首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and the characterization of several mono- and dinuclear middle transition metal derivatives of 1,10-phenanthroline-5,6-dione, 1, are presented. The reaction of 1 with CrCl2(THF)2 gives CrCl2(O,O′-C12H6N2O2)(THF)2, 2, while the halides of iron(II), cobalt(II) and nickel(II) afford adducts of general formula MX2(N,N′-C12H6N2O2), M = Fe, 4, Co, 5, X = Cl; M = Ni, 6, X = Br. DFT calculations on CrCl2(L)(THF)2 with L = O,O′-C12H6N2O2 or O,O′-C14H8O2 allowed a direct comparison of the coordination properties of 9,10-phenanthrenequinone and 1,10-phenanthroline-5,6-dione to be made. Dinuclear compounds of general formula CrCl2(THF)2(O,O′-C12H6N2O2-N,N′)MXnLm, M = Zr, 7, X = Cl, n = 4, m = 0; M = Cr, 8, X = Cl, n = 2, L = THF, m = 2; M = Fe, 9, Co, 10, X = Cl, n = 2, m = 0; M = Ni, 11, X = Br, n = 2, m = 0, are prepared from 2 and the corresponding metal halide, while VCp2(O,O′-C12H6N2O2-N,N′)FeCl2, 12, is synthesized by reacting 4 with VCp2. The electronic properties of the different complexes are investigated by magnetic moment measurements and EPR spectroscopy.  相似文献   

2.
The synthesis and the characterization of several mono- and polymetallic derivatives of 1,10-phenanthroline-5,6,-dione (1) are presented.The reaction of 1 with M(CO)6 (M = Cr, Mo) gives compounds of general formula M(O,O′-C12H6N2O2)3, M = Cr (2), Mo (3).Compound 3 is also obtained starting from Mo(η6-CH3C6H5)2, whereas the reaction of Cr(η6-CH3C6H5)2 with 1 affords the ionic derivative [Cr(η6-CH3C6H5)2][C12H6N2O2] (4), which has been studied by EPR spectroscopy and DFT calculations.FeCl2(N,N′-C12H6N2O2)2 (6), is obtained by thermal decomposition of [Fe(N,N′-C12H6N2O2)3]Cl2 (5).Polymetallic compounds of general formula Cr[O,O′-C12H6N2O2-N,N′-MCl4]3,containing chromium and a Group 4 element M = Ti (7), Zr (8), Hf (9), are prepared from Cr(O,O′-C12H6N2O2)3 and the corresponding MCl4 or MCl4DME. Polynuclear derivatives of iron and chromium of formula [Fe(N,N′-C12H6N2O2-O,O′-CrCl2(THF)2)3][PF6]2 (10), and Cr[O,O′-C12H6N2O2-N,N′-FeCl2(THF)]3 (11), are obtained by the reaction of [Fe(N,N′-C12H6N2O2)3][PF6]2 with three equivalents of CrCl2(THF)2 and from Cr(O,O′-C12H6N2O2)3 and FeCl2(THF)1.5, respectively. Compound 11 reacts with 1 (3 equivalents in sym-C2H2Cl4 or 6 equivalents in ethanol) to give Cr[O,O′-C12H6N2O2-N,N′-FeCl2(N,N′-C12H6N2O2)]3 (12), and [Cr(O,O′-C12H6N2O2-N,N′-Fe(N,N′-C12H6N2O2)2)3]Cl6 (13), respectively.  相似文献   

3.
The [RhCl3(N-N)(DMSO)] complexes, the N-N being 2,2′-bipyridine (1), 1,10-phenanthroline (2), 4,7-diphenyl-1,10-phenanthroline (3), 4,4′-dimethyl-2,2′-bipyridine (4) and 1,10-phenanthroline-5,6-dione (5), have been synthesized and characterized with spectroscopic methods. The compounds 2-5 adopt mer- and complex 1fac-structure. The molecular and electronic structure studies of mer- and fac-complexes with bpy and phen ligands at the DFT B3LYP level with 3-21G∗∗ basis set showed that mer-isomers are more stable. The cytostatic activity of the [RhCl3(N-N)(DMSO)] complexes against Caco-2 and A549 tumor cells have been studied. Their antibacterial activity have also been investigated. It has been found that the very promising biological activity show complexes 2, 3 and 4.  相似文献   

