首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Classical bovine spongiform encephalopathy is a transmissible prion disease that is fatal to cattle and is a human health risk due to its association with a strain of Creutzfeldt-Jakob disease (vCJD). Mutations to the coding region of the prion gene (PRNP) have been associated with susceptibility to transmissible spongiform encephalopathies in mammals including bovines and humans. Additional loci such as the retinoic acid receptor beta (RARB) and stathmin like 2 (STMN2) have also been associated with disease risk. The objective of this study was to refine previously identified regions associated with BSE susceptibility and to identify positional candidate genes and genetic variation that may be involved with the progression of classical BSE. The samples included 739 samples of either BSE infected animals (522 animals) or non-infected controls (207 animals). These were tested using a custom SNP array designed to narrow previously identified regions of importance in bovine genome. Thirty one single nucleotide polymorphisms were identified at p < 0.05 and a minor allele frequency greater than 5%. The chromosomal regions identified and the positional and functional candidate genes and regulatory elements identified within these regions warrant further research.  相似文献   

2.
Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Sequence variations in the coding region of the prion gene (PRNP) have been associated with acquired transmissible spongiform encephalopathy (TSE) susceptibility in mammals; however, this is not the case in cattle. It has been hypothesized that genes, in addition to the prion gene, contribute to genetic susceptibility of acquired TSEs. Accordingly, genetic studies of classical BSE in cattle identified loci other than PRNP that are associated with disease incidence. The objective of this study was to utilize a genome-wide association study to test for genetic loci associated with classical BSE. The samples include 143 BSE affected (case) and 173 unaffected half sib (control) animals collected in the mid 1990s in Southern England. The data analysis identifies loci on two different chromosomes associated with BSE disease occurrence. Most notable is a single nucleotide polymorphism on chromosome 1 at 29.15 Mb that is associated with BSE disease (p = 3.09E-05). Additionally, a locus on chromosome 14, within a cluster of SNPs showed a trend toward significance (p = 5.24E-05). It is worth noting that in a human vCJD study markers on human chromosome 8, a region with shared synteny to the region identified on cattle chromosome 14, were associated with disease. Further, our candidate genes appear to have plausible biological relevance with the known etiology of TSE disease. One of the candidate genes is hypothetical gene LOC521010, similar to FK506 binding protein 2 located on chromosome 1 at 29.32 Mb. This gene encodes a protein that is a member of the immunophilin protein family and is involved in basic cellular processes including protein folding. The chromosomal regions identified in this study and candidate genes within these regions merit further investigation.  相似文献   

3.
朊病毒疾病   总被引:1,自引:0,他引:1  
王冬梅 《生命科学》1999,11(5):201-208
朊病毒是一种蛋白性质的感染颗粒,它能引起动物的一类大脑功能紊乱疾病:可传染海绵样脑病(TSE)。本文就朊病毒、朊病毒引起的疾病、牛海绵样脑病(BSE)及BSE能否传给人类进行一些讨论。  相似文献   

4.
The susceptibility of sheep to classical scrapie and bovine spongiform encephalopathy (BSE) is mainly influenced by prion protein (PrP) polymorphisms A136V, R154H, and Q171R, with the ARR allele associated with significantly decreased susceptibility. Here we report the protective effect of the amino acid substitution M137T, I142K, or N176K on the ARQ allele in sheep experimentally challenged with either scrapie or BSE. Such observations suggest the existence of additional PrP alleles that significantly decrease the susceptibility of sheep to transmissible spongiform encephalopathies, which may have important implications for disease eradication strategies.  相似文献   

5.
Polymorphisms of the prion protein gene PRNP have been shown to influence the susceptibility/resistance to prion infections in human and sheep. In addition, the T174M polymorphism within the flanking prion doppel gene (PRND) was thought to be involved in susceptibility to sporadic Creutzfeldt-Jacob disease. To study a possible influence of DNA polymorphisms of the bovine PRND gene in bovine spongiform encephalopathy (BSE), previously identified and newly isolated DNA polymorphisms were genotyped in all available German cattle that tested positive for BSE. Genotypes and calculated haplotypes were compared with breeding bulls serving as controls. Analysis of the four major breeds Schwarzbunt (Holstein Friesian), Rotbunt (Holstein Red), Fleckvieh (Simmental), and Braunvieh (Swiss Brown) resulted in the isolation of the previously known polymorphisms R50H and R132Q and two novel synonymous single nucleotide polymorphisms (SNPs) C4820T and A5063T. Comparative genotype and haplotype analysis of BSE and control animals revealed a significantly different distribution of polymorphisms C4815T and R132Q in Fleckvieh animals but not in the other breeds tested. No association to BSE susceptibility was detectable for polymorphisms R50H and A5063T.  相似文献   

