首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study documents the role of mandibular epithelium and epidermal growth factor (EGF) in the initiation, maturation and maintenance of Meckel's cartilage using percent 3H-thymidine-labelled cells as an index of proliferative activity and distribution of labelled cells, chondrocyte size and relative amount of extracellular matrix as indices of chondrogenesis. Mandibular mesenchyme from embryos of H.H. stages 18, 22, 25 was cultured for 2 to 10 days (a) unseparated from mandibular epithelium, (b) in isolation, or (c) after recombination with mandibular epithelium in the presence or absence of 5-40 ng/ml EGF. Epithelium delayed both initiation of chondrogenesis and maturation of already formed cartilage. The 3H-thymidine-labelling index was reduced in cartilage that differentiated in the presence of mandibular epithelium. Epithelium influenced the timing of mesenchymal differentiation (a) by delaying cytodifferentiation through prolonging high levels of proliferation, and (b) by directly affecting differentiation itself. EGF, especially at 10-20 ng/ml, affected both proliferation of mesenchyme and chondrogenesis in mesenchyme cultured with or without epithelium. All observed effects of epithelium on intact tissues could be duplicated by exposing isolated mesenchyme to EGF at 10 ng/ml, i.e. a role for EGF in chondrogenesis is suggested.  相似文献   

2.
We have shown earlier that epidermal growth factor (EGF) inhibits morphogenesis and cell differentiation in mouse embryonic teeth in organ culture. This inhibition depends on the stage of tooth development so that only teeth at early developmental stages respond to EGF (A-M. Partanen, P. Ekblom, and I. Thesleff (1985) Dev. Biol. 111, 84-94). We have now studied the quantity and pattern of EGF binding in teeth at various stages of development by incubating the dissected tooth germs with 125I-labeled EGF. Although the quantity of 125I-EGF binding per microgram DNA stays at the same level, localization of 125I-EGF binding by autoradiography reveals that the distribution of binding sites changes dramatically. In bud stage the epithelial tooth bud that is intruding into the underlying mesenchyme has binding sites for EGF, but the condensation of dental mesenchymal cells around the bud does not bind EGF. At the cap stage of development the dental mesenchyme binds EGF, but the dental epithelium shows no binding. This indicates that the dental mesenchyme is the primary target tissue for the inhibitory effect of EGF on tooth morphogenesis during early cap stage. During advanced morphogenesis the binding sites of EGF disappear also from the dental papilla mesenchyme, but the dental follicle which consists of condensed mesenchymal cells surrounding the tooth germ, binds EGF abundantly. We have also studied EGF binding during the development of other embryonic organs, kidney, salivary gland, lung, and skin, which are all formed by mesenchymal and epithelial components. The patterns of EGF binding in various tissues suggest that EGF may have a role in the organogenesis of epitheliomesenchymal organs as a stimulator of epithelial proliferation during initial epithelial bud formation and branching morphogenesis. The results of this study indicate that EGF stimulates or maintains proliferation of undifferentiated cells during embryonic development and that the expression of EGF receptors in different organs is not related to the age of the embryo, but is specific to the developmental stage of each organ.  相似文献   

3.
4.
It is well established that epithelial-mesenchymal interactions play important roles in the differentiation of stomach epithelial cells in the chicken embryo. To analyze mesenchymal influences on the differentiation of the epithelial cells, we developed a tissue culture system for stomach (proventriculus and gizzard) epithelia of chicken embryo, and examined their differentiation in the presence or absence of mesenchyme. Stomach epithelium from 6-day chicken embryo did not express embryonic chicken pepsinogen (ECPg), a marker molecule of glandular epithelial cells of proventriculus, while it expressed marker molecules of epithelial cells of the luminal surface of stomach, when cultured alone on the Millipore filter, covered with the gel consisting of extracellular matrix components. When the epithelium was recombined with mesenchyme separated by the filter, differentiation of the epithelium was affected by the recombined mesenchyme. Proventricular and lung mesenchymes induced the expression of ECPg in epithelial cells, and the expression was extensive when the gel contained basement membrane components. Proventricular and gizzard epithelia showed different responses to the mesenchymal action. We tested the effects of some growth factors on the differentiation of epithelial cells using this culture system. Furthermore we devised a "conditioned semi-solid medium experiment" for analysis of the inductive properties of proventricular and lung mesenchymes. The results of this experiment clearly demonstrated for the first time that diffusible factors from mesenchyme induce the differentiation of glandular epithelial cells in the absence of mesenchymal cells.  相似文献   

