首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
A photosystem I (PSI)-fucoxanthin chlorophyll protein (FCP) complex with a chlorophyll a/P700 ratio of approximately 200:1 was isolated from the diatom Phaeodactylum tricornutum. Spectroscopic analysis proved that the more tightly bound FCP functions as a light-harvesting complex, actively transferring light energy from its accessory pigments chlorophyll c and fucoxanthin to the PSI core. Using an antibody against all FCP polypeptides of Cyclotella cryptica it could be shown that the polypeptides of the major FCP fraction differ from the FCPs found in the PSI fraction. Since these FCPs are tightly bound to PSI, active in energy transfer, and not found in the main FCP fraction, we suppose them to be PSI specific. Blue Native-PAGE, gel filtration and first electron microscopy studies of the PSI-FCP sample revealed a monomeric complex comparable in size and shape to the PSI-LHCI complex of green algae.  相似文献   

2.
Thylakoids of the diatom Cyclotella meneghiniana were separated by discontinuous gradient centrifugation into photosystem (PS) I, PSII, and fucoxanthin-chlorophyll protein (FCP) fractions. FCPs are homologue to light harvesting complexes of higher plants with similar function in e.g. brown algae and diatoms. Still, it is unclear if FCP complexes are specifically associated with either PSI or PSII, or if FCP complexes function as one antenna for both photosystems. However, a trimeric FCP complex, FCPa, and a higher FCP oligomer, FCPb, have been described for C. meneghiniana, already. In this study, biochemical and spectroscopical evidences are provided that reveal a different subset of associated Fcp polypeptides within the isolated photosystem complexes. Whereas the PSII associated Fcp antenna resembles FCPa since it contains Fcp2 and Fcp6, at least three different Fcp polypeptides are associated with PSI. By re-solubilisation and a further purification step Fcp polypeptides were partially removed from PSI and both fractions were analysed again by biochemical and spectroscopical means, as well as by HPLC. Thereby a protein related to Fcp4 and a so far undescribed 17 kDa Fcp were found to be strongly coupled to PSI, whereas presumably Fcp5, a subunit of the FCPb complex, is only loosely bound to the PSI core. Thus, an association of FCPb and PSI is assumed.  相似文献   

3.
We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls.  相似文献   

4.
 A fucoxanthin-chlorophyll protein (FCP) cDNA from the raphidophyte Heterosigma carterae encodes a 210-amino acid polypeptide that has similarity to other FCPs and to the chlorophyll a/b-binding proteins (CABs) of terrestrial plants and green algae. The putative transit sequence has characteristics that resemble a signal sequence. The Heterosigma fcp genes are part of a large multigene family which includes members encoding at least two significantly different polypeptides (Fcp1, Fcp2). Comparison of the FCP sequences to the recently determined three-dimensional structure of the pea LHC II complex indicates that many of the key amino acids thought to participate in the binding of chlorophyll and the formation of complex-stabilizing ionic interactions are well conserved. Phylogenetic analyses of sequences of light-harvesting proteins shows that the FCPs of several chromophyte phyla form a natural group separate from the intrinisic peridinin-chlorophyll proteins (iPCPs) of the dinoflagellates. Although the FCP and CAB genes shared a common ancestor, these lineages diverged from each other prior to the separation of the CAB LHC I and LHC II sequences in the green algae and terrestrial plants. Received: 8 July 1996 / Accepted: 21 August 1996  相似文献   

5.
Diatoms occupy a key position as a primary producer in the global aquatic ecosystem. We developed methods to isolate highly intact thylakoid membranes and the photosystem I (PS I) complex from a marine centric diatom, Chaetoceros gracilis. The PS I reaction center (RC) was purified as a super complex with light-harvesting fucoxanthin-chlorophyll (Chl)-binding proteins (FCP). The super complex contained 224 Chl a, 22 Chl c, and 55 fucoxanthin molecules per RC. The apparent molecular mass of the purified FCP-PS I super complex (∼ 1000 kDa) indicated that the super complex was composed of a monomer of the PS I RC complex and about 25 copies of FCP. The complex contained menaquinone-4 as the secondary electron acceptor A1 instead of phylloquinone. Time-resolved fluorescence emission spectra at 77 K indicated that fast (16 ps) energy transfer from a Chl a band at 685 nm on FCP to Chls on the PS I RC complex occurs. The ratio of fucoxanthin to Chl a on the PS I-bound FCP was lower than that of weakly bound FCP, suggesting that PS I-bound FCP specifically functions as the mediator of energy transfer between weakly bound FCPs and the PS I RC.  相似文献   

