首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.

Background  

It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events.  相似文献   

2.

Background

Extant genomes share regions where genes have the same order and orientation, which are thought to arise from the conservation of an ancestral order of genes during evolution. Such regions of so-called conserved synteny, or synteny blocks, must be precisely identified and quantified, as a prerequisite to better understand the evolutionary history of genomes.

Results

Here we describe PhylDiag, a software that identifies statistically significant synteny blocks in pairwise comparisons of eukaryote genomes. Compared to previous methods, PhylDiag uses gene trees to define gene homologies, thus allowing gene deletions to be considered as events that may break the synteny. PhylDiag also accounts for gene orientations, blocks of tandem duplicates and lineage specific de novo gene births. Starting from two genomes and the corresponding gene trees, PhylDiag returns synteny blocks with gaps less than or equal to the maximum gap parameter gapmax. This parameter is theoretically estimated, and together with a utility to graphically display results, contributes to making PhylDiag a user friendly method. In addition, putative synteny blocks are subject to a statistical validation to verify that they are unlikely to be due to a random combination of genes.

Conclusions

We benchmark several known metrics to measure 2D-distances in a matrix of homologies and we compare PhylDiag to i-ADHoRe 3.0 on real and simulated data. We show that PhylDiag correctly identifies small synteny blocks even with insertions, deletions, incorrect annotations or micro-inversions. Finally, PhylDiag allowed us to identify the most relevant distance metric for 2D-distance calculation between homologies.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-268) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background  

Recent genome sequencing enables mega-base scale comparisons between related genomes. Comparisons between animals, plants, fungi, and bacteria demonstrate extensive synteny tempered by rearrangements. Within the legume plant family, glimpses of synteny have also been observed. Characterizing syntenic relationships in legumes is important in transferring knowledge from model legumes to crops that are important sources of protein, fixed nitrogen, and health-promoting compounds.  相似文献   

4.

Background  

Genomes undergo large structural changes that alter their organisation. The chromosomal regions affected by these rearrangements are called breakpoints, while those which have not been rearranged are called synteny blocks. We developed a method to precisely delimit rearrangement breakpoints on a genome by comparison with the genome of a related species. Contrary to current methods which search for synteny blocks and simply return what remains in the genome as breakpoints, we propose to go further and to investigate the breakpoints themselves in order to refine them.  相似文献   

5.

Background  

Comparison of completely sequenced microbial genomes has revealed how fluid these genomes are. Detecting synteny blocks requires reliable methods to determining the orthologs among the whole set of homologs detected by exhaustive comparisons between each pair of completely sequenced genomes. This is a complex and difficult problem in the field of comparative genomics but will help to better understand the way prokaryotic genomes are evolving.  相似文献   

6.
Alexeev  Nikita  Alekseyev  Max A. 《BMC genomics》2017,18(4):356-9

Background

The ability to estimate the evolutionary distance between extant genomes plays a crucial role in many phylogenomic studies. Often such estimation is based on the parsimony assumption, implying that the distance between two genomes can be estimated as the rearrangement distance equal the minimal number of genome rearrangements required to transform one genome into the other. However, in reality the parsimony assumption may not always hold, emphasizing the need for estimation that does not rely on the rearrangement distance. The distance that accounts for the actual (rather than minimal) number of rearrangements between two genomes is often referred to as the true evolutionary distance. While there exists a method for the true evolutionary distance estimation, it however assumes that genomes can be broken by rearrangements equally likely at any position in the course of evolution. This assumption, known as the random breakage model, has recently been refuted in favor of the more rigorous fragile breakage model postulating that only certain “fragile” genomic regions are prone to rearrangements.

Results

We propose a new method for estimating the true evolutionary distance between two genomes under the fragile breakage model. We evaluate the proposed method on simulated genomes, which show its high accuracy. We further apply the proposed method for estimation of evolutionary distances within a set of five yeast genomes and a set of two fish genomes.

Conclusions

The true evolutionary distances between the five yeast genomes estimated with the proposed method reveals that some pairs of yeast genomes violate the parsimony assumption. The proposed method further demonstrates that the rearrangement distance between the two fish genomes underestimates their evolutionary distance by about 20%. These results demonstrate how drastically the two distances can differ and justify the use of true evolutionary distance in phylogenomic studies.
  相似文献   

7.

