首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Common Wall Lizard (Podarcis muralis) has established more than 150 non-native populations in Central Europe, stemming from eight geographically distinct evolutionary lineages. While the majority of these introduced populations are found outside the native range, some of these populations also exist at the northern range margin in southwestern Germany. To (i) infer the level of hybridization in contact zones of alien and native lineages; and (ii) compare the genetic diversity among purebred introduced, native and hybrid populations, we used a combination of maternally inherited markers (mtDNA: cytb) and Mendelian markers (microsatellites). Our results suggest a rapid genetic assimilation of native populations by strong introgression from introduced lineages. Discordant patterns of mtDNA and nDNA variation within hybrid populations may be explained by directed mate choice of females towards males of alien lineages. In contrast to previous studies, we found a nonlinear relationship between genetic diversity and admixture level. The genetic diversity of hybrid populations was substantially higher than in introduced and native populations belonging to a single lineage, but rapidly reaching a plateau of high genetic diversity at an admixture level of two. However, even introduced populations with low founder sizes and from one source population retained moderate levels of genetic diversity and no evidence for a genetic bottleneck was found. The extent of introgression and the dominance of alien haplotypes in mixed populations indicate that introductions of non-native lineages represent a serious threat to the genetic integrity of native populations due to the rapid creation of hybrid swarms.  相似文献   

2.
We performed a combined analysis of mitochondrial DNA (mtDNA) and microsatellite loci among lake whitefish (Coregonus clupeaformis) populations in order to assess the levels of congruence between both types of markers in defining patterns of genetic structuring, introgressive hybridization and inferring population origins in the hybrid zone of the St. John River basin. A second objective was to test the hypothesis that secondary contact between glacial lineages always resulted in the occurrence of sympatric dwarf and normal whitefish ecotypes. Fish were sampled from 35 populations and polymorphism was screened at mtDNA and six microsatellite loci for a total of 688 and 763 whitefish, respectively. Four lakes harbouring a single whitefish population of normal ecotype admixed with mtDNA haplotypes of different lineages were found. This confirmed that secondary contact between whitefish evolutionary lineages did not always result in the persistence of reproductively isolated ecotypes. Microsatellites further supported the definition of distinct glacial lineages by identifying lineage-specific allelic size groups. They also further supported the hypothesis that ecotypes originated from either a single founding lineage (sympatric divergence) or following secondary contacts between lineages (allopatric divergence), depending on the lake. In general, however, the pattern of population differentiation and introgressive hybridization observed at microsatellites was in sharp contrast with that depicted by mtDNA variation. Both factorial correspondence analysis and analysis of admixture proportion revealed a much more pronounced pattern of introgressive hybridization than depicted by mtDNA analyses. Variable levels of introgression indicated that environmental differences may be as important as the historical contingency of secondary contact in explaining the persistence of sympatric ecotypes and the differential pattern of introgressive hybridization among lakes. Whitefish populations from the St. John River basin hybrid zone represent a rare illustration of a continuum of both morphological and genetic differentiation within a given taxon, spanning from complete introgression to possibly complete reproductive isolation, depending on lakes. Thus, each lake may be viewed as a different temporal snapshot taken throughout the gradual process of speciation.  相似文献   

3.
In terms of evolutionary biology, a population admixture of more than two distinct lineages may lead to strengthened genetic variation through hybridization. However, a population admixture arising from artificial secondary contact poses significant problems in conservation biology. In urban Tokyo, a population admixture has emerged from two lineages of Japanese common toad: native Bufo japonicus formosus and nonnative B. japonicus japonicus, of which the latter was introduced in the early 20th century. To evaluate the degree of genetic disturbance in the admixed population of these two subspecies, we analyzed genotypes of toads distributed within and outside Tokyo by assessing mtDNA and seven microsatellite loci. We found that the introduced B. japonicus japonicus genotype dominates six local populations in the Tokyo admixture zone and was clearly derived from past introgressive hybridization between the two subspecies. These observations were supported by morphological assessments. Furthermore, the average larval survival rate in Tokyo was significantly higher than that outside Tokyo, suggesting that the temporary contribution of introduced toads occurred through introgression. The fitness of toads in urban Tokyo may thus be increasing with the assistance of nonnative individuals.  相似文献   

