首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Aims The dispersal of pollen and seeds is spatially restricted and may vary among plant populations because of varying biotic interactions, population histories or abiotic conditions. Because gene dispersal is spatially restricted, it will eventually result in the development of spatial genetic structure (SGS), which in turn can allow insights into gene dispersal processes. Here, we assessed the effect of habitat characteristics like population density and community structure on small-scale SGS and estimate historical gene dispersal at different spatial scales.Methods In a set of 12 populations of the subtropical understory shrub Ardisia crenata, we assessed genetic variation at 7 microsatellite loci within and among populations. We investigated small-scale genetic structure with spatial genetic autocorrelation statistics and heterogeneity tests and estimated gene dispersal distances based on population differentiation and on within-population SGS. SGS was related to habitat characteristics by multiple regression.Important findings The populations showed high genetic diversity (H e = 0.64) within populations and rather strong genetic differentiation (F ′ ST = 0.208) among populations, following an isolation-by-distance pattern, which suggests that populations are in gene flow–drift equilibrium. Significant SGS was present within populations (mean Sp = 0.027). Population density and species diversity had a joint effect on SGS with low population density and high species diversity leading to stronger small-scale SGS. Estimates of historical gene dispersal from between-population differentiation and from within-population SGS resulted in similar values between 4.8 and 22.9 m. The results indicate that local-ranged pollen dispersal and inefficient long-distance seed dispersal, both affected by population density and species diversity, contributed to the genetic population structure of the species. We suggest that SGS in shrubs is more similar to that of herbs than to trees and that in communities with high species diversity gene flow is more restricted than at low species diversity. This may represent a process that retards the development of a positive species diversity–genetic diversity relationship.  相似文献   

2.
Under the isolation-by-distance model, the strength of spatial genetic structure (SGS) depends on seed and pollen dispersal and genetic drift, which in turn depends on local demographic structure. SGS can also be influenced by historical events such as admixture of differentiated gene pools. We analysed the fine-scale SGS in six populations of a pioneer tree species endemic to Central Africa, Aucoumea klaineana. To infer the impacts of limited gene dispersal, population history and habitat fragmentation on isolation by distance, we followed a stepwise approach consisting of a Bayesian clustering method to detect differentiated gene pools followed by the analysis of kinship-distance curves. Interestingly, despite considerable variation in density, the five populations situated under continuous forest cover displayed very similar extent of SGS. This is likely due to an increase in dispersal distance with decreased tree density. Admixture between two gene pools was detected in one of these five populations creating a distinctive pattern of SGS. In the last population sampled in open habitat, the genetic diversity was in the same range as in the other populations despite a recent habitat fragmentation. This result may due to the increase of gene dispersal compensating the effect of the disturbance as suggested by the reduced extent of SGS estimated in this population. Thus, in A. klaineana, the balance between drift and dispersal may facilitate the maintenance of genetic diversity. Finally, from the strength of the SGS and population density, an indirect estimate of gene dispersal distances was obtained for one site: the quadratic mean parent-offspring distance, sigma(g), ranged between 210 m and 570 m.  相似文献   

3.
Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984–1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn.  相似文献   

4.
? Premise of the study: Patterns of spatial genetic structure (SGS) were analyzed within a population of the endangered tropical tree Guaiacum sanctum located in northwestern Costa Rica. Documentation of these patterns provides insights into the gene dispersal mechanisms that play a central role in the maintenance and structure of genetic diversity within plant populations. ? Methods: Allozyme analyses were used to examine SGS in Palo Verde National Park, Costa Rica. The SGS was compared among three plots and different age classes. ? Key results: High levels of genetic diversity were found overall with a pooled genetic diversity of H(e) = 0.302 (±0.02). Selfing was proposed as the proximate cause for significant levels of heterozygote deficiency observed across size classes and plots. An unexpected lack of SGS (r(j) < 0.02) was observed for all size classes, suggesting the mixing of seeds from several adults. A parent-pair parentage analysis indicated that at least 48% of the smaller individuals within a plot were produced by parents located at distances of at least 150 m. ? Conclusions: Populations of G. sanctum are established and maintained by bird-mediated, moderate- to long-distance seed dispersal, which results in a mixture of seeds from unrelated maternal individuals, effectively eliminating SGS. Proximity between individuals is, therefore, a poor predictor of family structure in this species. Long-distance seed dispersal, coupled with estimates of high genetic diversity, suggests that this endangered species has the potential for natural regeneration and restoration given the availability of suitable habitats.  相似文献   