6.
We previously showed that most subunits in the oxygen-evolving photosystem II (PSII) preparation from the diatom Chaetoceros gracilis are proteolytically unstable. Here, we focused on identifying the proteases that cleave PSII subunits in thylakoid membranes. Major PSII subunits and fucoxanthin chlorophyll (Chl) a/c‐binding proteins (FCPs) were specifically degraded in thylakoid membranes. The PSI subunits, PsaA and PsaB, were slowly degraded, and cytochrome f was barely degraded. Using zymography, proteolytic activities for three metalloproteases (116, 83, and 75 kDa) and one serine protease (156 kDa) were detected in thylakoid membranes. Two FCP fractions (FCP-A and FCP-B/C) and a photosystem fraction were separated by sucrose gradient centrifugation using dodecyl maltoside‐solubilized thylakoids. The FCP-A fraction featured enriched Chl c compared with the bulk of FCP-B/C. Zymography revealed that 116, 83, and 94 kDa metalloproteases were mostly in the FCP-A fraction along with the 156 kDa serine protease. When solubilized thylakoids were separated with clear-native PAGE, zymography detected only the 83 kDa metalloprotease in the FCP-A band. Because FCP-A is selectively associated with PSII, these FCP-A-associated metalloproteases and serine protease may be responsible for the proteolytic degradation of FCPs and PSII in thylakoid membranes.  相似文献   

7.
《BBA》2023,1864(2):148935
Detailed information on the photo-generated triplet states of diatom and haptophyte Fucoxanthin Chlorophyll-binding Proteins (FCPs and E-FCPs, respectively) have been obtained from a combined spectroscopic investigation involving Transient Absorption and Time-Resolved Electron Paramagnetic Resonance. Pennate diatom Phaeodactylum tricornutum FCP shows identical photoprotective Triplet-Triplet Energy Transfer (TTET) pathways to the previously investigated centric diatom Cyclotella meneghiniana FCP, with the same two chlorophyll a-fucoxanthin pairs that involve the fucoxanthins in sites Fx301 and Fx302 contributing to TTET in both diatom groups. In the case of the haptophyte Emilianina huxleyi E-FCP, only one of the two chlorophyll a-fucoxanthins pairs observed in diatoms, the one involving chlorophyll a409 and Fx301, has been shown to be active in TTET. Furthermore, despite the marked change in the pigment content of E-FCP with growth light intensity, the TTET pathway is not affected. Thus, our comparative investigation of FCPs revealed a photoprotective TTET pathway shared within these classes involving the fucoxanthin in site Fx301, a site exposed to the exterior of the antenna monomer that has no equivalent in Light-Harvesting Complexes from the green lineage.  相似文献   

8.
《BBA》2022,1863(7):148589
In diatoms, light-harvesting processes take place in a specific group of proteins, called fucoxanthin chlorophyll a/c proteins (FCP). This group includes many members and represents the major characteristic of the diatom photosynthetic apparatus, with specific pigments bound (chlorophyll c, fucoxanthin, diadino- and diatoxanthin besides chlorophyll a). In thylakoids, FCP and photosystems (PS) form multimeric supercomplexes.In this study, we compared the biochemical properties of PS supercomplexes isolated from Thalassiosira pseudonana cells grown under low light or high light conditions, respectively. High light acclimation changed the molecular features of the PS and their ratio in thylakoids. In PSII, no obvious changes in polypeptide composition were observed, whereas for PSI changes in one specific group of FCP proteins were detected. As reported before, the amount of xanthophyll cycle pigments and their de-epoxidation ratio was increased in PSI under HL. In PSII, however, no additional xanthophyll cycle pigments occurred, but the de-epoxidation ratio was increased as well. This comparison suggests how mechanisms of photoprotection might take place within and in the proximity of the PS, which gives new insights into the capacity of diatoms to adapt to different conditions and in different environments.  相似文献   

9.
《BBA》2013,1827(10):1226-1234
Although the major light harvesting complexes of diatoms, called FCPs (fucoxanthin chlorophyll a/c binding proteins), are related to the cab proteins of higher plants, the structures of these light harvesting protein complexes are much less characterized. Here, a structural/functional model for the “core” of FCP, based on the sequence homology with LHCII, in which two fucoxanthins replace the central luteins and act as quenchers of the Chl a triplet states, is proposed. Combining the information obtained by time-resolved EPR spectroscopy on the triplet states populated under illumination, with quantum mechanical calculations, we discuss the chlorophyll triplet quenching in terms of the geometry of the chlorophyll–carotenoid pairs participating to the process. The results show that local structural rearrangements occur in FCP, with respect to LHCII, in the photoprotective site.  相似文献   