4.
In endemic species that co-occur with widespread congeners, hybridization can lead to an influx of novel and beneficial genetic variation, but high rates of introgression may cause genetic swamping of the endemic species and have detrimental effects on its survival potential. This study examines hybridization between sympatric populations of the Carpathian barbel Barbus carpathicus , a recently discovered cryptic species with a restricted range, and the widespread common barbel Barbus barbus . Based on six diagnostic allozyme loci, a microsatellite locus and mtDNA, hybrids were found to be present at multiple localities within the Vistula River drainage (Baltic Sea) as well as in the Tisza River system of the Danube River drainage (Black Sea). However, the numbers of hybrids were very low; four individuals of 230 fish sampled from the Vistula drainage. Bayesian assessment of their nuclear genotypes suggested that two hybrids in the Vistula drainage and nine in the Tisza system were F1 generation, and one in the Vistula drainage and one in the Tisza system were backcrosses (BC) to B. barbus , while no F2 or BC to B. carpathicus were detected. No hybrid carried B. carpathicus mtDNA and cytonuclear linkage disequilibria showed significant positive associations between hybrid genotypes and B. barbus mtDNA, suggesting unidirectionality in the interspecific mating with a disproportionate contribution of B. barbus mothers. Despite geographically broad occurrence of hybrids, these data provide evidence of strong constraints on hybridization in the native breeding habitats and the lack of introgression towards B. carpathicus .  相似文献   

5.
Plethodon shermani comprises a series of geographically disjunct populations occupying high-elevation mountain isolates. These populations hybridize at their borders with salamanders of the Plethodon glutinosus species complex, and past range expansions inferred from Pleistocene climatic cycles may have increased the possible genetic interactions between P. shermani and species of the P. glutinosus complex. Because mitochondrial DNA haplotypes often show introgression across species borders, we survey mtDNA variation for evidence of past and ongoing genetic interactions between P. shermani, its close relative Plethodon cheoah, and species of the P. glutinosus complex. Ongoing hybridization with the P. glutinosus-complex species Plethodon teyahalee is accompanied by extensive mitochondrial introgression in some Unicoi populations of P. shermani, but it has little genetic impact on P. shermani populations outside hybrid zones at three other isolates (Tusquitee, Wayah Bald, Standing Indian). Some Unicoi populations of P. shermani exhibit mtDNA evidence of past hybridization with diverse lineages from P. aureolus and P. glutinosus. The Tusquitee isolate of P. shermani is also characterized by mtDNA haplotypes most closely related to Plethodon aureolus and P. glutinosus, presumably introduced by past genetic contact with these species or with introgressed populations of Unicoi P. shermani. The mtDNA variation in sampled populations of the Wayah Bald and Standing Indian isolates of P. shermani appears largely unaffected by ongoing hybridization. Principal components analyses of allozymic data indicate that P. shermani isolates collectively form a genetically homogeneous unit clearly demarcated from species with which they have had current or past genetic interactions. Rapid mtDNA introgression associated with transient contacts between P. shermani and other species permits a fine-level resolution of evolutionary lineages not evident from allozymic data.  相似文献   

6.
Species introductions are considered one of the major drivers of biodiversity loss via ecological interactions and genetic admixture with local fauna. We examined two well-recognized fish species, native whitefish (Coregonus lavaretus) and introduced vendace (Coregonus albula), as well as their morphological hybrids in a single lake to test for selection against hybrids and backcrosses in the wild. A representative random subsample of 693 individuals (27.8%) was taken from the total catch of coregonids. This subsample was examined with the aim to select c. 50 individuals of pure whitefish (n = 52), pure vendace (n = 55) and putative hybrid (n = 19) for genetic analyses. The subsequent microsatellites and mitochondrial (mt) DNA analyses provided compelling evidence of hybridization and introgression. Of the 126 fish examined, four were found to be F(1) , 14 backcrosses to whitefish and seven backcrosses to vendace. The estimates of historical gene flow suggested higher rates from introduced vendace into native whitefish than vice versa, whereas estimates of contemporary gene flow were equal. Mitochondrial introgression was skewed, with 18 backcrosses having vendace mtDNA and only three with whitefish mtDNA. Hybrids and backcrosses had intermediate morphology and niche utilization compared with parental species. No evidence of selection against hybrids or backcrosses was apparent, as both hybrid and backcross growth rates and fecundities were high. Hybrids (F(1) ) were only detected in 2 year-classes, suggesting temporal variability in mating between vendace and whitefish. However, our data show that hybrids reached sexual maturity and reproduced actively, with backcrosses recorded from six consecutive year-classes, whereas no F(2) individuals were found. The results indicate widespread introgression, as 10.8% of coregonids were estimated to be backcrosses.  相似文献   