5.
Understanding the spatial distribution of genetic diversity (i.e., spatial genetic structure [SGS]) within plant populations can elucidate mechanisms of seed dispersal and patterns of recruitment that may play an important role in shaping the demography and spatial distribution of individuals in subsequent generations. Here we investigate the SGS of allozyme diversity in 2 populations of the southeastern North American endemic shrub, Ceratiola ericoides. The data suggest that the 2 populations have similar patterns of SGS at distances of 0-45 m that likely reflect the isolation by distance (IBD) model of seed dispersal. However, at distances >or=50 m, the pattern of SGS differs substantially between the 2 populations. Whereas one population continues to reflect the classical IBD pattern, the second population shows a marked increase in autocorrelation coefficient (r) values at 50-75 m. Furthermore, r values at these distances are as much as 33% higher than at 0-5 m where the highest r value would be predicted by IBD. A likely explanation is the differing frequencies of 2 fruit morphologies in these populations and the greater role that birds play in seed dispersal in the second population.  相似文献   

6.
Population founding and spatial spread may profoundly influence later population genetic structure, but their effects are difficult to quantify when population history is unknown. We examined the genetic effects of founder group formation in a recently founded population of the animal-dispersed Vaccinium membranaceum (black huckleberry) on new volcanic deposits at Mount St Helens (Washington, USA) 24 years post-eruption. Using amplified fragment length polymorphisms and assignment tests, we determined sources of the newly founded population and characterized genetic variation within new and source populations. Our analyses indicate that while founders were derived from many sources, about half originated from a small number of plants that survived the 1980 eruption in pockets of remnant soil embedded within primary successional areas. We found no evidence of a strong founder effect in the new population; indeed genetic diversity in the newly founded population tended to be higher than in some of the source regions. Similarly, formation of the new population did not increase among-population genetic variance, and there was no evidence of kin-structured dispersal in the new population. These results indicate that high gene flow among sources and long-distance dispersal were important processes shaping the genetic diversity in this young V. membranaceum population. Other species with similar dispersal abilities may also be able to colonize new habitats without significant reduction in genetic diversity or increase in differentiation among populations.  相似文献   

7.
The primary succession on glacier forelands is characterized by a sequence of early and late successional species, but whether there is also a chronosequence at the intraspecific, genetic level is a matter of debate. Two opposing hypotheses differ in their prediction of genetic diversity in colonizing populations due to founder effects and postcolonization gene immigration. The development of genetic diversity in the pioneer Saxifraga aizoides was investigated along a successional gradient on two parallel glacier forelands, in order to test whether populations from older successional stages were less genetically diverse than populations from younger successional stages, and to locate the sources of the propagules that originally colonized new glacier foreland. Genetic diversity was determined with amplified fragment length polymorphisms, and potential sources of colonizing propagules were assessed via assignment tests. Our results indicate considerable postcolonization gene flow among populations on glacier forelands, since population differentiation was low and genetic diversity within populations was significantly higher. Molecular diversity and differentiation of populations did not develop linearly. Dispersal events within the glacier foreland, from the adjacent valley slopes, and from parallel glacier valleys were identified. In summary, it seems that the colonization of glacier forelands in the European Alps is highly dynamic and stochastic.  相似文献   

