首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The effects of arsenic stress on the production of low molecular weight thiols (LMWT), glutathione S-transferase activity (GST) and sulfur metabolism of mesquite plant (Prosopis sp.) were examined in hydroponic culture at different arsenic [As(III) and (V)] concentrations. The production of LMWT was dependent on As speciation and concentration in the growth medium. The roots of As(III) treated plants produced significantly higher LMWT levels than As(V) treated roots at the same concentration of As applied. In leaves, the thiols content increased with increasing As(III) and (V) concentrations in the medium. Hypersensitivity of the plant to high As concentrations was observed by a significant decrease of LMWT produced in the roots at 50 mg/L treatment in both As(III) and (V) treatments. Sulfur was translocated from roots and accumulated mainly in the shoots. In response to As-induced phytotoxicity, the plants slightly increased the sulfur content in the roots at the highest As treatment. Compared with As(V)-treated plants, As(III)-treated roots and leaves showed significantly higher GST activity. The roots of both As(III) and (V) treated plants showed an initial increase in GST at low As concentration (5 mg/L), followed by significant inhibition up to 50 mg/L. The leaves had the highest GST activity, an indication of the ability of the plant to detoxify As in the leaves than in the roots. The correlation between LMWT content, S content and GST activity may be an indication these parameters may be used as biomarkers of As stress in mesquite.  相似文献   

2.
Arsenite (As(III)) and arsenate (As(V)) uptake by peas was investigated using inductively coupled plasma/optical emission spectroscopy (ICP-OES) at pH below 4 and at pH 5.8. Additionally, total amylolitic activity and alpha-amylase (1,4-alpha-d-glucan glucanohydrolase; EC 3.2.1.1) activity was assayed in plants exposed to arsenic treatments. At pH below 4, the uptake for As(III) and As(V) in roots was 137 and 124 mg As kg(-1) dry weight (d wt), respectively. Translocation of arsenic to the aerial part was relatively low ( approximately 5mg As kg(-1) d wt). The uptake for As(III) and As(V) in roots at pH 5.8 was about 43 and 30 mg As kg(-1) d wt, respectively, and translocation of As to the aerial part was not detectable. None of the arsenic treatments affected the total amylolitic activity in roots; however, the shoots from all treatments showed an increase in the total amylolitic activity. Alpha-amylase activity in the pea leaves was not significantly affected by arsenic treatments. X-ray absorption spectroscopy (XAS) studies showed a reduction of As(V) to As(III) in the roots. From linear combination X-ray absorption near edge structure (LC-XANES) fittings, it was determined that arsenic was present as a mixture of As(III) oxide and sulfide in pea roots.  相似文献   

3.
In this study, a combination of inductively coupled plasma optical emission spectroscopy and X-ray absorption spectroscopy (XAS) was used to study the uptake and speciation of chromium in Parkinsonia aculeata, commonly known as Mexican Palo Verde. Plants were treated for 14 days in a modified Hoagland solution containing chromium(III) or chromium(VI) at several concentrations. The results showed that plants treated with 70 mg Cr(III) L(-1) and 30 mg Cr(VI) L(-1) had similar Cr concentrations in leaves (~200 mg kg(-1) dry weight, DW). The results also showed that neither Cr(III) nor Cr(VI) affected the uptake of phosphorus and sulfur. However, the concentration of calcium in the stems of plants treated with Cr(VI) at 40 mg L(-1) (about 6000 mg Ca kg(-1) DW) was significantly higher compared to the Ca concentration (about 3000 mg kg(-1) DW) found in the stems of plants treated with 150 mg Cr(III) L(-1). However, no differences were observed in potassium and magnesium concentrations. The iron concentration (about 1000 mg kg(-1) DW) in roots treated with 40 mg Cr(VI) L(-1) was similar to the iron concentration found in the roots of plants treated with 110 mg Cr(III) L(-1). The XAS data showed that Cr(VI) was reduced to Cr(III) in/on the plant roots and transported as Cr(III) to the stems and leaves. The XAS studies also showed that Cr(III) within plants was present as an octahedral complex.  相似文献   