10.
We have used the nonionic detergent octyl-β-d-glucopyranoside in combination with sodium dodecyl sulfate to isolate two novel Photosystem I (PSI) complexes from spinach (Spinacea oleracea L.) thylakoid membranes. These complexes have been characterized as to their spectral properties, content of PSI reaction center chlorophyll P700, and protein composition. PSI-B, purified from solubilized membranes by sucrose density gradient centrifugation, is a putative native PSI complex. PSI-B contains four polypeptides between 21 and 25 kilodaltons in addition to the components of the PSI antenna complex (LHCI); three of these polypeptides have not previously been associated with PSI. A second complex, CPI*, is purified from octyl glucoside/sodium dodecyl sulfate solubilized thylakoids by two cycles of preparative gel electrophoresis under mildly denaturing conditions. Electrophoresis under these conditions releases a discrete set of polypeptides from PSI producing a complex composed only of the PSI reaction center and the LHCI antenna.  相似文献   

11.
The photosynthetic antenna system of diatoms contains fucoxanthin chlorophyll a/c binding proteins (FCPs), which are membrane intrinsic proteins showing high homology to the light harvesting complexes (LHC) of higher plants. In the present study, we used a mild solubilization of P. tricornutum thylakoid membranes in combination with sucrose density gradient centrifugation or gelfiltration and obtained an oligomeric FCP complex (FCPo). The spectroscopic characteristics and pigment stoichiometries of the FCPo complex were comparable to FCP complexes that were isolated after solubilization with higher detergent per chlorophyll ratios. The excitation energy transfer between the FCP-bound pigments was more efficient in the oligomeric FCPo complexes, indicating that these complexes may represent the native form of the diatom antenna system in the thylakoid membrane. Determination of the molecular masses of the two different FCP fractions by gelfiltration revealed that the FCP complexes consisted of trimers, whereas the FCPo complexes were either composed of six monomers or two tightly associated trimers. In contrast to vascular plants, stable functional monomers could not be isolated in P. tricornutum. Both types of FCP complexes showed two protein bands in SDS-gels with apparent molecular masses of 18 and 19 kDa, respectively. Sequence analysis by MS/MS revealed that the 19 kDa protein corresponded to the fcpC and fcpD genes, whereas the 18 kDa band contained the protein of the fcpE gene. The presence of an oligomeric antenna in diatoms is in line with the oligomeric organization of antenna complexes in different photoautotrophic groups.  相似文献   

12.
Fucoxanthin chlorophyll a/c-binding protein (FCP) is a unique light-harvesting apparatus in diatoms. Several biochemical characteristics of FCP oligomer and trimer from different diatom species have been reported previously. However, the integration of information about molecular organizations and polypeptides of FCP through a comparison among diatoms has not been published. In this study, we used two-dimensional clear-native/SDS-PAGE to compare the oligomeric states and polypeptide compositions of FCP complexes from four diatoms: Chaetoceros gracilis, Thalassiosira pseudonana, Cyclotella meneghiniana, and Phaeodactylum tricornutum. FCP oligomer was found in C. gracilis, T. pseudonana, and C. meneghiniana, but not in P. tricornutum. The oligomerization varied among the three diatoms, although a predominant subunit having similar molecular weight was recovered in each FCP oligomer. These results suggest that the predominant subunit is involved in the formation of high FCP oligomerization in each diatom. In contrast, FCP trimer was found in all the diatoms. The trimerizations were quite similar, whereas the polypeptide compositions were markedly different. On the basis of this information and that from mass spectrometric analyses, the gene products in each FCP complex were identified in T. pseudonana and P. tricornutum. Based on these results, we discuss the role of FCP oligomer and trimer from the four diatoms.  相似文献   

13.
It was shown earlier that in etiolated bean (Phaseolus vulgaris, var. red kidney) leaves exposed to continuous light for a short time and then transferred to darkness a reorganization of their photosystem II (PSII) unit components occurs. This reorganization involves disorganization of the light-harvesting complex of PSII (LHC-II), destruction of its chlorophyll b and the 25 kilodalton polypeptide, and reuse of its chlorophyll a for the formation of additional, small in size, PSII units (Argyroudi-Akoyunoglou, Akoyunoglou, Kalosakas, Akoyunoglou 1982 Plant Physiol 70: 1242-1248). The present study further shows that parallel to the PSII unit reorganization a reorganization of the PSI unit components also occurs: upon transfer to darkness the 24, 23, and 21 kilodalton polypeptides, components of the light-harvesting complex of PSI (LHC-I), are decreased, the 69 kilodalton polypeptide, component of the chlorophyll a-rich P700-protein complex (CPI), is increased and new smallsized PSI units are formed. Concomitantly, the cytochrome f/chlorophyll and the cytochrome b/chlorophyll ratios are gradually increased. This suggests that the concentration of the electron transport components is also modulated in darkness to allow for adequate electron flow to occur between the newly synthesized PSII and PSI units.  相似文献   