4.
Reaction of CdCl2 with N-alkylaminopyrazole ligands 1-[(2-ethylamino)ethyl]-3,5-dimethylpyrazole (deae), 1-[(2-(tert-butylamino)ethyl)]-3,5-dimethylpyrazole (deat), bis-[(3,5-dimethylpyrazolyl)methyl]ethylamine (bdmae), and bis-[(3,5-dimethylpyrazolyl)ethyl]ethylamine (ddae) in absolute ethanol yields [CdCl2(NN′)] (NN′ = deae (1), deat (2)), [CdCl2(bdmae)] (3), and [CdCl(ddae)]2[CdCl4] (4). The Cd(II) complexes have been characterised by elemental analyses, conductivity measurements, IR, 1H, 13C{1H} and 113Cd NMR spectroscopies, and X-ray diffraction methods. 1H and 113Cd NMR experiments at variable temperature for 3 and 4 show that dynamic processes are taking place in solution. We report the measurements of 113Cd NMR chemical shift data for complexes 1-4 in solution. X-ray crystal structures for complexes 2 and 3 have been determined. The Cd(II) is coordinated to the deat ligand, in 2, by one nitrogen atom of the pyrazolyl group and one nitrogen atom of the amine. It finishes a tetrahedral geometry with two chlorine atoms. The bdmae ligand is linked to Cd(II), in 3, by two nitrogens atoms of the pyrazolyl groups and one amine nitrogen, along with two chlorine atoms, in a distorted trigonal bipyramidal geometry.  相似文献   

5.
The reaction of [Ti(cp)2(BTMSA)] (1) (cp = η5-C5Me5, BTMSA = bis(trimethylsilyl)acetylene) with malonic acids ((HOOC)2CR2, R = H, Me) and N,N-dimethylglycine resulted in the formation of titanium(IV) dicarboxylato complexes [Ti(cp)2{(OOC)2CR2}] (R = H, 2; R = Me, 3) and an α-amino acid titanium(III) complex [Ti(cp)2(OOCCH2NMe2)] (4). The identities of complexes 2-4 were confirmed by microanalysis, 1H and 13C NMR spectroscopy (2, 3), ESI-MS and CID experiments (2, 3) as well as by ESR and magnetic measurements (μeff = 1.81, 298 K) for 4. Single X-ray diffraction analyses of 2 and 4 exhibited monomolecular complexes in which the titanium atom is distorted tetrahedrally coordinated by two η5-C5Me5 rings and by the chelating bound malonato-κ2O,O′ (2) and N,N-dimethylglycinato-κ2O,O′ ligand (4).  相似文献   

6.
The crystalline compounds [LnCl2(L)(thf)2] [Ln = Ce (1), Tb (2), Yb (3)], [NdI2(L)(thf)2] (4), [LnCl(L′)2] [Ln = Tb (5), Yb (6) (a known compound)] and [YbCl(L′′)(μ-Cl)2Li(OEt2)2] (7) have been prepared [L = {N(C6H3Pri2-2,6)C(H)}2CPh, L′ = {N(SiMe3)C(Ph)}2CH, L′′ = {N(SiMe3)C(C6H4Ph-4)}2CH]. The X-ray molecular structures of 2-7 have been established; in each, the monoanionic ligand L, L′ or L′′ is N,N′-chelating and essentially π-delocalised. Each of 1-7 was prepared from the appropriate LnCl3, or for 4 [NdI3(thf)2], and an equivalent portion of the appropriate alkali metal [Li for 7, Na for 2, 3 and 5, or K for 1, 4 and 6] β-diiminate in thf; the isolation of exclusively 5 and 6 (rather than the L′ analogues of 2 or 3) is noteworthy, as is the structure of 7 which has no precedent in Group 3 or 4f metal β-diiminato chemistry.  相似文献   