4.
This study was conducted to investigate the uptake of lead (Pb) and arsenic (As) from contaminated soil using Melastoma malabathricum L. species. The cultivated plants were exposed to As and Pb in separate soils for an observation period of 70 days. From the results of the analysis, M. malabathricum accumulated relatively high range of As concentration in its roots, up to a maximum of 2800 mg/kg. The highest accumulation of As in stems and leaves was 570 mg/kg of plant. For Pb treatment, the highest concentration (13,800 mg/kg) was accumulated in the roots of plants. The maximum accumulation in stems was 880 mg/kg while maximum accumulation in leaves was 2,200 mg/kg. Only small amounts of Pb were translocated from roots to above ground plant parts (TF < 1). However, a wider range of TF values (0.01–23) for As treated plants proved that the translocation of As from root to above ground parts was greater. However, the high capacity of roots to take up Pb and As (BF > 1) is indicative this plants is a good bioaccumulator for these metals. Therefore, phytostabilisation is the mechanism at work in M. malabathricum's uptake of Pb, while phytoextraction is the dominant mechanism with As.  相似文献   

5.
Chromium uptake and tolerance by Mexican Palo Verde (Parkinsonia aculeata) (MPV) was studied in a six-month experiment with Cr(III) and Cr(VI) at 60 and 10 mg kg(-1), respectively. Chromium and nutrient uptake were determined by ICP-OES and changes in macromolecules were studied by infrared microspectroscopy (IMS). In the Cr(VI)-treated plants, chromium concentration increased in the roots only through the third month, while translocation to stems increased constantly throughout the six months. Cr(III) applications decreased the amount of Zn in leaves and stems (p < or = 0.05). Cr(VI) increased P and S in all plant tissues and increased Ca in roots, but decreased Ca in stems and leaves, and Mg in roots and stems. Cr(III) decreased P in stems and leaves, while both Cr ions decreased K in all MPV tissues. Relative to untreated plant tissue, the IMS revealed significant changes at 1730 cm(-1) and 845 cm(-1). Changes at 1730 cm(-1) indicated that the cortex and xylem of Cr-treated plants were more proteinaceous. Changes at 845 cm(-1) revealed higher lignifications in cortex. However, at the stem level, Cr(VI) decreased lignin deposition in xylem. The data showed that MPV could be useful in the phytoremediation of Cr in moderately impacted soils.  相似文献   

6.
Contamination by heavy metals is one of the most serious environmental problems generated from human activities. Because phytoremediation utilizes plants to uptake contaminants, it could potentially be used to remediate metal-contaminated areas. A pot culture experiment with four levels of cadmium (Cd) (0, 20, 40, and 80 mg of Cd/kg dry soil) was conducted to investigate Cd accumulation and tolerance of roots, shoots, and leaves of Lagerstroemia indica and Lagerstroemia fauriei as well as their potential for phytoremediation. Experimental results indicated that Cd inhibited seedling growth only at the higher Cd exposure concentration (40 and 80 mg/kg). The tolerance index revealed that on average L. indica is more tolerant of Cd than L. fauriei. Moreover, plants in the experiment accumulated Cd differentially. In comparisons between L. indica and L. fauriei, the leaves of the former had higher concentrations of Cd, while the roots of latter had higher concentrations of Cd. Furthermore, the roots, shoots, and leaves had very high bioaccumulation factors that markedly exceeded 1.0 (exceptional only in shoots of 80 mg/kg for L. fauriei), indicating that the seedlings extracted Cd from the soil. The leaves' translocation factor of L. indica was greater than 1.0, being significantly higher than that of L. fauriei. Chlorophyll a, Chlorophyll b and total declined in both species significantly as Cd concentrations exceeded 40 mg/kg in the soil. In contrast, lipid peroxidation and proline content was found to increase with increasing Cd concentration. From the assessments of biomass production, Cd tolerance and uptake L. indica and L. fauriei could stand as excellent species for remediating Cd-contaminated soils.  相似文献   