14.
Diatoms occupy a key position as a primary producer in the global aquatic ecosystem. We developed methods to isolate highly intact thylakoid membranes and the photosystem I (PS I) complex from a marine centric diatom, Chaetoceros gracilis. The PS I reaction center (RC) was purified as a super complex with light-harvesting fucoxanthin-chlorophyll (Chl)-binding proteins (FCP). The super complex contained 224 Chl a, 22 Chl c, and 55 fucoxanthin molecules per RC. The apparent molecular mass of the purified FCP-PS I super complex (approximately 1000 kDa) indicated that the super complex was composed of a monomer of the PS I RC complex and about 25 copies of FCP. The complex contained menaquinone-4 as the secondary electron acceptor A1 instead of phylloquinone. Time-resolved fluorescence emission spectra at 77 K indicated that fast (16 ps) energy transfer from a Chl a band at 685 nm on FCP to Chls on the PS I RC complex occurs. The ratio of fucoxanthin to Chl a on the PS I-bound FCP was lower than that of weakly bound FCP, suggesting that PS I-bound FCP specifically functions as the mediator of energy transfer between weakly bound FCPs and the PS I RC.  相似文献   

15.
Prochlorothrix hollandica is one of the three known species of an unusual clade of cyanobacteria (formerly called “prochlorophytes”) that contain chlorophyll a and b molecules bound to intrinsic light-harvesting antenna proteins. Here, we report the structural characterization of supramolecular complex consisting of Photosystem I (PSI) associated with the chlorophyll a/b-binding Pcb proteins. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the Pcb-PSI supercomplex consists of a central trimeric PSI surrounded by a ring of 18 Pcb subunits. We conclude that the formation of the Pcb ring around trimeric PSI represents a mechanism for increasing the light-harvesting efficiency in chlorophyll b-containing cyanobacteria.  相似文献   

16.
The stepwise synthesis and assembly of photosynthetic membrane components in the y-1 mutant of Chlamydomonas reinhardi have been previously demonstrated (Ohad 1975 In Membrane Biogenesis, Mitochondria, Chloroplasts and Bacteria, Plenum, pp 279-350). This experimental system was used here in order to investigate the process of formation and interconnection of the energy collecting chlorophylls with the reaction centers of both photosystems I and II. The following measurements were carried out: photosynthetic electron flow at various light intensities, including parts or the entire electron transfer chain; analysis of the kinetics of fluorescence emission at room temperature and fluorescence emission spectra at 77 K, and electrophoretic separation of membrane polypeptides and chlorophyll protein complexes. Based on the data obtained it is concluded that: (a) each photosystem (PSI and PSII) contains, in addition to the reaction center, an interconnecting antenna and a main or light harvesting antenna complex; (b) the formation of the light harvesting complex, interconnecting antenna, and reaction centers for each photosystem can occur independently. (c) the interconnecting antennae link the light harvesting complexes with the respective reaction centers. In their absence, energy transfer between the light harvesting chlorophylls and the reaction centers is inefficient. The formation of the interconnecting antennae and efficient assembly of photosystem components occur simultaneously with the de novo synthesis of chlorophyll and at least three polypeptides, one translated in the cytoplasm and two translated in the chloroplast. The synthesis of these polypeptides was found to be light dependent.  相似文献   

17.
Prasinophyceae are a broad class of early-branching eukaryotic green algae. These picophytoplankton are found ubiquitously throughout the ocean and contribute considerably to global carbon-fixation. Ostreococcus tauri, as the first sequenced prasinophyte, is a model species for studying the functional evolution of light-harvesting systems in photosynthetic eukaryotes. In this study we isolated and characterized O. tauri pigment-protein complexes. Two photosystem I (PSI) fractions were obtained by sucrose density gradient centrifugation in addition to free light-harvesting complex (LHC) fraction and photosystem II (PSII) core fractions. The smaller PSI fraction contains the PSI core proteins, LHCI, which are conserved in all green plants, Lhcp1, a prasinophyte-specific LHC protein, and the minor, monomeric LHCII proteins CP26 and CP29. The larger PSI fraction contained the same antenna proteins as the smaller, with the addition of Lhca6 and Lhcp2, and a 30% larger absorption cross-section. When O. tauri was grown under high-light conditions, only the smaller PSI fraction was present. The two PSI preparations were also found to be devoid of the far-red chlorophyll fluorescence (715-730 nm), a signature of PSI in oxygenic phototrophs. These unique features of O. tauri PSI may reflect primitive light-harvesting systems in green plants and their adaptation to marine ecosystems. Possible implications for the evolution of the LHC-superfamily in photosynthetic eukaryotes are discussed.  相似文献   

