首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anti-cytokine autoantibodies have been widely reported to be present in human plasma, both in healthy subjects and in patients with underlying autoimmune conditions, such as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) or thymic epithelial neoplasms. While often asymptomatic, they can cause or facilitate a wide range of diseases including opportunistic infections. The potential therapeutic value of specific neutralizing anti-cytokine autoantibodies has not been thoroughly investigated. Here we used mammalian cell display to isolate IL17A-specific antibodies from a thymoma patient with proven high-titer autoantibodies against the same. We identified 3 distinct clonotypes that efficiently neutralized IL17A in a cell-based in vitro assay. Their potencies were comparable to those of known neutralizing antibodies, including 2, AIN457 (secukinumab) and ixekizumab that are currently in clinical development for the treatment of various inflammatory disorders. These data clearly demonstrate that the human autoantibody repertoire can be mined for antibodies with high therapeutic potential for clinical development.  相似文献   

2.
Th17 cells have been reported to produce proinflammatory cytokines like Interleukin-17, IL-22, and regarded as important players in various inflammatory diseases. One of the IL-12 cytokine family cytokines, IL-23, composed of p19 and p40 subunit, is known for its potential to promote Th17 development and IL-17 producing, and the IL-23/IL-17 pathway is considered to be potential therapeutic target for autoimmune inflammation responses. Knockout mice deficient in either IL-23 or IL-17 related genes can suppress the allergic responses. Several IL-23 or IL-17 neutralizing agents are being evaluated in vitro or in vivo to disrupt the IL-23/IL-17 axis. Herein, we report that prokaryotically expressed soluble IL-23 receptor cytokine-binding homology region as an endogenous extracellular receptor analogue could be a natural antagonist against IL-23/IL-17 axis. We provide evidence that IL23R-CHR can bind to IL-23 in a dose-dependent manner in vitro, and block IL-23 signal by IL23R-CHR reducing the RORγt expression, which in turn lowers the expression of IL-17/IL-22, thus protecting naive CD4+ T cells against Th17 development. Together, this study indicates the importance of IL-23 pathway in Th17 development and the negative regulation of Th17 development by IL23R-CHR, and highlights the important roles of the soluble receptor extracellular region in the therapeutic strategy of neutralizing IL-23.  相似文献   

3.
《MABS-AUSTIN》2013,5(4):778-791
Herein, we describe the generation and characterization of BI 655066, a novel, highly potent neutralizing anti-interleukin-23 (IL23) monoclonal antibody in clinical development for autoimmune conditions, including psoriasis and Crohn's disease. IL23 is a key driver of the differentiation, maintenance, and activity of a number of immune cell subsets, including T helper 17 (Th17) cells, which are believed to mediate the pathogenesis of several immune-mediated disorders. Thus, IL23 neutralization is an attractive therapeutic approach. Designing an antibody for clinical activity and convenience for the patient requires certain properties, such as high affinity, specificity, and solubility. These properties were achieved by directed design of the immunization, lead identification, and humanization procedures. Favorable substance and pharmacokinetic properties were established by biophysical assessments and studies in cynomolgus monkeys.  相似文献   

4.
《MABS-AUSTIN》2013,5(1):69-83
Interleukin-21 (IL-21) is a type I four-helical bundle cytokine that exerts a variety of significant effects on many hematopoietic cells, including T and B lymphocytes and natural killer cells. IL-21 is produced predominantly by CD4+ T cells and natural killer T cells and, when aberrantly overexpressed, appears to play important roles in a wide variety of autoimmune disorders. To generate potential therapeutic reagents capable of inhibiting IL-21 for clinical use, we immunized human immunoglobulin transgenic mice with IL-21 and then identified and cloned a panel of human anti-human IL-21 binding monoclonal antibodies. IL-21 neutralizing and IL-21-binding, non-neutralizing antibodies were assigned to distinct epitope “bins” based on surface plasmon resonance competition studies. The most potent neutralizing antibodies had extremely high (sub pM) affinity for IL-21 and were able to block IL-21 activity in various biological assays using either an IL-21R-transfected pre-B-cell line or primary human B cells, and their neutralizing activity was, in some cases, superior to that of a soluble form of the high affinity heterodimeric IL-21 receptor. Characterization of this panel of IL-21 antibodies provided the basis for the selection of a therapeutic candidate antibody capable of inhibiting IL-21 activity for the treatment of autoimmune and inflammatory diseases.  相似文献   