7.
Four kinds of soil material were used in a pot experiment with velvetgrass (Holcus lanatus). Two unpolluted soils: sand (S) and loam (L) were spiked with sodium arsenite (As III) and arsenate (As V), to obtain total arsenic (As) concentrations of 500 mg As kg?1. Two other soils (ZS I, ZS III), containing 3320 and 5350 mg As kg?1, were collected from Zloty Stok where gold and arsenic ores were mined and processed for several centuries. The effects of phosphate addition on plants growth and As uptake were investigated. Phosphate was applied to soils in the form of NH4H2PO4 at the rate 0.2 g P/kg. Average concentrations of arsenic in the shoots of velvetgrass grown in spiked soils S and L without P amendment were in the range 18–210 mg As kg?1 d.wt., whereas those in plants grown on ZS I and ZS II soils were considerably lower, and varied in the range 11–52 mg As kg?1 d.wt. The addition of phosphate caused a significant increase in plant biomass and therefore the total amounts of As taken up by plants, however, the differences in As concentrations in the shoots of velvetgrass amended and non-amended with phosphate were not statistically significant.  相似文献   

8.
Agronomic plant species may display physiological and biochemical responses to oxidative stress caused by heavy metals and metalloids. Zea mays plants were grown hydroponically for eight days at different concentrations of As (0, 134 and 668 μM) and at different pH (4, 7 and 9). Metabolic variations in response to As toxicity were measured using physiological parameters and antioxidant enzymatic activities. A significant decrease in SOD activity was observed in the leaves and roots of Z. mays with the majority of As treatments. As decreased G-POX activity less in leaves than in roots. An increase in the concentration of As increased APX activity in leaves and roots, except As(V) at pH 4 and pH 9 in the leaves and As(III) at pH 9 in the roots, when there was a significant decrease in APX activity at low As concentrations. After exposure to As(V), CAT activity was the same as in the control. As(III) led to an increase in CAT activity in leaves and to a decrease in roots. With increasing concentrations of As(III), CAT activity increased in both leaves and roots whatever the pH. To obtain more detailed knowledge on the effects of arsenate and arsenite exposure on Vicia faba and Z. mays, root meristems were also examined. Roots were fed hydroponically with 134, 334, 534 and 668 μM arsenate or arsenite and 4 × 10(-3)M of maleic hydrazide as positive control, at three different pH. Physiological parameters, the mitotic index and micronuclei frequencies were evaluated in root meristems. At all three pH, the highest As(V) and As(III) concentrations induced a substantial modification in root colour, increased root thickness with stiffening, and reduced root length. High concentrations also caused a significant decrease in the mitotic index, and micronucleus chromosomic aberrations were observed in the root meristems of both species.  相似文献   

9.
We report here on efforts to show that a combination of native wetland plant species might perform better than a monoculture in wetlands designed for arsenic remediation by supplementing weaknesses. Carex stricta and Spartina pectinata were used in hydroponic experiments. (i) Arsenic uptake was first assessed at two ages via exposure to control or arsenic-laden solutions (0 or 1.5 mg As L(-1) as Na2HAsO4) for two weeks. Age had no significant effect on arsenic concentrations in roots, but translocation factors were greater in older plants of C. stricta and S. pectinata (0.45 and 0.07, respectively) than in younger plants (0.10 and 0.01, respectively). (ii) Seasonal effects were assessed by determining uptake kinetics for both species in conditions representative of spring temperatures (15/5 degrees C) and light regimes (1050 micromol m(-2) s(-1), 13 h day(-1)) and summer temperatures (28/17 degrees C) and light regimes (1300 micromol m(-2) s(-1), 15 h day(-1)). Both species had comparable rates of arsenic uptake into roots in summer conditions (44.0 and 46.5 mg As kg(-1) dry wt. h(-1) in C. stricta and S. pectinata, respectively), but C. stricta had a higher maximum net influx rate in spring conditions (24.5 versus 10.4 mg As kg(-1) dry wt. h(-1)).  相似文献   

10.
超富集植物短毛蓼对锰的富集特征   总被引:10,自引:0,他引:10  
邓华  李明顺  陈英旭 《生态学报》2009,29(10):5450-5454
通过野外调查和营养液培养试验,研究了锰在短毛蓼体内的富集特征和对其生长的影响.在锰含量高达2.5×105mg/kg的锰矿废弃地上短毛蓼生长良好,叶锰含量高达1.66×104mg/kg.营养液培养条件下,随着生长介质中Mn浓度的升高,短毛蓼根、茎、叶中的Mn含量逐渐增加,当锰供应水平为1.000mmol/L时,叶锰含量超过10000mg/kg;当锰供应水平为20 000mmol/L时,短毛蓼仍能生长,根、茎和叶3部分的锰含量均达到最大值,分别为9923,18112mg/kg和55750mg/kg.在所有锰供应水平下,短毛蓼茎和叶中的锰含量都比根部的高.结果表明,短毛蓼是一种锰超富集植物,这一发现为锰污染土壤的植物修复和探讨锰在植物体内的超富集机理提供了一种新的种质资源.  相似文献   