8.
Comparative analyses of spatial genetic structure (SGS) among species, populations, or cohorts give insight into the genetic consequences of seed dispersal in plants. We analysed SGS of a weedy tree in populations with known and unknown recruitment histories to first establish patterns in populations with single vs. multiple founders, and then to infer possible recruitment scenarios in populations with unknown histories. We analysed SGS in six populations of the colonizing tree Albizia julibrissin Durazz. (Fabaceae) in Athens, Georgia. Study sites included two large populations with multiple, known founders, two small populations with a single, known founder, and two large populations with unknown recruitment histories. Eleven allozyme loci were used to genotype 1385 individuals. Insights about the effects of colonization history from the SGS analyses were obtained from correlograms and Sp statistics. Distinct differences in patterns of SGS were identified between populations with multiple founders vs. a single founder. We observed significant, positive SGS, which decayed with increasing distance in the populations with multiple colonists, but little to no SGS in populations founded by one colonist. Because relatedness among individuals is estimated relative to a local reference population, which usually consists of those individuals sampled in the study population, SGS in populations with high background relatedness, such as those with a single founder, may be obscured. We performed additional analyses using a regional reference population and, in populations with a single founder, detected significant, positive SGS at all distances, indicating that these populations consist of highly related descendants and receive little seed immigration. Subsequent analyses of SGS in size cohorts in the four large study populations showed significant SGS in both juveniles and adults, probably because of a relative lack of intraspecific demographic thinning. SGS in populations of this colonizing tree is pronounced and persistent and is determined by the number and relatedness of founding individuals and adjacent seed sources. Patterns of SGS in populations with known histories may be used to indirectly infer possible colonization scenarios for populations where it is unknown.  相似文献   

9.
濒危植物鹅掌楸(Liriodendron chinense)目前仅零散分布于我国亚热带及越南北部地区, 残存居群生境片断化较为严重。研究濒危植物片断化居群的遗传多样性及小尺度空间遗传结构(spatial genetic structure)有助于了解物种的生态进化过程以及制定相关的保育策略。本研究采用13对微卫星引物, 对鹅掌楸的1个片断化居群进行了遗传多样性及空间遗传结构的研究, 旨在揭示生境片断化条件下鹅掌楸的遗传多样性及基因流状况。研究结果表明: 鹅掌楸烂木山居群内不同生境斑块及不同年龄阶段植株的遗传多样性水平差异不显著(P>0.05), 居群内存在寨内和山林2个遗传分化明显的亚居群。烂木山居群个体在200 m以内呈现显著的空间遗传结构, 而2个亚居群内的个体仅在20 m的距离范围内存在微弱或不显著的空间遗传结构。鹅掌楸的空间遗传结构强度较低(Sp = 0.0090), 且寨内亚居群的空间遗传结构强度(Sp = 0.0067)要高于山林亚居群(Sp = 0.0053)。鹅掌楸以异交为主, 种子较轻且具翅, 借助风力传播, 在一定程度上降低了空间遗传结构的强度。此外, 居群内个体密度及生境特征也对鹅掌楸的空间遗传结构产生了一定影响。该居群出现显著的杂合子缺失, 近交系数(FIS)为0.099 (P < 0.01), 表明生境片断化的遗传效应正逐渐显现。因此, 对鹅掌楸的就地保护应注意维护与强化生境的连续性, 促进基因交流。迁地保护时, 取样距离应不小于20 m, 以涵盖足够多的遗传变异。  相似文献   

10.
We present a case study of the relationship between spatial genetic structure (SGS) and age structure in Protium spruceanum (Burseraceae), an insect-pollinated, mass-fruiting, and secondary bird-dispersed tree, as determined through variation in allozyme loci. Using ten polymorphic loci, we investigated spatial and temporal patterns of a genetic structure within a 40?m?×?60?m plot in a small (1.0?ha) fragment of Atlantic Rainforest to investigate the processes shaping the distribution of genetic diversity. Individuals (n?=?345) from seedlings to adults were grouped and analyzed in four diameter classes. The results showed a high average level of genetic diversity (H e?=?0.438), but genetic diversity parameters did not vary significantly among cohorts. The spatial distribution pattern analysis of individuals showed significant levels of aggregation among small- and medium-diameter classes and random distribution among the highest diameter class, likely due to processes of competitive thinning. There was an association between demographic and SGS at short distances (less than 10?m) which is likely the consequence of restricted seed dispersal. The degree of SGS decreased across small- to large-diameter classes. We inferred that limited seed dispersal and subsequent density-dependent mortality from the family clusters are responsible for the observed changes in fine-scale SGS across different demographic classes.  相似文献   