6.
The risk of the transmission of ruminant transmissible spongiform encephalopathy (TSE) to humans was thought to be low due to the lack of association between sheep scrapie and the incidence of human TSE. However, a single TSE agent strain has been shown to cause both bovine spongiform encephalopathy (BSE) and human vCJD, indicating that some ruminant TSEs are transmissible to humans. While the transmission of cattle BSE to humans in transgenic mouse models has been inefficient, indicating the presence of a significant transmission barrier between cattle and humans, BSE has been transmitted to a number of other species. Here, we aimed to further investigate the human transmission barrier following the passage of BSE in a sheep. Following inoculation with cattle BSE, gene-targeted transgenic mice expressing human PrP showed no clinical or pathological signs of TSE disease. However, following inoculation with an isolate of BSE that had been passaged through a sheep, TSE-associated vacuolation and proteinase K-resistant PrP deposition were observed in mice homozygous for the codon 129-methionine PRNP gene. This observation may be due to higher titers of the BSE agent in sheep or an increased susceptibility of humans to BSE prions following passage through a sheep. However, these data confirm that, contrary to previous predictions, it is possible that a sheep prion is transmissible to humans and that BSE from other species is a public health risk.  相似文献   

7.
Gurgul A  Słota E 《Folia biologica》2007,55(3-4):81-86
Prion protein gene (PRNP) variants determine the susceptibility of humans, sheep and mice to prion diseases, whereas polymorphisms in the open reading frame (ORF) of bovine PRNP seem to be unrelated to the incidence of bovine spongiform encephalopathy (BSE). According to the latest reports, the genetic susceptibility of cattle to BSE is associated with polymorphisms ofthe regulatory region of the PRNP gene and the level ofits expression. This review provides information on the bovine PRNP gene, its polymorphism, and recently identified genetic markers for BSE, and attempts to explain the mechanism behind the genetic resistance or susceptibility of cattle to this disease.  相似文献   

8.
Polymorphisms in open reading frames of the prion protein gene (PRNP) have been shown to be associated with prion disease susceptibility in humans, sheep, and mice. Studies in recent years have demonstrated a similar effect of PRNP promoter and intron-1 polymorphisms on bovine spongiform encephalopathy (BSE) susceptibility in cattle. In this study, the deletion/insertion (indel) polymorphisms of the bovine PRNP gene within the promoter sequence (23 bp) and intron 1 (12 bp) were analyzed in local Turkish cattle. For this, 150 animals belonging to three different local breeds--the South Anatolian red, the East Anatolian red, and the Turkish gray--were tested using DNA purification and polymerase chain reaction. The ins allele in the 12 bp indel, which is associated with low susceptibility to BSE, showed a high frequency in all three breeds. The low-susceptibility allele of the 23-bp indel was identified in Turkish gray cattle with a frequency of 0.80. Results of the study have shown that local Turkish cattle might have an important genetic value for selection against BSE.  相似文献   

9.
A major genetic component of BSE susceptibility   总被引:2,自引:0,他引:2  

Background  

Coding variants of the prion protein gene (PRNP) have been shown to be major determinants for the susceptibility to transmitted prion diseases in humans, mice and sheep. However, to date, the effects of polymorphisms in the coding and regulatory regions of bovine PRNP on bovine spongiform encephalopathy (BSE) susceptibility have been considered marginal or non-existent. Here we analysed two insertion/deletion (indel) polymorphisms in the regulatory region of bovine PRNP in BSE affected animals and controls of four independent cattle populations from UK and Germany.  相似文献   

10.
Polymorphisms in the coding region of the prion protein gene (PRNP) have been associated with the susceptibility and incubation period of prion diseases in humans and sheep. However, polymorphisms in this part of the bovine PRNP gene do not affect the classical bovine spongiform encephalopathy (BSE) susceptibility in cattle. Studies carried out in Germany have shown that insertion/deletion-type polymorphisms located in the promoter region of the bovine prion gene are possible genetic factors modulating BSE susceptibility by changing the level of PRNP expression. No such association was observed for atypical BSE cases; however, due to the rare nature of the disease, these results should be confirmed. Additionally, a single nonsynonymous mutation in PRNP codon 211 (E211K) was described in one H-type BSE case in the USA; however, it was not found in any other cases. Here, we performed genetic characterization of PRNP promoter indel variations and determined the polymorphism of open reading frames (ORFs) of PRNP and bovine prion-like Shadoo (SPRN) genes in six Polish atypical BSE cases and compared these results to the population of clinically healthy Polish Holstein cattle. No potentially pathogenic mutations were found in the PRNP ORF in atypical BSE-affected cattle, but our study showed a high frequency of deletions at the indel loci of PRNP promoter in these animals. Additionally, a rare sequence variation in the SPRN protein-coding sequence was found in one L-type atypical BSE-affected animal.  相似文献   