Background  

The recent availability of an expanding collection of genome sequences driven by technological advances has facilitated comparative genomics and in particular the identification of synteny among multiple genomes. However, the development of effective and easy-to-use methods for identifying such conserved gene clusters among multiple genomes–synteny blocks–as well as databases, which host synteny blocks from various groups of species (especially eukaryotes) and also allow users to run synteny-identification programs, lags behind.  相似文献   

8.
Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.  相似文献   

9.
ABSTRACT: BACKGROUND: The availability of a large number of recently sequenced vertebrate genomes opens new avenues to integrate cytogenetics and genomics in comparative and evolutionary studies. Cytogenetic mapping can offer alternative means to identify conserved synteny shared by distinct genomes and also to define genome regions that are still not fine characterized even after wide-ranging nucleotide sequence efforts. An efficient way to perform comparative cytogenetic mapping is based on BAC clones mapping by fluorescence in situ hybridization. In this report, to address the knowledge gap on the genome evolution in cichlid fishes, BAC clones of an Oreochromis niloticus library covering the linkage groups (LG) 1, 3, 5, and 7 were mapped onto the chromosomes of 9 African cichlid species. The cytogenetic mapping data were also integrated with BAC-end sequences information of O. niloticus and comparatively analyzed against the genome of other fish species and vertebrates. RESULTS: The location of BACs from LG1, 3, 5, and 7 revealed a strong chromosomal conservation among the analyzed cichlid species genomes, which evidenced a synteny of the markers of each LG. Comparative in silico analysis also identified large genomic blocks that were conserved in distantly related fish groups and also in other vertebrates. CONCLUSIONS: Although it has been suggested that fishes contain plastic genomes with high rates of chromosomal rearrangements and probably low rates of synteny conservation, our results evidence that large syntenic chromosome segments have been maintained conserved during evolution, at least for the considered markers. Additionally, our current cytogenetic mapping efforts integrated with genomic approaches conduct to a new perspective to address important questions involving chromosome evolution in fishes.  相似文献   

10.
We studied synteny conservation between 18 yeast species and 13 vertebrate species in order to provide a comparative analysis of the chromosomal plasticity in these 2 phyla. By computing the regions of conserved synteny between all pairwise combinations of species within each group, we show that in vertebrates, the number of conserved synteny blocks exponentially increases along with the divergence between orthologous protein and that concomitantly; the number of genes per block exponentially decreases. The same trends are found in yeasts but only when the mean protein divergence between orthologs remains below 36%. When the average protein divergence exceeds this threshold, the total number of recognizable synteny blocks gradually decreases due to the repeated accumulation of rearrangements. We also show that rearrangement rates are on average 3-fold higher in vertebrates than in yeasts, and are estimated to be of 2 rearrangements/Myr. However, the genome sizes being on average 200 times larger in vertebrates than in yeasts, the normalized rates of chromosome rearrangements (per Mb) are about 50-fold higher in yeast than in vertebrate genomes.  相似文献   

11.
Canine tricuspid valve malformation (CTVM) maps to canine chromosome 9 (CFA9), in a region syntenic with gene-dense human chromosome 17q. To define synteny blocks, we analyzed 148 markers on CFA9 using radiation hybrid mapping and established a four-way comparative map for human, mouse, rat, and dog. We identified a large number of rearrangements, allowing us to reconstruct the evolutionary history of individual synteny blocks and large chromosomal segments. A most parsimonious rearrangement scenario for all four species reveals that human chromosome 17q differs from CFA9 and the syntenic rodent chromosomes through two macroreversals of 9.2 and 23 Mb. Compared to a recovered ancestral gene order, CFA9 has undergone 11 reversals of <3 Mb and 2 reversals of >3 Mb. Interspecies reuse of breakpoints for micro- and macrorearrangements was observed. Gene order and content of the ctvm interval are best extrapolated from murine data, showing that multispecies genome rearrangement scenarios contribute to identifying gene content in canine mapping studies.  相似文献   

12.

Background

Ancestral reconstructions of mammalian genomes have revealed that evolutionary breakpoint regions are clustered in regions that are more prone to break and reorganize. What is still unclear to evolutionary biologists is whether these regions are physically unstable due solely to sequence composition and/or genome organization, or do they represent genomic areas where the selection against breakpoints is minimal.