11.
Genetic substructuring in plant populations may evolve as a consequence of sampling events that occur when the population is founded or regenerated, or if gene dispersal by pollen and seeds is restricted within a population. Silene tatarica is an endangered, perennial plant species growing along periodically disturbed riverbanks in northern Finland. We investigated the mechanism behind the microspatial genetic structure of S. tatarica in four subpopulations using amplified fragment length polymorphism markers. Spatial autocorrelation revealed clear spatial genetic structure in each subpopulation, even though the pattern diminished in older subpopulations. Parentage analysis in an isolated island subpopulation indicated a very low level of selfing and avoidance of breeding between close relatives. The mean estimated pollen dispersal distance (24.10 m; SD = 10.5) was significantly longer and the mean seed dispersal distance (9.07 m; SD = 9.23) was considerably shorter than the mean distance between the individuals (19.20 m; SD = 13.80). The estimated indirect and direct estimates of neighbourhood sizes in this subpopulation were very similar, 32.1 and 37.6, respectively. Our results suggested that the local spatial genetic structure in S. tatarica was attributed merely to the isolation-by-distance process rather than founder effect, and despite free pollen movement across population, restricted seed dispersal maintains local genetic structure in this species.  相似文献   

12.
Selective logging may impact patterns of genetic diversity within populations of harvested forest tree species by increasing distances separating conspecific trees, and modifying physical and biotic features of the forest habitat. We measured levels of gene diversity, inbreeding, pollen dispersal and spatial genetic structure (SGS) of an Amazonian insect-pollinated Carapa guianensis population before and after commercial selective logging. Similar levels of gene diversity and allelic richness were found before and after logging in both the adult and the seed generations. Pre- and post-harvest outcrossing rates were high, and not significantly different from one another. We found no significant levels of biparental inbreeding either before or after logging. Low levels of pollen pool differentiation were found, and the pre- vs. post-harvest difference was not significant. Pollen dispersal distance estimates averaged between 75 m and 265 m before logging, and between 76 m and 268 m after logging, depending on the value of tree density and the dispersal model used. There were weak and similar levels of differentiation of allele frequencies in the adults and in the pollen pool, before and after logging occurred, as well as weak and similar pre- and post-harvest levels of SGS among adult trees. The large neighbourhood sizes estimated suggest high historical levels of gene flow. Overall our results indicate that there is no clear short-term genetic impact of selective logging on this population of C. guianensis.  相似文献   

13.
The long‐term establishment success of founder plant populations has been commonly assessed based on the measures of population genetic diversity and among population genetic differentiation, with founder populations expected to carry sufficient genetic diversity when population establishment is the result of many colonists from multiple source populations (the ‘migrant pool’ colonization model). Theory, however, predicts that, after initial colonization, rapid population expansion may result in a fast increase in the extent of spatial genetic structure (SGS), independent of extant genetic diversity. This SGS can reduce long‐term population viability by increasing inbreeding. Using 12 microsatellite markers, we inferred colonization patterns in four recent populations of the grassland specialist plant Anthyllis vulneraria and compared the extent of SGS between recently established and old populations. Assignment analyses of the individuals of recent population based on the genetic composition of nine adjacent putative source populations suggested the occurrence of the ‘migrant pool’ colonization model, further confirmed by high genetic diversity within and low genetic differentiation among recent populations. Population establishment, however, resulted in the build‐up of strong SGS, most likely as a result of spatially restricted recruitment of the progeny of initial colonists. Although reduced, significant SGS was nonetheless observed to persist in old populations. The presence of SGS was in all populations associated with elevated inbreeding coefficients, potentially affecting the long‐term viability of these populations. In conclusion, this study illustrates the importance of studying SGS next to population genetic diversity and differentiation to adequately infer colonization patterns and long‐term establishment success of plant species.  相似文献   

14.
Conventional wisdom predicts that sequential founder events will cause genetic diversity to erode in species with expanding geographic ranges, limiting evolutionary potential at the range margin. Here, we show that invasive European starlings (Sturnus vulgaris) in South Africa preserve genetic diversity during range expansion, possibly as a result of frequent long‐distance dispersal events. We further show that unfavourable environmental conditions trigger enhanced dispersal, as indicated by signatures of selection detected across the expanding range. This brings genetic variation to the expansion front, counterbalancing the cumulative effects of sequential founding events and optimizing standing genetic diversity and thus evolutionary potential at range margins during spread. Therefore, dispersal strategies should be highlighted as key determinants of the ecological and evolutionary performances of species in novel environments and in response to global environmental change.  相似文献   