5.
Differentiation of the metanephrogenic mesenchyme is triggered by an inductive tissue interaction between an inducer tissue and the mesenchyme. It is generally believed that the epithelial ureter bud acts as an inducer during in vivo development. In response to the inductive stimulus most of the mesenchymal cells convert into epithelial cells, while a small fraction differentiates into stromal cells. In vitro, differentiation of isolated mesenchyme to epithelium can be induced by a variety of embryonic tissues, but nothing is known about the molecular nature of the inducing stimulus. In recent years, large numbers of polypeptide growth factors have been described, which in addition to proliferative effects were shown to exert effects on a variety of biological phenomena such as chemotaxis, inflammation, tissue repair, or induction of embryonic development. We therefore analyzed whether growth factors in the absence of inducer tissue can induce isolated kidney mesenchyme to differentiate into epithelium or interstitium. As expected, both growth and differentiation into epithelium were stimulated by an inducer tissue, the spinal cord. We found that none of the various growth factors tested (including epidermal growth factor, transforming growth factors alpha and beta, insulin-like growth factors I and II, fibroblast growth factor, platelet-derived growth factor, and retinoic acid) could mimick the effect of an inducer tissue, although we tested the factors over a wide concentration range. One of the tested factors, epidermal growth factor (EGF) stimulated the mesenchymal cells to become stromal cells, although it could not stimulate development into epithelium. EGF could stimulate stromal development both when the mesenchyme was cultured in isolation and when the mesenchyme was stimulated by an inducer tissue to become epithelium. The expansion of the stromal compartment in response to EGF treatment occurred at the expense of the epithelial cells, but EGF could not completely suppress the formation of epithelium. These data suggest the presence of EGF receptors in the developing kidney, but since application of soluble EGF leads to abnormal development, soluble EGF cannot be the natural ligand. We suggest that locally produced mitogens with an EGF-like structure may regulate the relative amounts of stroma (interstitium) and epithelium in the developing kidney.  相似文献   

6.
The growth of regenerating limbs of amphibians depends upon proliferation of the blastema cells that accumulate beneath the epidermal cap. The epidermal cap is known to be mitogenic for the blastema cells. We have extracted a mitogenic activity from both the mesenchymal and epidermal (epidermal cap) components of cone stage blastemas which is retained on heparin-Sepharose and elutes with 1.15 M NaCl. This fraction stimulates neurite outgrowth of PC12 cells and [3H]thymidine incorporation into CCL 39 cells and is potentiated by heparin. The 2 M fraction was inactive. The heparin-Sepharose-purified growth factor cross-reacts with bovine acidic FGF polyclonal antibodies and shows a Mr of 16,000 on Western blots. Blastema membranes contain specific high affinity binding sites (Kd = 25 pM; capacity = 30 fmole/mg protein) and low affinity binding sites (Kd = 18 nM; capacity = 30 pmole/mg protein) for aFGF as revealed by Scatchard analysis. 125I-aFGF which is bound specifically by both the epidermal cap and mesenchyme of blastema frozen sections is displaced by an excess of unlabeled factor and inhibited by heparin. Heparinase treatment and 2 M NaCl washing which decreased the binding was fourfold more efficient for epidermal cap than for mesenchyme suggesting the presence of high affinity receptors in the latter tissue. The presence of aFGF (or a closely related molecule) in blastemas is consistent with our earlier results that showed stimulation of proliferation of cultured blastema cells by acidic or basic FGF or heparin alone. These results suggest the possibility that aFGF is stored in the epidermal cap during limb regeneration and that it stimulates the proliferation of the underlaying mesenchyme.  相似文献   