11.
12.
Uptake, distribution, and speciation of chromium in Brassica juncea   总被引:1,自引:0,他引:1  
Brassica juncea (Indian mustard) has been widely used in phytoremediation because of its capacity to accumulate high levels of chromium (Cr) and other metals. The present study was conducted to investigate mechanism(s) involved in Cr binding and sequestration by B. juncea. The plants were grown under greenhouse conditions in field-moist or air-dried soils, amended with 100 mg kg(-1) of Cr (III) or VI). The plant concentrated Cr mainly in the roots. B. juncea removed an average of 48 and 58 microg Cr per plant from Cr (III) and Cr (VI)-treated soils, respectively. The uptake of Cr was not affected by the moisture status of the soils. X-ray absorption near-edge spectroscopy measurements showed only Cr (III) bound predominantly to formate and acetate ligands, in the bulk and rhizosphere soils, respectively. In the plant tissues, Cr (III) was detected, primarily as acetate in the roots and oxalate in the leaves. X-ray microprobe showed the sites of Cr localization, and probably sequestration, in epidermal and cortical cells in the roots and epidermal and spongy mesophyll cells in the leaves. These findings demonstrate the ability of B. juncea to detoxify more toxic Cr (VI), thereby making this plant a potential candidate for phytostabilization.  相似文献   

13.
The influx of arsenate, arsenite and dimethyl arsinic acid (DMA) were studied in 7-day-old excised maize roots (Zea mays L.), and then related to arsenate, arsenite and DMA toxicity. Arsenate, arsenite and DMA influx was all found concentration dependent with significant genotypic differences for arsenite and DMA. Arsenate influx in phosphate starved plants best fitted the four-parameter Michaelis–Menten model corresponding to an additive high and low affinity uptake system, while the uptake of phosphate replete plants followed the two parameter model of Michaelis–Menten kinetics. Arsenite influx was well described by the two parameter model of ‘Michaelis–Menten’ kinetics. DMA influx was comprised of linear phase and a hyperbolic phase. DMA influx was much lower than that for arsenite and arsenate. Arsenate and DMA influx decreased when phosphate was given as a pre-treatment as opposed to phosphate starved plants. The +P treatment tended to decrease influx by 50% for arsenate while this figure was 90% for DMA. Arsenite influx increasing slightly at higher arsenite concentrations in P starved plants but at lower arsenite concentrations, there was little or no difference in arsenite uptake. Low toxicity was found for DMA on maize compared with arsenate and arsenite and the relative toxicity of arsenic species was As(V) > As(III) >> DMA.  相似文献   

14.
Arsenate [As (V)] is taken up by phosphate [P (V)] transporters in the plasma membrane of roots cells, but the translocation of As from roots to shoots is not well understood. Two mutants of Arabidopsis thaliana (L.) [( pho1 , P deficient) and ( pho2 , P accumulator)], with defects in the regulation and translocation of P (V) from roots to shoots, were therefore used in this study to investigate uptake, translocation and speciation of As in roots and shoots of plants grown in soil or nutrient solution. The shoots of the pho2 mutant contained higher P concentrations, but similar or slightly higher As concentrations, in comparison with the wild type. In the pho1 mutant, the P concentration in the shoots was lower, and the As concentration was higher, in comparison with the wild type. Both pho2 and the wild type contained mainly As (III) in roots and shoot (67–90% of total As). Arsenic was likely to be translocated by a different pathway to P (V) in the pho2 and pho1 mutants . Therefore, it is suggested that As (III) is the main As species translocated from roots to shoots in Arabidopsis thaliana.  相似文献   