11.
Bovine spongiform encephalopathy (BSE) is a zoonotic transmissible spongiform encephalopathy (TSE) thought to be caused by the same prion strain as variant Creutzfeldt-Jakob disease (vCJD). Unlike scrapie and chronic wasting disease there is no cell culture model allowing the replication of proteinase K resistant BSE (PrPBSE) and the further in vitro study of this disease. We have generated a cell line based on the Madin-Darby Bovine Kidney (MDBK) cell line over-expressing the bovine prion protein. After exposure to naturally BSE-infected bovine brain homogenate this cell line has shown to replicate and accumulate PrPBSE and maintain infection up to passage 83 after initial challenge. Collectively, we demonstrate, for the first time, that the BSE agent can infect cell lines over-expressing the bovine prion protein similar to other prion diseases. These BSE infected cells will provide a useful tool to facilitate the study of potential therapeutic agents and the diagnosis of BSE.  相似文献   

12.
Due to its sensitivity, immunohistochemistry (IHC) of abnormal prion protein (PrPsc) is used to study experimental and natural cases of transmissible spongiform encephalopathies (TSEs) such as Creutzfeldt-Jakob disease in humans or scrapie and bovine spongiform encephalopathy (BSE) in animals. The limits of detection are particularly critical when PrPsc IHC is used for diagnostic purposes. In this article, we describe for the first time the use of streptomycin sulfate in IHC, providing a novel original and easy way to amplify specifically PrPsc immunohistochemical detection in natural cases of BSE and scrapie, as well as in experimental TSEs in mice models using two different PrP antibodies.  相似文献   

13.
Bovine spongiform encephalopathy (BSE) is a transmissible fatal neurodegenerative disorder, presenting a characteristic spongiform degeneration of cattle brain due to the accumulation of a pathogenic and protease-resistant infectious protein (prion). Two deletion/insertion polymorphisms of the prion protein gene (23 bp at the promoter region and 12 bp at intron 1) were analyzed in three beef cattle herds (Aberdeen Angus, Charolais, and Franqueiro) to verify allele frequencies for possible use in selection of resistant animals. High frequencies of susceptibility alleles (23 and 12 bp deletion) and haplotype (23 del/12 del) were observed in the Aberdeen Angus and Charolais herds, but Franqueiro presented one of the highest frequencies of resistant alleles so far described. These data indicate the need for selection in Aberdeen Angus and Charolais breeds to increase the frequency of resistant animals in order to reduce the probabilities of BSE outbreaks in these populations.  相似文献   

14.
Bovine spongiform encephalopathy (BSE) belongs to a group of neurodegenerative diseases known as transmissible prion diseases. Recently, variants in the promoter region of the prion protein ( PRNP ) gene have been shown to have a considerable effect on the susceptibility to BSE. However, a previous genome scan revealed other putative BSE-susceptibility loci. Here, we analysed such a region on BTA10, which contains the functional candidate gene HEXA . Three hundred and twenty kilobases that, besides HEXA , also contain ARIH1 , BRUNOL6 and PARP6 were characterized and screened for polymorphisms. Genotyping of 38 SNPs in Holstein–Friesian animals from the UK (350 diseased and 270 controls) revealed two intronic SNPs that were associated with BSE incidence, with experiment-wise P -values of 3.5 × 10−3 and 7.7 × 10−3 respectively. Both SNPs were in strong linkage disequilibrium and the rare alleles had a protective effect. These alleles were contained in a haplotype dubbed 'UK-protective' that was significantly overrepresented in the controls with a permuted P -value of 2 × 10−3. An association study in German Holstein animals (73 diseased and 627 controls) revealed an opposite effect of the 'UK-protective' haplotype in this population, i.e. it was overrepresented in the diseased animals, although not significant after correction for multiple testing. These findings indicate a causal variant for BSE susceptibility on BTA10 in linkage disequilibrium with the markers studied. Candidate gene analyses of the surrounding region and additional association studies will help to clarify the origin of the protective effects and to identify causal variants for BSE susceptibility on BTA10.  相似文献   

15.
The transmissible spongiform encephalopathies (TSE), or prion diseases, are a group of rare, fatal, and transmissible neurodegenerative diseases of mammals for which there are no known viral or bacterial etiological agents. The bovine form of these diseases, bovine spongiform encephalopathy (BSE), has crossed over into humans to cause variant Creutzfeldt-Jakob disease. As a result, BSE and the TSE diseases are now considered a significant threat to human health. Understanding the basic mechanisms of TSE pathogenesis is essential for the development of effective TSE diagnostic tests and anti-TSE therapeutic regimens. This review provides an overview of the molecular mechanisms that underlie this enigmatic group of diseases.  相似文献   