5.
Therapeutic antibodies directed against tumor necrosis factor alpha (TNF-alpha) for the treatment of rheumatoid arthritis, and against the human EGF receptor-2 (HER2) receptor for the treatment of breast cancer have provided significant clinical benefit for the patients. The success of these antibodies has also provided strong support for the possibility that increased activity of cytokines or growth factors is causally implicated in a variety of human diseases. Interferon alpha (IFN-alpha) is induced by viruses (linked by epidemiological studies to autoimmune diseases), has significant direct effects on both epithelial cells and the immune system, and then can be further induced by the autoantibodies and apoptotic cells generated by the actions of IFN-alpha. The direct and deleterious impact on target tissues, the ability to induce an autoimmune response, and the potential for a self-sustaining cycle of induction and damage suggests that IFN-alpha could be a pivotal factor in the development of autoimmune diseases. This review will evaluate the rationale for, possible approaches to, and safety concerns associated with, targeting interferon alpha (IFN-alpha) as a therapeutic strategy for the treatment of autoimmune diseases. While the approach may be applicable to several autoimmune diseases, there will be an emphasis on systemic lupus erythematosus and insulin dependent diabetes mellitus.  相似文献   

6.
Interleukin 21 (IL-21) is a type I four-helical bundle cytokine that exerts a variety of significant effects on many hematopoietic cells, including T and B lymphocytes and natural killer cells. IL-21 is produced predominantly by CD4+ T cells and natural killer T cells and, when aberrantly overexpressed, appears to play important roles in a wide variety of autoimmune disorders. To generate potential therapeutic reagents capable of inhibiting IL-21 for clinical use, we immunized human immunoglobulin transgenic mice with IL-21 and then identified and cloned a panel of human anti-human IL-21 binding monoclonal antibodies. IL-21 neutralizing and IL-21-binding, non-neutralizing antibodies were assigned to distinct epitope “bins” based on surface plasmon resonance competition studies. The most potent neutralizing antibodies had extremely high (sub pM) affinity for IL-21 and were able to block IL-21 activity in various biological assays using either an IL-21R-transfected pre-B-cell line or primary human B cells, and their neutralizing activity was, in some cases, superior to that of a soluble form of the high affinity heterodimeric IL-21 receptor. Characterization of this panel of IL-21 antibodies provided the basis for the selection of a therapeutic candidate antibody capable of inhibiting IL-21 activity for the treatment of autoimmune and inflammatory diseases.Key words: interleukin 21, IL-21, mAb, human Ig transgenic mice, autoimmunity  相似文献   

7.
《MABS-AUSTIN》2013,5(8):1428-1442
ABSTRACT

Interleukin (IL)-26, known as a Th17 cytokine, acts on various cell types and has multiple biological functions. Although its precise role still remains to be elucidated, IL-26 is suggested to be associated with the pathology of diverse chronic inflammatory diseases such as psoriasis, inflammatory bowel diseases and rheumatoid arthritis. To develop novel neutralizing anti-human IL-26 monoclonal antibodies (mAbs) for therapeutic use in the clinical setting, we immunized mice with human IL-26 protein. Hybridomas producing anti-IL-26 mAbs were screened for various in vitro functional assays, STAT3 phosphorylation and antibiotic assays. Although the IL-20RA/IL-10RB heterodimer is generally believed to be the IL-26 receptor, our data strongly suggest that both IL-20RA-dependent and -independent pathways are involved in IL-26-mediated stimulation. We also investigated the potential therapeutic effect of anti-IL-26 mAbs in the imiquimod-induced psoriasis-like murine model using human IL-26 transgenic mice. These screening methods enabled us to develop novel neutralizing anti-human IL-26 mAbs. Importantly, administration of IL-26-neutralizing mAb did not have an effect on the antimicrobial activity of IL-26. Taken together, our data strongly suggest that our newly developed anti-human IL-26 mAb is a potential therapeutic agent for the treatment of diverse chronic inflammatory diseases including psoriasis.  相似文献   

8.
As we know more about Zika virus(ZIKV), as well as its linkage to birth defects(microcephaly) and autoimmune neurological syndromes, we realize the importance of developing an efficient vaccine against it. Zika virus disease has affected many countries and is becoming a major public health concern. To deal with the infection of ZIKV, plenty of experiments have been done on selection of neutralizing antibodies that can target the envelope(E) protein on the surface of the virion. However, the existence of antibody-dependent enhancement(ADE) effect might limit the use of them as therapeutic candidates. In this review, we classify the neutralizing antibodies against ZIKV based on the epitopes and summarize the resolved structural information on antibody/antigen complex from X-ray crystallography and cryo-electron microscopy(cryo-EM), which might be useful for further development of potent neutralizing antibodies and vaccines toward clinical use.  相似文献   