15.
Tomato plants were cultivated in greenhouse and water solutions of arsenite (As(III)), arsenate (As(V)), methylarsonic acid (MA) and dimethylarsinic acid (DMA) were applied individually into cultivation substrate at two As levels, 5 and 15 mg kg−1 of the substrate. Comparing the availability of arsenic compounds increased in order arsenite = arsenate < MA < DMA where the arsenic contents in plants decreased during vegetation period. Within a single plant, the highest arsenic concentration was found in roots followed in decreasing order by leaves, stems, and fruits regardless of arsenic compound applied. Arsenic toxicity symptoms reflected in suppressed growth of plants and a lower number and size of fruits were most significant with DMA treatment. However, the highest accumulation of arsenic by plants growing in the soil containing DMA was caused by higher mobility of this compound in the soil due to its lower sorption affinity. Our results confirmed substantial role of transformation processes of arsenic compounds in soil in uptake and accumulation of arsenic by plants.  相似文献   

16.
Arbuscular mycorrhizal fungi (AMF) appear to be highly associated with arsenic (As) uptake in host plants because arsenate (As(V)) and phosphorus (P) share the same transporter, whereby AMF can enhance P uptake. A short-term experiment was conducted for low- (0 to 0.05 mM As) and high-affinity (0 to 2.5 mM As) uptake systems, to investigate the AMF role on As uptake mechanism in plants, which may explain As uptake kinetics in upland rice cultivar: Zhonghan 221. When concentration of As ranged from 0 to 0.05 mM, Funneliformis geosporum (Fg) significantly decreased arsenite (As(III)) and monomethylarsonicacid (MMA) uptake when (p < 0.05) compared to non-mycorrhizal (NM) treatment, since the major route for (As(III)) in rice roots—rice silicon transporter Lsi1 would be influenced by Fg inoculation at high As concentrations. Fg can also reduce As(V) uptake significantly (p < 0.05) under both uptake systems relative to NM treatment, whereas, Funneliformis mosseae (Fm) increased As(V) and MMA uptake in rice roots, with MMA uptake rate generally lower than As(III) and As(V). Using suitable AMF species inoculation with rice, As uptake and accumulation in rice grains can be reduced and the risk to human health, once consumed, can be minimized.  相似文献   

17.
Salinity is one of the major constraints in oilseed rape (Brassica napus L.) production. One of the means to overcome this constraint is the use of plant growth regulators to induce plant tolerance. To study the plant response to salinity in combination with a growth regulator, 5-aminolevulinic acid (ALA), oilseed rape plants were grown hydroponically in greenhouse conditions under three levels of salinity (0, 100, and 200 mM NaCl) and foliar application of ALA (30 mg/l). Salinity depressed the growth of shoots and roots, and decreased leaf water potential and chlorophyll concentration. Addition of ALA partially improved the growth of shoots and roots, and increased the leaf chlorophyll concentrations of stressed plants. Foliar application of ALA also maintained leaf water potential of plants growing in 100 mM salinity at the same level as that of the control plants, and there was also an improvement in the water relations of ALA-treated plants growing in 200 mM. Net photosynthetic rate and gas exchange parameters were also reduced significantly with increasing salinity; these effects were partially reversed upon foliar application with ALA. Sodium accumulation increased with increasing NaCl concentration which induced a complex response in the macro-and micronutrients uptake and accumulation in both roots and leaves. Generally, analyses of macro- (N, P, K, S, Ca, and Mg) and micronutrients (Mn, Zn, Fe, and Cu) showed no increased accumulation of these ions in the leaves and roots (on dry weight basis) under increasing salinity except for zinc (Zn). Foliar application of ALA enhanced the concentrations of all nutrients other than Mn and Cu. These results suggest that under short-term salinity-induced stress (10 days), exogenous application of ALA helped the plants improve growth, photosynthetic gas exchange capacity, water potential, chlorophyll content, and mineral nutrition by manipulating the uptake of Na+.  相似文献   

18.
肖家欣  杨慧  张绍铃 《生态学报》2012,32(7):2127-2134
盆栽实验研究了不同施Zn水平(0、300 mg/kg和600 mg/kg)下,接种丛枝菌根真菌Glomus intraradices对枳苗生长、Zn、Cu、P、K、Ca、Mg分布的影响,并采用非损伤微测技术测定分析了菌根化与非菌根化枳根净Ca2+、H+、NO3-离子流动态。结果表明:(1)在不同施Zn水平下,接种菌根真菌显著提高了枳苗地上部及根部鲜重;随着施Zn水平的提高,菌根侵染率呈降低趋势,枳苗地上部与根部Zn含量呈增加趋势,且接种株根部Zn含量显著高于未接种株。(2)接种株未施Zn处理的地上部Cu、P、K、Mg和根部Cu含量、施600 mg/kg Zn处理的根部Cu及施300 mg/kg Zn处理的根部P含量均显著高于对照,而菌根真菌侵染对枳苗Ca含量并无显著性影响。(3)接种株未施Zn处理的根部距根尖端0 μm和600 μm处净Ca2+流出速率、600 μm处净H+流入速率、2400 μm处净NO3-流入速率均显著高于未接种株。  相似文献   