18.
The light-harvesting proteins in plastids of different lineages including algae and land plants represent a superfamily of chlorophyll-binding proteins that seem to be phylogenetically related, although some of the light-harvesting complex (LHC) proteins bind different carotenoids. LHCs can be divided into chlorophyll a/b-binding proteins found in green algae, euglenoids, and higher plants and into chlorophyll a/c-binding proteins of various algal taxa. LHC proteins from diatoms are named fucoxanthin-chlorophyll a/c-binding proteins (FCP). In contrast to chlorophyll a/b-binding proteins, there is no information so far about the way FCPs integrate into thylakoid membranes. The diatom FCP preproteins have a bipartite presequence that is necessary to enable transport into the four membrane-bound diatom plastids, but similar to chlorophyll a/b-binding proteins there is apparently no presequence present for targeting to the thylakoid membrane. By establishing an in vitro import assay for diatom thylakoids, we demonstrated that thylakoid integration of diatom FCP depends on the presence of stromal factors and GTP. This indicates that a pathway involving signal recognition particles (SRP) is involved in membrane integration just as shown for LHCs in higher plants. We also demonstrate integration of diatom FCP into thylakoids of higher plants and vice versa SRP-dependent targeting of LHCs from pea and Arabidopsis into diatom thylakoids. The similar SRP-dependent modes of thylakoid integration of land plant LHCs and FCPs support recent analyses indicating a common origin of chlorophyll a/b- and a/c-binding proteins.  相似文献   

19.
Diatoms possess fucoxanthin chlorophyll proteins (FCP) as light-harvesting systems. These membrane intrinsic proteins bind fucoxanthin as major carotenoid and Chl c as accessory chlorophyll. The relatively high sequence homology to higher plant light-harvesting complex II gave rise to the assumption of a similar overall structure. From centric diatoms like Cyclotella meneghiniana, however, two major FCP complexes can be isolated. FCPa, composed of Fcp2 and Fcp6 subunits, was demonstrated to be trimeric, whereas FCPb, known to contain Fcp5 polypeptides, is of higher oligomeric state. No molecular structure of either complex is available so far. Here we used electron microscopy and single particle analysis to elucidate the overall architecture of FCPb. The complexes are built from trimers as basic unit, assembling into nonameric moieties. The trimer itself is smaller, i.e. more compact than LHCII, but the main structural features are conserved.  相似文献   

20.
The transverse heterogeneity of the polypeptides associated with the Photosystem I (PSI) complex in spinach thylakoid membranes and in a highly resolved PSI preparation has been studied using the impermeant chemical modifier, 2,4,6-trinitrobenzenesulfonate (TNBS) and the proteolytic enzyme, Pronase E. The present study has shown that the PSI reaction center polypeptide of ~62 kilodaltons and the 22 and 20 kilodalton polypeptides of the PSI light-harvesting chlorophyll protein (LHCPI) complex are not labeled by [14C]TNBS in unfractionated thylakoids. On the other hand, the 23 kilodalton polypeptide of the PSI LHCP and the 19 and 14 kilodalton polypeptides associated with the PSI primary electron acceptor complex are readily labeled by [14C]TNBS and are exposed to the stromal side of the thylakoid. Differences and similarities in the labeling of polypeptides associated with the PSI complex in thylakoids and in the isolated PSI complex are also noted. Treatment of thylakoids with pronase had no effect on the organization of the polypeptides in the LHCPI or the reaction center core complex, as manifested by the separation of these two subcomplexes from pronase-treated membranes. The 62, 19, and 14 kilodalton polypeptides associated with the reaction center core complex and the 23 and 22 kilodalton polypeptides associated with LHCPI are sensitive to pronase treatment while the 20 kilodalton polypeptide of LHCPI was inaccessible to the protease. The proteolysis of the 62 kilodalton polypeptide generated first a single immunodetectable fragment at about 48 kilodaltons, and further proteolytic digestion generated two other fragments at 30 and 17 kilodaltons respectively. These results are discussed in relation to the organization of the PSI complex in spinach thylakoids. A model for the transmembrane topography of the polypeptide constituents of PSI has been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号