9.
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.  相似文献   

10.
IL-17 and related cytokines are direct and indirect targets of selective immunosuppressive agents for the treatment of autoimmune diseases and other diseases of pathologic inflammation. Insights into the potential adverse effects of IL-17 blockade can be drawn from the experience of patients with deficiencies in the IL-17 pathway. A unifying theme of susceptibility to mucocutaneous candidiasis is seen in both mice and humans with a variety of genetic defects that converge on this pathway. Mucocutaneous candidiasis is a superficial infection of mucosal, nail or skin surfaces usually caused by the fungal pathogen Candida albicans. The morbidity of the disease includes significant pain, weight loss and secondary complications, including carcinoma and aneurysms. This review describes the known human diseases associated with chronic mucocutaneous candidiasis (CMC) as well as the known and proposed connections to IL-17 signaling. The human diseases include defects in IL-17 signaling due to autoantibodies (AIRE deficiency), receptor mutations (IL-17 receptor mutations) or mutations in the cytokine genes (IL17F and IL17A). Hyper-IgE syndrome is characterized by elevated serum IgE, dermatitis and recurrent infections, including CMC due to impaired generation of IL-17-producing Th17 cells. Mutations in STAT1, IL12B and IL12RB1 result in CMC secondary to decreased IL-17 production through different mechanisms. Dectin-1 defects and CARD9 defects result in susceptibility to C. albicans because of impaired host recognition of the pathogen and subsequent impaired generation of IL-17-producing T cells. Thus, recent discoveries of genetic predisposition to CMC have driven the recognition of the role of IL-17 in protection from mucosal fungal infection and should guide counseling and management of patients treated with pharmacologic IL-17 blockade.  相似文献   

11.
IL-17 and related cytokines are direct and indirect targets of selective immunosuppressive agents for the treatment of autoimmune diseases and other diseases of pathologic inflammation. Insights into the potential adverse effects of IL-17 blockade can be drawn from the experience of patients with deficiencies in the IL-17 pathway. A unifying theme of susceptibility to mucocutaneous candidiasis is seen in both mice and humans with a variety of genetic defects that converge on this pathway. Mucocutaneous candidiasis is a superficial infection of mucosal, nail or skin surfaces usually caused by the fungal pathogen Candida albicans. The morbidity of the disease includes significant pain, weight loss and secondary complications, including carcinoma and aneurysms. This review describes the known human diseases associated with chronic mucocutaneous candidiasis (CMC) as well as the known and proposed connections to IL-17 signaling. The human diseases include defects in IL-17 signaling due to autoantibodies (AIRE deficiency), receptor mutations (IL-17 receptor mutations) or mutations in the cytokine genes (IL17F and IL17A). Hyper-IgE syndrome is characterized by elevated serum IgE, dermatitis and recurrent infections, including CMC due to impaired generation of IL-17-producing Th17 cells. Mutations in STAT1, IL12B and IL12RB1 result in CMC secondary to decreased IL-17 production through different mechanisms. Dectin-1 defects and CARD9 defects result in susceptibility to C. albicans because of impaired host recognition of the pathogen and subsequent impaired generation of IL-17-producing T cells. Thus, recent discoveries of genetic predisposition to CMC have driven the recognition of the role of IL-17 in protection from mucosal fungal infection and should guide counseling and management of patients treated with pharmacologic IL-17 blockade.  相似文献   

12.
Antiidiotypes against autoantibodies in pooled normal human polyspecific Ig   总被引:17,自引:0,他引:17  
We observed that pooled normal polyspecific human IgG for therapeutic use (IVIg) inhibited the binding of antithyroglobulin, anti-DNA and antiintrinsic factor antibodies to their autoantigens in vitro. The inhibitory effect of IVIg was dependent on interactions between the variable regions of IVIg and variable regions of the autoantibodies. Affinity chromatography of F(ab')2 fragments or of IgG containing anti-TG, anti-DNA, or anti-IF autoantibody activity on Sepharose-bound F(ab')2 from IVIg resulted in the specific retention of autoantibody activity, indicating that IVIg contain antiidiotypic antibodies against human autoantibodies. Inhibition of autoantibody activity by anti-Id in IVIg in vitro is dose dependent with maximal inhibition occurring at a specific molar ratio between patient's IgG and IVIg and shows a prozone phenomenon. The relative content in anti-Id against a particular autoantibody may differ between IVIg preparations. Affinity chromatography of IVIg on Sepharose-bound F(ab')2 fragments from IVIg also resulted in specific retention of anti-TG and anti-DNA activities that were found to be present in pooled normal immunoglobulins. The presence in IVIg of anti-Id against autoantibodies from patients and from normal individuals may provide a mechanism for the suppressive effect of IVIg in human autoimmune diseases and supports the concept of a functional idiotypic network regulating autoimmune responses in man.  相似文献   