Methodology and Principal Findings

Here we present a comprehensive study of the distribution of tandem repeats in great apes. We analyzed the distribution of tandem repeats in relation to the localization of evolutionary breakpoint regions in the human, chimpanzee, orangutan and macaque genomes. We observed an accumulation of tandem repeats in the genomic regions implicated in chromosomal reorganizations. In the case of the human genome our analyses revealed that evolutionary breakpoint regions contained more base pairs implicated in tandem repeats compared to synteny blocks, being the AAAT motif the most frequently involved in evolutionary regions. We found that those AAAT repeats located in evolutionary regions were preferentially associated with Alu elements.

Significance

Our observations provide evidence for the role of tandem repeats in shaping mammalian genome architecture. We hypothesize that an accumulation of specific tandem repeats in evolutionary regions can promote genome instability by altering the state of the chromatin conformation or by promoting the insertion of transposable elements.  相似文献   

13.

Background

By reshuffling genomes, structural genomic reorganizations provide genetic variation on which natural selection can work. Understanding the mechanisms underlying this process has been a long-standing question in evolutionary biology. In this context, our purpose in this study is to characterize the genomic regions involved in structural rearrangements between human and macaque genomes and determine their influence on meiotic recombination as a way to explore the adaptive role of genome shuffling in mammalian evolution.

Results

We first constructed a highly refined map of the structural rearrangements and evolutionary breakpoint regions in the human and rhesus macaque genomes based on orthologous genes and whole-genome sequence alignments. Using two different algorithms, we refined the genomic position of known rearrangements previously reported by cytogenetic approaches and described new putative micro-rearrangements (inversions and indels) in both genomes. A detailed analysis of the rhesus macaque genome showed that evolutionary breakpoints are in gene-rich regions, being enriched in GO terms related to immune system. We also identified defense-response genes within a chromosome inversion fixed in the macaque lineage, underlying the relevance of structural genomic changes in evolutionary and/or adaptation processes. Moreover, by combining in silico and experimental approaches, we studied the recombination pattern of specific chromosomes that have suffered rearrangements between human and macaque lineages.

Conclusions

Our data suggest that adaptive alleles – in this case, genes involved in the immune response – might have been favored by genome rearrangements in the macaque lineage.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-530) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background  

An increasing number of whole viral and bacterial genomes are being sequenced and deposited in public databases. In parallel to the mounting interest in whole genomes, the number of whole genome analyses software tools is also increasing. GeneOrder was originally developed to provide an analysis of genes between two genomes, allowing visualization of gene order and synteny comparisons of any small genomes. It was originally developed for comparing virus, mitochondrion and chloroplast genomes. This is now extended to small bacterial genomes of sizes less than 2 Mb.  相似文献   

15.

Background

Genome sequencing projects have been completed for several species representing four highly diverged holometabolous insect orders, Diptera, Hymenoptera, Coleoptera, and Lepidoptera. The striking evolutionary diversity of insects argues a need for efficient methods to apply genome information from such models to genetically uncharacterized species. Constructing conserved synteny maps plays a crucial role in this task. Here, we demonstrate the use of fluorescence in situ hybridization with bacterial artificial chromosome probes as a powerful tool for physical mapping of genes and comparative genome analysis in Lepidoptera, which have numerous and morphologically uniform holokinetic chromosomes.

Methodology/Principal Findings

We isolated 214 clones containing 159 orthologs of well conserved single-copy genes of a sequenced lepidopteran model, the silkworm, Bombyx mori, from a BAC library of a sphingid with an unexplored genome, the tobacco hornworm, Manduca sexta. We then constructed a BAC-FISH karyotype identifying all 28 chromosomes of M. sexta by mapping 124 loci using the corresponding BAC clones. BAC probes from three M. sexta chromosomes also generated clear signals on the corresponding chromosomes of the convolvulus hawk moth, Agrius convolvuli, which belongs to the same subfamily, Sphinginae, as M. sexta.

