 20 kb for lambda pMYF131. Phasmid vectors were used to construct libraries of bovine, pig and quail genomes, and genomic libraries of 17 species of bacteria. Application of suitable methods allowed the identification 13 individual genes within these libraries.  相似文献   

11.
S M Rosenberg  M M Stahl  I Kobayashi  F W Stahl 《Gene》1985,38(1-3):165-175
In previous systems for in vitro packaging of lambda DNA, phages are produced from the packaging components as well as from added DNA. We have developed a new genetic strategy for in vitro packaging that bypasses this endogenous phage problem. Our system employs a single bacterial strain whose lambda prophage codes for all of the packaging proteins but is deleted for cos, the packaging origin. Crude extracts of the single lysogen: (i) are virtually free from endogenous phages, (ii) package added lambda DNA efficiently and (iii) are easy to prepare. Using the cos- in vitro packaging system we show that packaging of lambda linear monomers is a second-order reaction, but that packaging from concatemers prepared by annealing or ligation is first order. We conclude that in our cos- system, linear monomers are a poor substrate for in vitro packaging but that packaging from concatemers works well.  相似文献   

12.
The maturation and packaging of bacteriophage lambda DNA are under the control of the multifunctional viral terminase enzyme, which is composed of the protein products of Nu1 and A, the two most leftward genes of the phage chromosome. Terminase binds selectively to the cohesive end site (cos) of multimeric replicating lambda DNA and introduces staggered nicks to regenerate the 12-base single-stranded cohesive ends of the mature phage genome. The purified gpNu1 subunit of terminase forms specific complexes with cos lambda DNA. DNase I footprinting experiments showed that gpNu1 bound to three distinct regions near the extreme left end of the lambda chromosome. These regions coincided with two 16-base-pair sequences (CTGTCGTTTCCTTTCT) that were in inverted orientation, as well as a truncated version of this sequence. Bear et al. (J. Virol. 52:966-972,1984) isolated a mutant phage which contained a CG to TA transition at the 10th position of the rightmost 16-base-pair sequence, and this phage (termed lambda cos 154) exhibits a defect in DNA maturation when it replicates in Escherichia coli which is deficient in integration host factor. Footprinting experiments with cos 154 DNA showed that gpNu1 could not bind to the site which contained the mutation but could protect the other two sites. Since the DNA-packaging specificity of terminase resides in the gpNu1 subunit, these studies suggest that terminase uses these three sites as recognition sequences for specific binding to cos lambda.  相似文献   

13.
The Nu1 subunit of bacteriophage lambda terminase   总被引:5,自引:0,他引:5  
The maturation and packaging of bacteriophage lambda DNA are catalyzed by the phage terminase enzyme. Terminase is composed of two protein subunits, gpNu1 and gpA. The holoenzyme is multifunctional in vitro; it binds to and cleaves lambda DNA at the cos site (where cos represents cohesive-end site), packages DNA into lambda proheads, and is also a DNA-dependent ATPase. The genes of the two subunits have been cloned separately into powerful expression vectors which allow for very high levels of protein overproduction. The gpNu1 protein has been purified to homogeneity and has a monomeric molecular weight of 21,200, in close agreement with the Mr of 20,444 expected from its amino acid sequence. Both gel filtration and sedimentation velocity centrifugation indicate that the native gpNu1 protein exists as a Mr greater than 500,000 aggregate. The sequence of the first 20 amino acids and the overall composition both match those predicted by the nucleotide sequence of the Nu1 gene. Purified gpNu1 is able to complement gpA-containing extracts in both lambda DNA packaging and cos cleavage assays. The Nu1 gene amino acid sequence predicts DNA binding by the protein, and gpNu1 does show specific binding to lambda DNA by filter binding assays. Also, as predicted from its sequence, gpNu1 exhibits ATPase activity; but in contrast to the holoenzyme, this activity is DNA-independent.  相似文献   

14.
We have succeeded the targeted cleavage of chromosomes by lambda terminase that introduces double-strand cleavages in DNA recognizing the lambda cos sequence. When chromosomal DNAs of various Escherichia coli K-12 strains were subjected to terminase digestion, all were found to contain two common cleavage sites. Therefore, DNAs from lambda lysogens in which lambda DNA was inserted at different chromosomal sites were specifically cleaved at one more additional site. The two sites, termed ecos1 and ecos2, were mapped at approximately 35.1' and 12.7' of E. coli genetic map. The ecos1 and ecos2 sites were included in qin and qsr' regions, respectively. Therefore, the cleavage sites were associated with cryptic prophages. Sequences at the ecos1 and ecos2 sites showed 98% homology to the lambda cos sequence, indicating high fidelity of sequence recognition by the terminase. Since the strategy for integration of a DNA segment into chromosomal DNA through homologous recombination has been established, the dissection method that uses lambda terminase should be applicable for gene mapping as well as construction of macrophysical maps of larger genomes.  相似文献   

15.
We have integrated pulsed field gel electrophoresis with the partial digestion strategy of Smith and Birnstiel (1976, Nucleic Acids Res. 3,2387-2398) to generate a rapid and accurate method of restriction endonuclease mapping recombinant lambda DNA molecules. Use of pulsed field gels dramatically improves the accuracy of size determination and resolution of DNA restriction fragments relative to standard agarose gels. Briefly, DNA is partially digested with restriction enzymes to varying extents and then hybridized with a radiolabeled oligonucleotide which anneals specifically to one of the lambda cohesive (cos) ends, effectively end labeling only those digestion products containing that cos end. In this study, we have used an oligonucleotide hybridizing to the right cos end. DNA is then fractionated by pulsed field gel electrophoresis, the gel dried down, and cos end containing fragments visualized by autoradiography. Fragment sizes indicate the distances from the labeled cos end to each restriction site for the particular restriction enzyme employed. This procedure requires only minimal quantities of DNA and is applicable to all vectors utilizing lambda cos ends.  相似文献   