19.
Solanum paniculatum L. is used commonly in Brazilian folk medicine for the treatment of liver and gastrointestinal disorders. The freeze-dried aqueous extracts (WEs) obtained from distinct parts of the plant (flowers, fruits, leaves, stems and roots) were tested to determine their antiulcer and antisecretory gastric acid activities using mice. The aqueous extracts of roots, stems and flowers inhibited gastric acid secretion in pylorus-ligated mice with ED50 values of 418, 777 and 820 mg/kg body wt. (i.d.), respectively. Extracts of leaves (0.5-2 g/kg body wt., i.d.) did not affect gastric secretion, whereas fruit extracts (0.5-2 g/kg body wt., i.d.) stimulated gastric acid secretion. The stimulatory effect of the fruit extract was inhibited by pretreatment with atropine (5 mg/kg body wt., i.m.) but not with ranitidine (80 mg/kg body wt., i.p.) suggesting that the fruit extract activates the muscarinic pathway of gastric acid secretion. In contrast, administration of the root extract into the duodenal lumen inhibited histamine- and bethanechol-induced gastric secretion in pylorus-ligated mice. In addition, the aqueous extract of roots (ED50 value, 1.2 g/kg body wt., p.o.) protected the animals against production of gastric lesions subsequent to the hypersecretion induced in mice by stress following cold restraint. This effect was not reproduced when the lesions were induced by blockade of prostaglandins synthesis via subcutaneous injection of indomethacin. Thus, antiulcer activity of the plant extracts appears to be related directly to a potent anti-secretory activity. No toxic signs were observed following administration of different extracts up to 2 g/kg body wt., p.o. Collectively, the results validate folk use of Solanum paniculatum L. plant to treat gastric disorders.  相似文献   

20.
BACKGROUND AND AIMS: Condensed tannins (CTs) in the diet affect consumers in a concentration-dependent manner. Because of their importance in plant defence against herbivores and pathogens as well as their potential application against gastrointestinal parasites of ruminants in agronomy, an understanding of the seasonal dynamics of CT concentrations during plant growth is essential. METHODS: Over a vegetation period, CT concentrations in leaves, stems and roots and the biomass proportions between these organs were investigated in Onobrychis viciifolia, Lotus corniculatus and Cichorium intybus. Based on the experimental data, a model has been suggested to predict CT concentrations in harvestable biomass of these species. KEY RESULTS: During the experiment, leaf mass fractions of plants decreased from 85, 64, 85 to 30, 18, 39 % d. wt in Onobrychis, Lotus and Cichorium, respectively, and proportions of stems and roots increased accordingly. While CT concentrations almost doubled in leaves in Onobrychis (from 52 to 86 mg g(-1) d. wt, P<0.001) and Lotus (from 25 to 54 mg g(-1) d. wt, P<0.001), they were stable at low levels in expanding leaves of Cichorium (5 mg g(-1) d. wt) and in stems and roots of all investigated species. Due to an inverse effect of the increasing CT concentrations in leaves and simultaneous dilution from increasing proportions of 'CT-poor' stems, CT concentrations in harvestable biomass were stable over time in all investigated species: 62, 26 and 5 mg g(-1) d. wt for Onobrychis, Lotus and Cichorium, respectively. CONCLUSIONS: As a consequence of the unequal distribution of tannins in different plant parts and due to the changing biomass proportions between them, various herbivores (e.g. a leaf-eating insect and a grazing ruminant) may find not only different concentrations of CT in their diets but also different CT dynamics during the season. For the prediction of seasonal variations of CT concentrations, biomass allocation and accumulation of none-CT plant material are likely to be as important predictors as the knowledge of CT synthesis and its regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号