15.
Mimura M  Aitken SN 《Heredity》2007,99(2):224-232
Fossil pollen records suggest rapid migration of tree species in response to Quaternary climate warming. Long-distance dispersal and high gene flow would facilitate rapid migration, but would initially homogenize variation among populations. However, contemporary clinal variation in adaptive traits along environmental gradients shown in many tree species suggests that local adaptation can occur during rapid migration over just a few generations in interglacial periods. In this study, we compared growth performance and pollen genetic structure among populations to investigate how populations of Sitka spruce (Picea sitchensis) have responded to local selection along the historical migration route. The results suggest strong adaptive divergence among populations (average Q(ST)=0.61), corresponding to climatic gradients. The population genetic structure, determined by microsatellite markers (R(ST)=0.09; F(ST)=0.11), was higher than previous estimates from less polymorphic genetic markers. The significant correlation between geographic and pollen haplotype genetic (R(ST)) distances (r=0.73, P<0.01) indicates that the current genetic structure has been shaped by isolation-by-distance, and has developed in relatively few generations. This suggests relatively limited gene flow among populations on a recent timescale. Gene flow from neighboring populations may have provided genetic diversity to founder populations during rapid migration in the early stages of range expansion. Increased genetic diversity subsequently enhanced the efficiency of local selection, limiting gene flow primarily to among similar environments and facilitating the evolution of adaptive clinal variation along environmental gradients.  相似文献   

16.
Aechmea nudicaulis is a clonal bromeliad common to the Brazilian Atlantic forest complex and is found abundantly in the sandy coastal plain vegetation (restinga) on the north coast of Rio de Janeiro state, Brazil. This restinga site is structured in vegetation islands, and the species plays a key role as a nurse plant, much favoured by its clonality. We studied the clonal structure and consequences of clonality on the population spatial genetic structure (SGS) of this species using six nuclear microsatellites. Spatial autocorrelation analysis was performed to study the effects of sexual and clonal reproduction on the dispersal of A. nudicaulis. Analyses were performed at the genet (i.e. excluding clonal repeats) and ramet levels. Genotypic richness was moderate (R = 0.32), mostly as a result of the dominance of a few clones. The spatial distribution of genets was moderately intermingled, the mean clone size was 4.9 clonal fragments per genet and the maximum clonal spread was 25 m. Expected heterozygosities were high and comparable with those found in other clonal plants. SGS analyses at the genet level revealed significantly restricted gene dispersal (Sp = 0.074), a strong SGS compared with other herbaceous species. The clonal subrange extended across 23 m where clonality had a significant effect on SGS. The restricted dispersal and SGS pattern in A. nudicaulis, coupled with high levels of genetic diversity, indicated a recruitment at windows of opportunity (RWO) strategy. Moreover, the spatial distribution of genetic variation and the habitat occupation pattern in A. nudicaulis were dependent not only on the intrinsic biological traits of the species (such as spacer size and mating system), but also on biotic interactions with neighbouring species that determined suitable habitats for germination and the establishment of new genets. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 329–342.  相似文献   

17.
The range expansion of a plant species begins with colonization of ecological empty patches from posterior source populations. This process involves stochastic loss of genetic diversity. However, the founder population could restore genetic diversity by gene flow from posterior populations via seeds and pollen and its recovery affects evolutionary potential for species expansion. To clarify the recovery process of genetic diversity during species range expansion, gene flow via seeds and pollen was investigated at the expansion front of Fagus crenata. Based on eight nuclear microsatellite genotypes of a total of 150 individuals and 225 seeds at the northernmost leading-edge population, genetic diversity, fine-scale spatial genetic structure (FSGS), and genetic differentiation from other five northern populations were investigated. Moreover, both seed and pollen immigration and their effects on genetic diversity at different successional stages were analyzed. The leading-edge population showed lower genetic diversity and substantial genetic differentiation, reflecting its strong genetic drift. Non-significant FSGS and a negative inbreeding coefficient for mature trees may indicate that the earliest generation consisted of founders from foreign seed sources. The significant proportion of seed and pollen immigration increased the number of different alleles for later successional stages. The effective number of pollen parents from foreign sources (20.8) was markedly higher than that from the local source (2.1). These results indicated that pollen immigration incorporated new and rare alleles and increased the genetic diversity of the population. However, the proportion of foreign gene flow decreased during succession, probably due to the increased reproductive success of local individuals as they reached maturity and grew in size.  相似文献   