7.
8.
9.
Primary palatogenesis involves an intricate array of events. Cell migration, proliferation, differentiation, programmed death, and fusion occur. Prior to fusion, the morphology of the epithelium undergoes marked changes. Epithelial projections form and extend across the fusion site attaching by filopodia to the opposite prominence. By appearance, the epithelium plays a critical role in facial development. In order to monitor epithelial activities, a study was done to isolate and characterize epithelial cells derived from the primary palate. The primary palate was microdissected from day 13 Sprague-Dawley rat embryos, and the epithelium and mesenchyme were separated by enzymatic digestion with a 3% trypsin-pancreatin solution (3:1). All explants were cultured in Dulbecco's modified Eagle's medium (DMEM) and Ham's F-12 medium (1:1) supplemented with 10% fetal calf serum (FCS), 20 ng/ml epidermal growth factor (EGF), and antibiotics. Explant cells were gathered by trypsin harvesting and sub-cultured. These sub-cultured cells were further characterized. Transmission and scanning electron microscopy showed that the cells retained many morphological features observed in vivo. In passaged cells, type IV collagen, laminin, and cytokeratins were visualized by immunocytochemistry. Gel electrophoresis analysis of the water-insoluble extracts demonstrated major bands of proteins of 50 kD and 44 kD that were synthesized by the epithelial cells but not by the mesenchymal cells. These cytokeratin types are suggestive of a simple undifferentiated embryonic epithelium. The effect of all-trans retinoic acid (RA) on cell number and [3H]-proline incorporation was assessed. At [10(-4)M] and [10(-6)M] retinoic acid resulted in significant inhibition in cell proliferation and amount of proline incorporated, with the greater inhibition occurring in the mesenchymal cells. In the concentrations studied, retinoic acid has an inhibitory effect on the two differently derived cell types. This study established that sub-cultured epithelial cells maintain their phenotype and can be used to study fusion processes. Part 2 will demonstrate how the morphology of the epithelial cells can be modified to produce the changes that are observed during fusion of the primary palate.  相似文献   

10.
To assess the requirement for specific or possibly non-specific epithelial instructions for mesenchymal cell differentiation, we designed studies to evaluate and compare homotypic with heterotypic tissue recombinations across vertebrate species. These studies further tested the hypothesis that determined dental papilla mesenchyme requires epithelial-derived instructions to differentiate into functional odontoblast cells using a serumless, chemically-defined medium. Theiler stage 25 C57BL/6 or Swiss Webster cap stage mandibular first molar tooth organs or trypsin-dissociated, homotypic epithelial-mesenchymal tissue recombinants resulted in the differentiation of odontoblasts within 3 days. Epithelial differentiation into functional ameloblasts was observed within 7 days. Trypsin-dissociated and isolated mesenchyme did not differentiate into odontoblasts under these experimental conditions. Heterotypic recombinants between quail Hamburger-Hamilton stages 22–26 mandibular epithelium and Theiler stage 25 dental papilla mesenchyme routinely resulted in odontoblast differentiation within 3 days in vitro. Odontoblast differentiation and the production of dentine extracellular matrix continued throughout the 10 days in organ culture. Ultrastructural observations of the interface between quail and mouse tissues indicated the reconstitution of the basal lamina as well as the maintenance of an intact basal lamina during 10 days in vitro. Quail epithelial cells did not differentiate into ameloblasts and no enamel extracellular matrix was observed. These results show that quail mandibular epithelium can provide the required developmental instructions for odontoblast differentiation in the absence of serum or other exogenous humoral factors in a chemically-defined medium. They also suggest the importance of reciprocal epithelial-mesenchymal interactions during epidermal organogenesis.  相似文献   

11.
We performed tissue recombination experiments to discover the mesenchymal influences on differentiation of epithelia in chicken digestive organs. Epithelia and mesenchymes were taken from the lung, esophagus, proventriculus, gizzard, small intestine and large intestine of 6-day chicken embryos and recombined in various associations and cultivated in vitro for 6 days. Rather unexpectedly, embryonic chicken pepsinogen (ECPg) gene, a marker of the proventricular epithelium, was induced in the gizzard epithelium, which does not express ECPg in normal development, by the proventricular and lung mesenchymes. In the second half of this study, we investigated the mode of action of mesenchymal cells on ECPg expression in gizzard epithelial cells more precisely using the cell aggregate culture system, in which gizzard epithelial cells were mixed with proventricular, gizzard or lung mesenchymal cells. We found that supporting action of lung mesenchymal cells on ECPg expression was even stronger than that of proventricular mesenchymal cells, and suggest that the action of lung mesenchyme may be due partly to the enhancement of epithelial cell proliferation. According to the results of this study, together with many facts obtained so far, we will discuss a new model for restricted expression of ECPg in the proventricular epithelium in normal development.  相似文献   