16.
To obtain high titer monoclonal antibodies (McAbs) which can react with mammalian prion protein (PrP), Balb/C mice were immunized with bovine (Bo) PrP peptide (BoPrP 209—228 aa) coupled to keyhole limpet hemocyanin (KLH). The hybridoma cell lines secreting monoclonal antibodies against the pep-tide were established by cell fusion and cloning. The obtained McAbs were applied to detect recombi-nant human, bovine and hamster PrP, cellular prion protein (PrPc) in normal bovine brain and patho-genic scrapie prion protein (PrPSc) accumulated in the medulla oblongata of bovine spongiform en-cephalopathy(BSE)specimen with Western blot and immunohistochemical detection, respectively. The current procedure might offer a simple, feasible method to raise high titer antibodies for studying bio-logical features of PrP in mammals, as well as detection of transmissible spongiform encephalopathy (TSE) and diagnosis of BSE, in particular.  相似文献   

17.
In May 2003, Canada became the 22nd country outside of the United Kingdom to report a case of bovine spongiform encephalopathy (BSE) in an animal not known to be imported from a country with cattle previously affected by this fatal, transmissible prion disease. Despite extensive testing of thousands of other animals that may have been exposed to contaminated feed at the same time as the affected animal, no evidence has been found for other infections. This finding leaves room for conjectures that the single confirmed case arose spontaneously, perhaps (by analogy with human Creutzfeldt-Jakob disease) as a result of a somatic protein misfolding event or a novel germline mutation. Here we present DNA sequence data from the affected animal's prion protein coding sequence that argue definitively against the latter hypothesis.  相似文献   

18.
Atypical neuropathological and molecular phenotypes of bovine spongiform encephalopathy (BSE) have recently been identified in different countries. One of these phenotypes, named bovine "amyloidotic" spongiform encephalopathy (BASE), differs from classical BSE for the occurrence of a distinct type of the disease-associated prion protein (PrP), termed PrP(Sc), and the presence of PrP amyloid plaques. Here, we show that the agents responsible for BSE and BASE possess different biological properties upon transmission to transgenic mice expressing bovine PrP and inbred lines of nontransgenic mice. Strikingly, serial passages of the BASE strain to nontransgenic mice induced a neuropathological and molecular disease phenotype indistinguishable from that of BSE-infected mice. The existence of more than one agent associated with prion disease in cattle and the ability of the BASE strain to convert into the BSE strain may have important implications with respect to the origin of BSE and spongiform encephalopathies in other species, including humans.  相似文献   

19.
Shadoo (Sprn) and prion disease incubation time in mice   总被引:1,自引:0,他引:1  
Prion diseases are transmissible neurodegenerative disorders of mammalian species and include scrapie, bovine spongiform encephalopathy (BSE), and variant Creutzfeldt-Jakob disease (vCJD). The prion protein (PrP) plays a key role in the disease, with coding polymorphism in both human and mouse influencing disease susceptibility and incubation time, respectively. Other genes are also thought to be important and a plausible candidate is Sprn, which encodes the PrP-like protein Shadoo (Sho). Sho is expressed in the adult central nervous system and exhibits neuroprotective activity reminiscent of PrP in an in vitro assay. To investigate the role of Sprn in prion disease incubation time we sequenced the open reading frame (ORF) in a diverse panel of mice and saw little variation except in strains derived from wild-trapped mice. Sequencing the untranslated regions revealed polymorphisms that allowed us to carry out an association study of incubation period in the Northport heterogeneous stock of mice inoculated with Chandler/RML prions. We also examined the expression level of Sprn mRNA in the brains of normal and prion-infected mice and saw no correlation with either genotype or incubation time. We therefore conclude that Sprn does not play a major role in prion disease incubation time in these strains of mice.  相似文献   

20.
Endogenous prion proteins (PrP) play the central role in the pathogenesis of transmissible spongiform encephalopathies. The carbohydrate N -acetylgalactosamine 4-O sulfotransferase 8 (CHST8) promotes the conversion of the cellular PrPC into the pathogenic PrPd. Six sequence variants within the CHST8 gene were identified by comparative sequencing and genotyped for a sample of 623 animals comprising bovine spongiform encephalopathy (BSE)-affected and healthy control cows representing German Fleckvieh (German Simmental), German Holstein (Holstein-Friesian) and Brown Swiss. Significant differences in the allele, genotype and haplotype frequencies between BSE-affected and healthy cows indicate an association of sequence variant g.37254017G>T with the development of the disease in Brown Swiss cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号