7.
We hypothesized that there is spatio-temporal genetic (mtDNA) structure of native and introduced larval whitefish (Coregonus sp.) in two Austrian lakes (Traunsee and Hallstättersee). Larval whitefish were sampled from 12 sites in each lake and screened for variation in the mtDNA NADH-1 gene. Based on the sequencing of adult fish together with existing GenBank sequences, an RFLP protocol was developed to assign haplotypes from larval samples into one of two divergent lineages. All but one site (pelagic) in Traunsee contained both haplotypes, thus there was no support for spatial segregation of mtDNA groups in that lake. However, weekly sampling from December to May in Traunsee revealed a temporal pattern, with the native haplotypes dominating in December and January before the appearance of the introduced Baltic clade. In Hallstättersee, only three of the 12 sites sampled revealed haplotypes from the introduced clade and thus spatial segregation seems operative on that lake. Our results imply that differences in the spawning ecology of the two groups maintain sufficient reproductive isolation to be reflected in distinct larval occurrence in space and time highly consistent with genetic differences on the mtDNA level. If the two lineages were highly introgressed, we would expect to find little or no correspondence between spatio-temporal patterns in larval distribution and the differentiated mtDNA lineages.  相似文献   

8.
9.
Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native (Oncorhynchus clarkii) and invasive (Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness: size at spawning and age of juvenile emigration. Fish with higher non-native admixture were larger and tended to emigrate at a younger age―relationships that are expected to confer fitness advantages to hybrid individuals. However, strong selection against non-native admixture was evident across streams and cohorts (mean selection coefficient against genotypes with non-native alleles (s) = 0.60; s.e. = 0.10). Nevertheless, hybridization was promoted in both streams by the continuous immigration of individuals with high levels of non-native admixture from other hybrid source populations. Thus, antagonistic relationships between dispersal and selection are mediating invasive hybridization between these fish, emphasizing that data on dispersal and natural selection are needed to fully understand the dynamics of introgression between native and non-native species.  相似文献   

10.
Natural and human‐mediated population structure of European grayling Thymallus thymallus was assessed in primarily Austrian reaches of the Danube River catchment. Data on phylogeographic structure based on mitochondrial DNA (mtDNA) were combined with variation found across 13 microsatellite loci to assess introgression stemming from stocking activities. Populations north of the Alps generally showed no signs of long‐term introgression from allochthonous stocks, although one population comprised two distinct genotypic groups, one of which may stem from recently stocked material. South of the Alps, levels of introgression with stocks from the north were extensive and only one of six populations is believed to represent a reference state. Allelic diversity and expected heterozygosity were positively correlated with mtDNA admixture supporting more recent introgression and that there is little or no reproductive barrier between these two major lineages north and south of the Alps. A third unrelated mtDNA lineage is described from the Lafnitz, a tributary of the Raab drainage. The high lineage diversity in the upper Austrian Danube is not concordant with an existing model of T. thymallus evolutionarily significant units in Europe. Caveats in naming such units or following a strict hierarchical conservation unit structure for broadly distributed species with complex phylogeographic distributions stretching over various jurisdictions are discussed. The necessity of using both phylogeographic and population genetic approaches in evaluating the history and conservation value of populations in a conservation context is additionally highlighted.  相似文献   

11.
Abstract.—Mytilus edulis and M. galloprovincialis are two blue mussel species that coexist in western Europe. Previously, we reported that M. galloprovincialis populations contain female and male haplotypes that are fixed in M. edulis populations as well as unique haplotypes. This study assesses whether paraphyly for these species is due to introgression or incomplete lineage extinction. The lineage extinction hypothesis predicts that the shared mtDNA haplotypes in M. galloprovincialis will be significantly diverged from those in M. edulis and form distinct sequence clades. In contrast, the introgression hypothesis proposes that M. edulis haplotypes have only recently been introduced into M. galloprovincialis through hybridization with relatively little divergence accumulating between the shared RFLP haplotypes. We examined 80 mtl6S gene sequences for both the maternal and paternal mtDNA lineages from mussels sampled from various European populations and found strong support for the introgression hypothesis. In addition, we found that M. edulis mtDNA haplotypes appear to be introgressing into mussel populations in the Baltic Sea, which have predominantly M. trossulus nuclear genotypes, indicating that introgressive hybridization is prevalent among European mussel populations.  相似文献   

12.
In this study, the evolutionary relationships within and among populations of European shads, Alosa alosa and Alosa fallax , was investigated. Screening of allelic variation across eight allozyme loci and sequencing 448 bp of the mtDNA cytochrome b gene in 14 rivers throughout the range of the species supported that the two taxa were independent lineages (1·3% net nucleotide divergence) despite extensive hybridization. Genetic diversity and structure was considerably higher in A. fallax than A. alosa and the former species revealed evidence of distinct lineages in the Mediterranean and Atlantic basins. A Bayesian clustering approach combined with gill raker counts verified that individuals of the two species could be assigned to their parent group with relatively high confidence. Evaluation of hybridization in the Lima and Mondego Rivers in Portugal provided evidence that introgression is extensive but is not currently obscuring (through hybrid swarming) the diagnosability of the two species.  相似文献   