12.
During organogenesis, the middle to caudal portion of Müllerian epithelium differentiates into uterine and vaginal epithelia in females. Functional differentiation of uterine and vaginal epithelia occurs in adulthood, and is regulated by 17beta-estradiol (E(2)) and progesterone. In this report, the roles of mesenchyme/stroma in differentiation of uterine and vaginal epithelia were studied in tissue recombination experiments. At birth, Müllerian epithelium was negative for uterine and vaginal epithelial markers. Tissue recombinant experiments showed that uterine and vaginal gene expression patterns were induced in neonatal Müllerian epithelium by the respective mesenchymes. Differentiated adult uterine and vaginal epithelia did not change their original gene expression in response to heterotypic mesenchymal induction. In the adult vagina, E(2) induced expression of involucrin, a CCAAT/enhancer-binding protein beta and cytokeratin 1 via estrogen receptor alpha (ERalpha). Tissue recombination experiments with wild-type and ERalpha knockout mice demonstrated that epithelial gene expression is regulated by E(2) via epithelial-stromal tissue interactions. Uterine/vaginal heterotypic tissue recombinations demonstrated that functional differentiation of uterine and vaginal epithelia required organ-specific stromal factors. In contrast, stromal signals regulating epithelial proliferation appeared to be nonspecific in the uterus and vagina.  相似文献   

13.
Although local epithelial-mesenchymal tissue interactions which are presumably mediated by extracellular matrix molecules are important regulators of tooth morphogenesis and differentiation, our studies have indicated that these developmental processes also depend on circulating molecules. The iron-carrying serum protein transferrin is necessary for the early morphogenesis of mouse tooth in organ culture (A-M. Partanen, I. Thesleff, and P. Ekblom, 1984, Differentiation 27, 59-66). In the present study we have examined the effects of other growth factors on mouse tooth germs grown in a chemically defined medium containing transferrin. Fibroblast growth factor and platelet derived growth factor had no detectable effects but epidermal growth factor (EGF) inhibited dramatically the morphogenesis of teeth, and prevented odontoblast and ameloblast cell differentiation. EGF stimulated cell proliferation in the explants measured as [3H]thymidine incorporation in DNA. However, when the distribution of dividing cells was visualized in autoradiographs, it was observed that cell proliferation was stimulated in the dental epithelium but was inhibited in the dental mesenchyme. The inhibition of cell proliferation in the dental mesenchyme apparently caused the inhibition of morphogenesis. We do not know whether the dental epithelium or mesenchyme was the primary target for the action of EGF in the inhibition of morphogenesis. It is, however, apparent that the response of the dental mesenchymal cells to EGF (inhibition of proliferation) is regulated by their local environment, since EGF enhanced proliferation when these cells were disaggregated and cultured as monolayers. This indicates that the organ culture system where the various embryonic cell lineages are maintained in their original environment corresponds better to the in vivo situation when the roles of exogenous growth factors during development are examined.  相似文献   

14.
《The Journal of cell biology》1988,107(6):2341-2349
Tenascin, an extracellular matrix protein, is expressed in the mesenchyme around growing epithelia in the embryo. We therefore investigated whether epithelial cells can stimulate expression of tenascin in embryonic mesenchyme. Mesenchyme from the presumptive small intestine was used because it is known that reciprocal epithelial- mesenchymal interactions are important for gut morphogenesis. Rat monoclonal antibodies against mouse tenascin were raised and were found to react specifically with mouse tenascin in ELISA. In supernatants of cultured fibroblasts, the antibodies precipitated two peptides of Mr 260 and 210 kD. One of the antibodies also reacted with these tenascin chains in immunoblots of tissue extracts. We found that tenascin was absent during early stages of gut development, at stages when the mesenchyme is already in contact with the stratified epithelium of the endoderm. Rather, it appeared in the mesenchyme when the homogenous endodermal epithelium differentiated into the heterogenous absorptive epithelium. Tenascin remained present in the stroma of the adult gut, close to the migration pathways of the continuously renewing epithelium. When first detected during intestinal differentiation, the 210-kD component was predominant but at birth the relative amount of the 260-kD component had increased. The expression data suggested that the appearance of tenascin in the mesenchyme was dependent on the presence of epithelium. To test this, isolated gut mesenchymes from 13- d-old mouse embryos were cultured for 24 h either alone or together with epithelial and nonepithelial cells. Whereas mesenchyme cultured alone or in the presence of nonepithelial B16-F1 melanoma cells produced only trace amounts of tenascin, expression was strongly stimulated by the epithelial cell line, Madin-Darby canine kidney (MDCK). We propose that growing and differentiating epithelia produce locally active factors which stimulate synthesis of tenascin in the surrounding mesenchyme.  相似文献   