16.
A number of hybrid plasmids, carrying lambda genes involved in site-specific integrative recombination, have been constructed in vitro. Analysis of protein synthesis in Escherichia coli minicells has shown that Int protein is synthesized only when int gene is expressed constitutively. The plasmids RSF2124::lambda-CD, RSF2124::lambda-Cint-c57, and pInt lambda were able to integrate into the chromosome of E.coli at the attB. The integration of hybrid plasmids into the genome of bacteria has also been shown for polA1 strains restricting the autonomous replication of ColE1 type plasmids. Genetic markers of hybrid plasmids are maintained in polA1 bacteria for at least 50 generations under nonselective conditions. The Southern blotting experiments using [32P]pBR322 DNA and EcoRI fragments of E. coli polA1 chromosome carrying integrated plasmid pInt lambda demonstrated that in this strain hybrid plasmids can be observed only when integrated into the attB of the chromosome according to Campbell's model of integration. In the cells, where autonomous replication of plasmids is possible, they can be observed both in extrachromosomal and integrated states. The integration of the ColE1 replication origin into the chromosome of bacteria is not lethal for the cells. Only attP and the int gene of lambda are necessary for the integration of hybrid plasmids under conditions of effective int gene expression. If the level of Int protein synthesis is high enough, the prophage excision can be observed in the absence of Xis product. The six-fold decrease of Int protein concentration in the cell (in case of pInt lambda 2 as compared to pInt lambda 1) is critical both for integration and excision.  相似文献   

17.
The FI gene product (gp) of bacteriophage lambda is required during phage head assembly in vivo. Mutations in this gene lead to an accumulation of immature concatemeric lambda DNA and of proheads that appear normal and are competent for DNA packaging in vitro. This phenotype can be taken as evidence of a failure to couple DNA and proheads for packaging/maturation. In contrast to the requirement for gpFI in vivo, the packaging of lambda DNA in vitro occurs efficiently in the complete absence of gpFI. However, if ssDNA is included at the outset of the in vitro packaging reaction, DNA packaging is blocked. This block to packaging is relieved by addition of gpFI. Thus packaging of lambda DNA in vitro can be made dependent of gpFI by the inclusion of ssDNA at the outset of the reaction. Inhibition of DNA packaging by ssDNA appears to be mediated by a lambda b region-directed protein (packaging inhibitor, ben protein) that is present in the crude extracts of cells used to support the early steps of the packaging reaction. Neither ssDNA nor the packaging inhibitor alone has significant inhibitory effect on packaging; both components are required together to effect the inhibition that is relieved by gpFI. The packaging inhibitor was extensively purified and shown to have endonucleolytic activity. Several lines of evidence are presented to support the idea that both the inhibitory and endonucleolytic activities are functions of the same protein. Although gpFI relieves the inhibition imposed by the ben protein in packaging, gpFI fails to block the DNA cleavage activity of the ben protein in the standard endonuclease assay.  相似文献   

18.
Heteroduplex patch recombinants have received information in one DNA chain but have not recombined flanking markers. Evidence regarding which chain is exchanged bears on the structure of recombination intermediates. The direction of travel along DNA of RecBCD recombinase, the central enzyme in the Escherichia coli RecBCD pathway of homologous recombination, is determined in phage lambda by the orientation of the packaging origin, cos. cos is a double-chain cut site which serves as a preferred entry site for RecBCD. Using partially denaturing gels to resolve heteroduplex molecules, we have examined patch recombinants at the lambda ren gene. We report that the transferred information in Chi-stimulated patches at ren can occur on either chain, but is biased to the chain ending 5' at the right of the lambda map (the lambda r chain) in phage carrying cos in its normal orientation. The chain bias switches in favor of the chain that ends 3' at the right (the lambda l chain) when RecBCD travel direction is reversed by inverting cos. We entertain models that accommodate these and other results pertaining to the structure of RecBCD-mediated recombinants.  相似文献   

19.
20.
The development of bacteriophage lambda and double-stranded DNA viruses in general involves the convergence of two separate pathways: DNA replication and head assembly. Clearly, packaging will proceed only if an empty capsid shell, the prohead, is present to receive the DNA, but genetic evidence suggests that proheads play another role in the packaging process. For example, lambda phages with an amber mutation in any head gene or in FI, the gene encoding the accessory packaging protein gpFI, are able to produce normal amounts of DNA concatemers but they are not cut, or matured, into unit length chromosomes for packaging. Similar observations have been made for herpes simplex 1 virus. In the case of lambda, a negative model proposes that in the amber phages, unassembled capsid components are inhibitory to maturation, and a positive model suggests that assembled proheads are required for cutting. We tested the negative model by using a deletion mutant devoid of all prohead genes and FI in an in vivo cos cleavage assay; in this deleted phage, the cohesive ends were not cut. When lambda proheads and gpFI were provided in vivo via a second prophage, cutting was restored, and gpFI was required, results that support the positive model. Phage 21 is a sister phage of lambda, and although its capsid proteins share approximately 60% residue identity with lambda's, phage 21 proheads did not restore cutting, even when provided with the accessory protein gpFI. Models for the role of proheads and gpFI in cos cutting are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号