13.
The analysis of 12 microsatellite loci in 16 native populations of Salmo trutta from Duero basin evidenced a strong genetic differentiation in accordance with the existence of two divergent Atlantic mtDNA lineages, Atlantic (AT) and Duero (DU). These lineages were observed spatially segregated mainly in the Lower-course and in the inner part of the basin. Unlike previous isozyme information, microsatellite data suggested a more downstream location of the sharpest genetic divergence in Duero basin and a more complex structure in the inward area. Putative hybrid populations evidenced higher Hardy–Weinberg and gametic disequilibria than pure ones (Pisuerga, Lower-course), not explained by mixture due to differential immigration pattern across the basin. Hybridization indexes suggested a bimodal pattern of hybridization and a higher weight of Pisuerga region in the genetic composition of hybrid samples in accordance with mtDNA data. The results suggested a limited introgression between AT and DU lineages. Taking into account the time of divergence between both lineages, selection and/or genetic incompatibility appeared necessary to explain the genetic structure observed and the ancient location of DU lineage restricted to this area.  相似文献   

14.
We report a remarkable pattern of incongruence between nuclear and mitochondrial variations in a social insect, the desert ant Cataglyphis hispanica. This species reproduces by social hybridogenesis. In all populations, two distinct genetic lineages coexist; non-reproductive workers develop from hybrid crosses between the lineages, whereas reproductive offspring (males and new queens) are typically produced asexually by parthenogenesis. Genetic analyses based on nuclear markers revealed that the two lineages remain highly differentiated despite constant hybridization for worker production. Here, we show that, in contrast with nuclear DNA, mitochondrial DNA (mtDNA) does not recover the two lineages as monophyletic. Rather, mitochondrial haplotypes cluster according to their geographical origin. We argue that this cytonuclear incongruence stems from introgression of mtDNA among lineages, and review the mechanisms likely to explain this pattern under social hybridogenesis.  相似文献   

15.
The role of among-species gene flow in eukaryotic evolution remains controversial. Putative hybrid lineages are common in water fleas, but their ecological success is often associated with polyploidy and the production of asexual propagules. Advanced hybrid lineages with sexual propagules are expected to be geographically restricted because their successful dispersal is contingent on overcoming fertility complications, assimilation by parent taxa, and competition with parent taxa. Here we provide evidence that a diploid lineage of Daphnia has been formed by introgression between distantly related species and attained a broad distribution (Nearctic) despite its requirement for sexual propagules. The evidence is based on geographical discordance, phylogenetic discordance, recombinant genotypes and additive genotypes of the nuclear internal transcribed spacer regions (ITS) and mitochondrial DNA. Additive genotypes also provided evidence of hybridization between introduced European Daphnia and North American Daphnia. We argue that the unique biology of Holarctic lacustrine water fleas and the spatial separation of lineages during Pleistocene glaciation have promoted hybridization and its evolutionary consequences.  相似文献   

16.
Combined analyses of mitochondrial DNA (mtDNA) and microsatellite loci were performed to assess the genetic differentiation of two spring‐spawning ciscoes from each other and from sympatric Coregonus albula in two German lakes. Polymorphism was screened at six microsatellite loci and mtDNA for a total of 247 and 94 ciscoes, respectively. Microsatellite data showed a weak differentiation between spring‐spawning Coregonus fontanae and sympatric C. albula in Lake Stechlin ( F ST = 0–0·008), whereas a significant differentiation was observed between spring‐spawning Coregonus lucinensis and sympatric C. albula in Lake Breiter Luzin ( F ST = 0·013–0·039). A more pronounced genetic difference was observed between both spring‐spawning species ( F ST = 0·05–0·128). Shared mtDNA haplotypes among sympatric species within both Lake Stechlin and Lake Breiter Luzin were observed, whereas no haplotype was shared between C. fontanae and C. lucinensis . These results suggest an independent origin for spring‐spawning ciscoes in each lake. Evidence is also provided for mtDNA introgression of Coregonus sardinella into C. lucinensis and C. albula in Lake Breiter Luzin. Postglacially, this species or at least a population which showed mtDNA introgression has colonized the Baltic Sea basin up to the glacial margin that was located between Lakes Stechlin and Breiter Luzin.  相似文献   