15.
To determine the role of the epidermal growth factor (EGF) in the regenerative stimulation of intestinal epithelium and hepatocyte proliferation after partial resection of these organs the labeling index of the intestine and liver in sialadenectomized rats was studied. EGF concentration in the saliva and serum was determined using radioimmunoassay. The decrease in EGF concentration after the removal of submandibular salivary glands was shown to slower hepatocytes entering the mitotic cycle and to inhibit the activity of enterocyte proliferation in the small intestine. The data show pronounced in vivo mitogenic effect of EGF on the liver and intestinal epithelium.  相似文献   

16.
Chicken, ovine or human growth hormones have no mitogenic effect on chicken heart mesenchymal cells, which are proliferatively quiescent at low culture densities in medium containing heparinized, heat-defibrinogenated rooster plasma at 10%. Sm-C/IGF-I (15 ng/ml; 2 nM), MSA/rIGF-II (50 ng/ml; 7 nM), insulin (10,000 ng/ml; 1750 nM) or proinsulin (16,000 ng/ml; 1750 nM), however, cause these cells to increase threefold in number during four days of incubation. While EGF alone at 100 ng/ml causes threefold multiplication at four days and brain FGF causes a sixfold increase, EGF acts synergistically with Sm-C/IGF-I, MSA/rIGF-II, insulin or proinsulin to cause 18-fold multiplication, and brain FGF acts synergistically with IGFs to cause 20-fold multiplication. EGF and brain FGF, however, show no mitogenic synergy. Addition to the plasma-containing culture medium of a monoclonal antibody to Sm-C/IGF-I nearly abolishes the mitogenic effect of added EGF or brain FGF but does not affect the autonomous (mitogenic hormone-independent) proliferation of RSV-infected chicken heart mesenchymal cells. These findings support the somatomedin hypothesis for growth hormone action and suggest that potentiation of the activity of other mitogenic hormones, like EGF and FGF, makes a significant contribution to control of cell proliferation by the GH/IGF axis.  相似文献   

17.
Mouse salivary epithelium cannot undergo branching morphogenesis in the absence of the surrounding mesenchyme. To clarify the nature of the mesenchymal influence on the epithelium, we have investigated the culture conditions in which the epithelium could normally branch in the absence of mesenchymal cells. Combination of basement-membrane-like substratum (Matrigel) and epidermal growth factor (EGF) could substitute for the mesenchyme, the epithelium showing typical branching morphogenesis. Transforming growth factor alpha had the same effect as EGF. Matrigel plus basic fibroblast growth factor or transforming growth factor beta 1 and collagen gel plus EGF were not sufficient to support the branching of the epithelium. These results clearly reveal that the role of mesenchyme in salivary morphogenesis is both to provide the epithelium with an appropriate substratum and to accelerate growth of the epithelium.  相似文献   

18.
19.
Lymphopoiesis was studied by electron microscopy in the palatine tonsil of the rabbit from 18 days gestation to 5 days after birth. At 18 days tonsils formed as mounds of mesenchyma covered with epithelium. At 19 days the basal epithelial cells started to increase in number, eventually forming 'buds' which projected into the mesenchyme. Simultaneously, lymphocytes appeared nearthe epithelium or buds. There was marked resemblance between the basal epithelial cells and the lymphocytes. Budding slowed down after the 25th day, but individual basal cells continued to migrate into the mesenchyme and lymphocytes increased in number. Ultrastructure wassimilar in both types of cells, and differentfrom mesenchymal cells. At 29 days lymphocytes were found in the basal epithelial layer behind an intact basement membrane. The evidence indicated that lymphocytes were derived from epithelium.  相似文献   

20.
Epithelial tissues in various organ rudiments undergo extensive shape changes during their development. The processes of epithelial shape change are controlled by tissue interactions with the surrounding mesenchyme which is kept in direct contact with the epithelium. One of the organs which has been extensively studied is the mouse embryonic submandibular gland, whose epithelium shows the characteristic branching morphogenesis beginning with the formation of narrow and deep clefts as well as changes in tissue organization. Various molecules in the mesenchyme, including growth factors and extracellular matrix components, affect changes of epithelial shape and tissue organization. Also, mesenchymal tissue exhibits dynamic properties such as directional movements in groups and rearrangement of collagen fibers coupled with force-generation by mesenchymal cells. The epithelium, during early branching morphogenesis, makes a cell mass where cell-cell adhesion systems are less developed. Such properties of both the mesenchyme and epithelium are significant for considering how clefts, which first appear as unstable tiny indentations on epithelial surfaces, are formed and stabilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号