18.
In this study we compared population structure, genetic diversity and fine-scale spatial genetic structure (SGS) in four Bignoniaceae tree species, Handroanthus chrysotrichus, H. impetiginosus, Tabebuia roseoalba and H. serratifolius in a remnant of seasonally dry tropical forest in Central-West Brazil, based on polymorphisms at six microsatellite loci. All species, except T. roseoalba, presented the inverted ‘J’ population structure indicating recruitment of juveniles. Juveniles presented a clumped distribution suggesting limitation in dispersal or patchy distribution of suitable microhabitat for recruitment. All species showed high levels of polymorphism and genetic diversity but without a clear pattern of distribution among life stages. The SGS was significant for all species, except T. roseoalba, but the pattern and strength of the spatial genetic structure differed among species. Handroanthus serratifolius had stronger SGS with significant kinship until 77 m. For H. impetiginosus and H. chrysotrichus, kinship was significant just until 23 and 6 m, respectively. Despite the high genetic diversity, all species showed low number of adults and high fixation indices suggesting that habitat fragmentation and disturbance have been affecting these populations in Central-West Brazil.  相似文献   

19.
Chung MY  Nason JD  Chung MG 《Molecular ecology》2007,16(13):2816-2829
Spatial genetic structure within plant populations is influenced by variation in demographic processes through space and time, including a population's successional status. To determine how demographic structure and fine-scale genetic structure (FSGS) change with stages in a population's successional history, we studied Hemerocallis thunbergii (Liliaceae), a nocturnal flowering and hawkmoth-pollinated herbaceous perennial with rapid population turnover dynamics. We examined nine populations assigned to three successive stages of population succession: expansion, maturation, and senescence. We developed stage-specific expectations for within-population demographic and genetic structure, and then for each population quantified the spatial aggregation of individuals and genotypes using spatial autocorrelation methods (nonaccumulative O-ring and kinship statistics, respectively), and at the landscape level measured inbreeding and genetic structure using Wright's F-statistics. Analyses using the O-ring statistic revealed significant aggregation of individuals at short spatial scales in expanding and senescing populations, in particular, which may reflect restricted seed dispersal around maternal individuals combined with relatively low local population densities at these stages. Significant FSGS was found for three of four expanding, no mature, and only one senescing population, a pattern generally consistent with expectations of successional processes. Although allozyme genetic diversity was high within populations (mean %P = 78.9 and H(E) = 0.281), landscape-level differentiation among sites was also high (F(ST) = 0.166) and all populations exhibited a significant deficit of heterozygotes relative to Hardy-Weinberg expectations (range F = 0.201-0.424, mean F(IS) = 0.321). Within populations, F was not correlated with the degree of FSGS, thus suggesting inbreeding due primarily to selfing as opposed to mating among close relatives in spatially structured populations. Our results demonstrate considerable variation in the spatial distribution of individuals and patterns and magnitude of FSGS in H. thunbergii populations across the landscape. This variation is generally consistent with succession-stage-specific differences in ecological processes operating within these populations.  相似文献   

20.
Some species are expanding their ranges polewards during current climate warming. However, anthropogenic fragmentation of suitable habitat is affecting expansion rates and here we investigate interactions between range expansion, habitat fragmentation and genetic diversity. We examined three closely related Satyrinae butterflies, which differ in their habitat associations, from six sites along a transect in England from distribution core to expanding range margin. There was a significant decline in allozyme variation towards an expanding range margin in Pararge aegeria, which has the most restricted habitat availability, but not in Pyronia tithonus whose habitat is more widely available, or in a non-expanding 'control species' (Maniola jurtina). Moreover, data from another transect in Scotland indicated that declines in genetic diversity in P. aegeria were evident only on the transect in England, which had greater habitat fragmentation. Our results indicate that fragmentation of breeding habitats leads to more severe founder events during colonization, resulting in reduced diversity in marginal populations in more specialist species. The continued widespread loss of suitable habitats in the future may increase the likelihood of loss of genetic diversity in expanding species, which may affect whether or not species can adapt to future environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号