17.
Historical hybridization between Bison bison (bison) and Bos taurus (cattle) has been well documented and resulted in cattle mitochondrial DNA (mtDNA) introgression, previously identified in six different bison populations. In order to examine Y chromosome introgression, a microsatellite marker (BYM-1) with non-overlapping allele size distributions in bison and cattle was isolated from a bacterial artificial chromosome (BAC) clone, and was physically assigned to the Y chromosome by fluorescence in situ hybridization. BYM-1 genotypes for a sample of 143 male bison from 10 populations, including all six populations where cattle mtDNA haplotypes were previously identified, indicated that cattle Y chromosome introgression had not occurred in these bison populations. The differential permeability of uniparentally inherited markers to introgression is consistent with observations of sterility among first generation hybrid males and a sexual asymmetry in the direction of hybridization favouring matings between male bison and female cattle.  相似文献   

18.
The role of hybridization in animal speciation is controversial and recent research has challenged the long-standing criterion of complete reproductive isolation to attain species status. The speciation-with-gene-flow model posits that the genome is semi-permeable and hybridization may be a phase in the process of divergence. Here, we apply these concepts to a previously identified zone of mtDNA introgression between the two strongly morphologically differentiated subspecies of red-tailed chipmunk ( Tamias ruficaudus ) in the US Inland Northwest. Using multilocus genotype data from the southern, older contact zone, we demonstrate that neutral gene flow is unusually low between the subspecies across the Lochsa River. This is geographically congruent with the discontinuity in bacular morphology, indicating that the cline of mitochondrial DNA (mtDNA) haplotypes is displaced. Furthermore, we elucidate the evolutionary forces responsible by testing hypotheses of lineage sorting and hybridization. We determined that introgressive hybridization is the cause of mtDNA/morphology incongruence because there are non-zero levels of migration and gene flow. Although our estimate of the age of the hybrid zone has wide credibility intervals, the hybridization events occurred in the Late Pleistocene and the divergence occurred in the Middle Pleistocene. Finally, we assessed substructure within and adjacent to the hybrid zone and found that the hybrid zone constitutes a set of populations that are genetically differentiated from parental sets of populations; therefore, hybridization in this system is not likely an evolutionary sink, but has generated novel combinations of genotypes.  相似文献   

19.
Mitochondrial DNA (mtDNA) from 25 blue tits Parus caeruleus sampled from two populations of the Grenoble region (France) was assayed for polymorphism with 17 restriction endonucleases. Nine genotypes were found. Several mtDNA genotypes were also analysed by amplification via the polymerase chain reaction (PCR) and direct sequencing of 903 bp of the cytochrome b gene. The mtDNA polymorphism is greater in P. caeruleus than in other comparable bird species and results from the presence of two clearly differentiated mitochondrial lineages. Using the data of restriction polymorphism, the mean sequence divergence between individuals of the two lineages is 1.23%. Therefore, P. caeruleus should fall into the category II of phylogeographic pattern sensu Avise et al. (1987): discontinuous mtDNA genotypes which co-occur in the same region. P. caeruleus, like humans and other mobile species with high gene flow, seems to have lost its geographic structure in terms of mtDNA phylogeny. This unusual mitochondrial polymorphism can be explained by the recent admixture of two long-term isolated populations. This could be accounted for by two different scenarios. One assumes a simultaneous post-glacial colonization of the Grenoble region by two isolated European populations of P. caeruleus. Alternatively, hybridization between P. caeruleus and P. cyanus could have caused the observed pattern of mtDNA variation.  相似文献   

20.
Introgression patterns between divergent lineages are often characterized by asymmetry in the direction and among-marker variation in the extent of gene flow, and therefore inform on the mechanisms involved in differentiation and speciation. In the present study, we test the hypothesis that unidirectional introgression between two phenotypically and genetically distinct lineages of the littoral, rock-dwelling cichlid fish Tropheus moorii across a wide sandy bay is linked to observed differences in mate preferences between the two lineages. This hypothesis predicts bi-directional nuclear gene flow and was rejected by congruent patterns of introgression in mtDNA, AFLP and microsatellite markers, with admixture confined to the populations west of the bay. This pattern can be explained on the basis of habitat changes in the course of lake level fluctuations, which first facilitated the development of a symmetric admixture zone including the area corresponding to the present sand bay and then shaped asymmetry by causing local extinctions and cessation of gene flow when this area became once more inhabitable. This conforms with previous assumptions that habitat dynamics are a primary determinant of population-level evolution in Tropheus. In this respect, Tropheus may be representative of species whose preferred habitat is subject to frequent re-structuring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号