13.
Blood of healthy donors contains low concentrations of autoantibodies to its own components, including DNA and RNA. Increased concentrations of antibodies to DNA and RNA have been found in blood of people and animals with autoimmune diseases and viral and bacterial infections. Detection of different antibodies with catalytic activities, including abzymes with DNase and RNase activities, is the earliest indicator of the development of some autoimmune diseases. This review reveals possible mechanisms of generation of anti-DNA and anti-RNA antibodies without catalytic activities and abzymes in normal organisms and in organisms with different pathologies. A possible role of these autoantibodies and the reasons of their exceptional diversity in normal organisms and in organisms with different autoimmune diseases are discussed.  相似文献   

14.
Desmosomal cadherins are the pathophysiologic targets of autoimmune or toxin-mediated disruption in the human diseases pemphigus and bullous impetigo (including its generalized form, called staphylococcal scalded skin syndrome). Experiments exploiting the production of both pathogenic and nonpathogenic antidesmoglein antibodies in pemphigus patients' sera have afforded data that make an invaluable contribution towards identifying the functional domains of the desmogleins involved in intercellular adhesion. Conformational epitopes of antidesmoglein autoantibodies in pemphigus patients' sera and the specific cleavage site of desmoglein 1 by exfoliative toxin have been identified, implicating the N-terminal extracellular domains of the desmogleins as critical regions for controlling intercellular adhesion. Furthermore, the development of active autoimmune mouse models for pemphigus allows in vivo characterization of the disease and its pathogenesis. These studies offer new insight into the potential mechanisms of acantholysis in pemphigus and staphylococcal-associated blistering disease, with implications for the role of desmogleins in desmosomal structure and function.  相似文献   

15.
Pemphigus is an autoimmune blistering disease of the skin and mucous membranes. It is caused by autoantibodies directed against desmosomes, which are the principal adhesion structures between epidermal keratinocytes. Binding of autoantibodies leads to the destruction of desmosomes resulting in the loss of cell-cell adhesion (acantholysis) and epidermal blisters. The plasminogen activator system has been implicated as a proteolytic effector in pemphigus. We have tested inhibitors of the plasminogen activator system with regard to their potential to prevent pemphigus-induced cutaneous pathology. In a human split skin culture system, IgG preparations of sera from pemphigus vulgaris patients caused histopathologic changes (acantholysis) similar to those observed in the original pemphigus disease. All inhibitors that were tested (active site inhibitors directed against uPA, tPA, and/or plasmin; antibodies neutralizing the enzymatic activity of uPA or tPA; substances interfering with the binding of uPA to its specific cell surface receptor uPAR) failed to prevent pemphigus vulgaris IgG-mediated acantholysis. Plasminogen-mediated acantholysis, however, was effectively antagonized by the synthetic active site serine protease inhibitor WX-UK1 or by p-aminomethylbenzoic acid. Our data argue against applying anti-plasminogen activator/anti-plasmin strategies in the management of pemphigus.  相似文献   

16.
《MABS-AUSTIN》2013,5(3):266-274
Several human monoclonal antibodies (hmAbs) exhibit relatively potent and broad neutralizing activity against HIV-1, but there has not been much success in using them as potential therapeutics. We have previously hypothesized and demonstrated that small engineered antibodies can target highly conserved epitopes that are not accessible by full-size antibodies. However, their potency has not been comparatively evaluated with known HIV-1-neutralizing hmAbs against large panels of primary isolates. We report here the inhibitory activity of an engineered single chain antibody fragment (scFv), m9, against several panels of primary HIV-1 isolates from groups M (clades A-G) and N using cell-free and cell-associated virus in cell line-based assays. M9 was much more potent than scFv 17b, and more potent than or comparable to the best-characterized broadly neutralizing hmAbs IgG1 b12, 2G12, 2F5 and 4E10. It also inhibited cell-to-cell transmission of HIV-1 with higher potency than enfuvirtide (T-20, Fuzeon). M9 competed with a sulfated CCR5 N-terminal peptide for binding to gp120-CD4 complex, suggesting an overlapping epitope with the coreceptor binding site. M9 did not react with phosphatidylserine (PS) and cardiolipin (CL), nor did it react with a panel of autoantigens in an antinuclear autoantibody (ANA) assay. We further found that escape mutants resistant to m9 did not emerge in an immune selection assay. These results suggest that m9 is a novel anti-HIV-1 candidate with potential therapeutic or prophylactic properties, and its epitope is a new target for drug or vaccine development.  相似文献   