Conclusions/Significance

Comparison of the M. sexta BAC physical map with the linkage map and genome sequence of B. mori pointed to extensive conserved synteny including conserved gene order in most chromosomes. Only a few rearrangements, including three inversions, three translocations, and two fission/fusion events were estimated to have occurred after the divergence of Bombycidae and Sphingidae. These results add to accumulating evidence for the stability of lepidopteran genomes. Generating signals on A. convolvuli chromosomes using heterologous M. sexta probes demonstrated that BAC-FISH with orthologous sequences can be used for karyotyping a wide range of related and genetically uncharacterized species, significantly extending the ability to develop synteny maps for comparative and functional genomics.  相似文献   

16.

Background

Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced.

Results

The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangements were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN).

Conclusions

We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.  相似文献   

17.
Bhutkar A  Schaeffer SW  Russo SM  Xu M  Smith TF  Gelbart WM 《Genetics》2008,179(3):1657-1680
The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major themes are addressed: the conservation of syntenic blocks across species, the disruption of syntenic blocks (via chromosomal inversion events) and its relationship to the phylogenetic distribution of these species, and the rate of rearrangement events over evolutionary time. Comparison of syntenic blocks across this large genomic data set confirms that genetic elements are largely (95%) localized to the same Muller element across genus Drosophila species and paracentric inversions serve as the dominant mechanism for shuffling the order of genes along a chromosome. Gene-order scrambling between species is in accordance with the estimated evolutionary distances between them and we find it to approximate a linear process over time (linear to exponential with alternate divergence time estimates). We find the distribution of synteny segment sizes to be biased by a large number of small segments with comparatively fewer large segments. Our results provide estimated chromosomal evolution rates across this set of species on the basis of whole-genome synteny analysis, which are found to be higher than those previously reported. Identification of conserved syntenic blocks across these genomes suggests a large number of conserved blocks with varying levels of embryonic expression correlation in Drosophila melanogaster. On the other hand, an analysis of the disruption of syntenic blocks between species allowed the identification of fixed inversion breakpoints and estimates of breakpoint reuse and lineage-specific breakpoint event segregation.  相似文献   

18.

Background

The ChickRH6 whole chicken genome radiation hybrid (RH) panel recently produced has already been used to build radiation hybrid maps for several chromosomes, generating comparative maps with the human and mouse genomes and suggesting improvements to the chicken draft sequence assembly. Here we present the construction of a RH map of chicken chromosome 2. Markers from the genetic map were used for alignment to the existing GGA2 (Gallus gallus chromosome 2) linkage group and EST were used to provide valuable comparative mapping information. Finally, all markers from the RH map were localised on the chicken draft sequence assembly to check for eventual discordances.

Results

Eighty eight microsatellite markers, 10 genes and 219 EST were selected from the genetic map or on the basis of available comparative mapping information. Out of these 317 markers, 270 gave reliable amplifications on the radiation hybrid panel and 198 were effectively assigned to GGA2. The final RH map is 2794 cR6000 long and is composed of 86 framework markers distributed in 5 groups. Conservation of synteny was found between GGA2 and eight human chromosomes, with segments of conserved gene order of varying lengths.

Conclusion

We obtained a radiation hybrid map of chicken chromosome 2. Comparison to the human genome indicated that most of the 8 groups of conserved synteny studied underwent internal rearrangements. The alignment of our RH map to the first draft of the chicken genome sequence assembly revealed a good agreement between both sets of data, indicative of a low error rate.  相似文献   

19.

Background  

The Brassica species include an important group of crops and provide opportunities for studying the evolutionary consequences of polyploidy. They are related to Arabidopsis thaliana, for which the first complete plant genome sequence was obtained and their genomes show extensive, although imperfect, conserved synteny with that of A. thaliana. A large number of EST sequences, derived from a range of different Brassica species, are available in the public database, but no public microarray resource has so far been developed for these species.  相似文献   

20.

Background  

Genome comparisons have made possible the reconstruction of the eutherian ancestral karyotype but also have the potential to provide new insights into the evolutionary inter-relationship of the different eutherian orders within the mammalian phylogenetic tree. Such comparisons can additionally reveal (i) the nature of the DNA sequences present within the evolutionary breakpoint regions and (ii) whether or not the evolutionary breakpoints occur randomly across the genome. Gene synteny analysis (E-painting) not only greatly reduces the complexity of comparative genome sequence analysis but also extends its evolutionary reach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号