17.
Although it is established that failure of regulatory mechanisms underlies many autoimmune diseases, the stimuli that activate autoreactive lymphocytes remain poorly understood. Defining these stimuli will lead to therapeutic strategies for autoimmune diseases. IL-2-deficient mice develop spontaneous autoimmunity, because of a deficiency of regulatory T cells, and on the BALB/c background, they rapidly die from autoimmune hemolytic anemia. To define the importance of costimulatory pathways in various components of this autoimmune disorder, we first intercrossed IL-2-deficient mice with mice lacking CD28 or CD40L. Elimination of CD28 reduced the activation of autoreactive T cells and lymphoproliferation as well as production of autoantibodies, whereas elimination of CD40L reduced autoantibody production without affecting T cell expansion and accumulation. To examine the role of IL-7, we blocked IL-7R signaling with neutralizing Abs. This treatment inhibited the production of autoantibodies and the development of autoimmune hemolytic anemia. Together, these data indicate that specific costimulatory and cytokine signals are critical for the spontaneous autoantibody-mediated disease that develops in IL-2-deficient mice.  相似文献   

18.
BACKGROUND: We previously demonstrated the local production of the pleiotropic cytokine interleukin-6 (IL-6) in the central nervous system (CNS) in experimental autoimmune encephalomyelitis (EAE), an animal model for the human disease multiple sclerosis. MATERIALS AND METHODS: To assess the role of IL-6 in autoimmune CNS inflammation, we administered neutralizing antibodies to IL-6 in the EAE model. Their effect was examined at the clinical and histopathological level. Levels of administered antibody and IL-6 bioactivity were followed in serum and cerebrospinal fluid (CSF). RESULTS: Systemically administered antibodies penetrated into the fluid CSF in animals in which EAE was induced. Administration of anti-IL-6 reduced the development of actively induced as well as adoptively transferred EAE and was associated with increased levels of IL-6 activity in the CSF and to a lesser extent in the serum. Anti-IL-6 was still effective when given 1 day before the onset of disease signs in adoptively transferred EAE. The disease-reducing effect of anti-IL-6 was also reflected at the pathological level by the absence of inflammatory infiltrates in the CNS. CONCLUSIONS: Our study indicates that IL-6 plays an important role in autoimmune CNS inflammation. However, due to the complex nature of the in vivo interactions of administered antibodies, the disease-reducing effect of the anti-IL-6 antibodies could be caused by neutralization of IL-6 activity or by enhancement of IL-6 activity via induction of higher IL-6 levels in the CNS.  相似文献   

19.
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.  相似文献   

20.
Antibody protection against flaviviruses is associated with the development of neutralizing antibodies against the viral envelope (E) protein. Prior studies with West Nile virus (WNV) identified therapeutic mouse and human monoclonal antibodies (MAbs) that recognized epitopes on domain III (DIII) of the E protein. To identify an analogous panel of neutralizing antibodies against DENV type-1 (DENV-1), we immunized mice with a genotype 2 strain of DENV-1 virus and generated 79 new MAbs, 16 of which strongly inhibited infection by the homologous virus and localized to DIII. Surprisingly, only two MAbs, DENV1-E105 and DENV1-E106, retained strong binding and neutralizing activity against all five DENV-1 genotypes. In an immunocompromised mouse model of infection, DENV1-E105 and DENV1-E106 exhibited therapeutic activity even when administered as a single dose four days after inoculation with a heterologous genotype 4 strain of DENV-1. Using epitope mapping and X-ray crystallographic analyses, we localized the neutralizing determinants for the strongly inhibitory MAbs to distinct regions on DIII. Interestingly, sequence variation in DIII alone failed to explain disparities in neutralizing potential of MAbs among different genotypes. Overall, our experiments define a complex structural epitope on DIII of DENV-1 that can be recognized by protective antibodies with therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号