7.
Electrochemical and spectroelectrochemical (UV-Vis, IR, EPR) of pd (pd = 1,10-phenanthroline-5,6-dione), Pt(N,N′-pd)Cl2, Pd(N,N′-pd)Cl2, [Ru(bpy)2(N,N′-pd)]Cl2 (bpy = 2,2′-bipyridine) and Pt(O,O′-pd)(PPh3)2, where N,N′ and O,O′ refers to coordination of pd to the metal centre via N and O atoms, respectively, reveals that the electron transfer processes between +0.5 and −1.25 V all occur at the pd ligand in agreement with DFT calculations. The two CO groups carry a significant amount of the negative charge in mono-reduced pd1−. The mode of coordination of pd has a greater influence on its redox chemistry than the metal centre or the ancillary ligands.  相似文献   

8.
Two new cobalt(III) complexes of symmetric hexadentate ligand with N6 [1,10-bis(2-picolinamide)-4,7-diazadecane (pycdpnen)] and N4S2 [1,8-bis(2-picolinamide)-3,6-dithiaoctane (pycdadt)] donor set atoms have been synthesized as perchlorate salts and characterized by spectroscopic methods. All two ligands with strong-field pyridylcarboxamido N donor stabilize Co(III) as demonstrated by the facile oxidation of the cobalt center. The structures of [Co(pycdpnenH−2)](ClO4) (1) and [Co(pycdadtH−2)](ClO4) · H2O (2) investigated by COSY, HMBC, HMQC and NOESY NMR studies show that compounds 1 and 2 have the same geometrical configuration. The X-ray analysis reveals that complex 2 crystallizes in a orthorhombic space group Pccn. The cation [Co(pycdadtH−2)]+ is distorted octahedral with the two pyridyl groups in cis position.  相似文献   

9.
[Ru(2,2′-bipyridine)2(Hdpa)](BF4)2 · 2H2O (1), [Ru(1,10-phenanthroline)2(Hdpa)] (PF6)2 · CH2Cl2 (2) and [Ru(4,4,4′,4′-tetramethyl-2,2′- bisoxazoline)2(Hdpa)] (PF6)2 (3) are synthesized where Hdpa is 2,2′-dipyridylamine. The X-ray crystal structures of 1 and 2 have been determined. Hdpa in 1 and 2 is found to bind the metal via the two pyridyl N ends. Comparing the NMR spectra in DMSO-d6, it is concluded that 3 has a similar structure. The pKa values (for the dissociation of the NH proton in Hdpa) of free Hdpa and its complexes are determined in acetonitrile by exploiting molar conductance. These correlate linearly with the chemical shift of the NH proton in the respective entities.  相似文献   

10.
Three new five-coordinate CuII complexes, [Cu(tpy)(phen-dione)](PF6)2, [Cu(phen)(phen-dione)Cl]PF6 and [Cu(bpy)(phen-dione)Cl]PF6 (tpy = 2,2′;6′,2″-terpyridine, phen = 1,10-phenanthroline and phen-dione = 1,10-phenanthroline-5,6-dione) have been prepared and characterized by elemental analysis, IR and UV-Vis spectroscopies and cyclic voltammetry.The complex of [Cu(tpy)(phen-dione)](PF6)2 crystallized with one molecule of acetonitrile. The ortep drawing of [Cu(tpy)(phen-dione)](PF6)2 · CH3CN shows that the coordination geometry around CuII is a distorted trigonal- bipyramid. Due to the steric hindrance of in the unit cell, the tpy ligands in each complex cation cannot interact in a π-π fashion. The effective magnetic moment (μeff) of the complexes was measured by the Evans method. The cyclic voltammograms at Pt disk electrode for these complexes display only one reversible Cu(II)/Cu(I) redox couple.  相似文献   

11.
Two novel Co(II) coordination polymers {[Co(H2O)2(CH3OH)2(4-bpfp)](NO3)2}n1 (4-bpfp=N,N-bis(4-pyridylformyl)piperazine) and [Co(NCS)2(CH3OH)2(3-bpfp)]n2 (3-bpfp=N,N-bis(3-pyridylformyl)piperazine) have been synthesized and characterized by single crystal X-ray diffraction. Both the polymers consist of one-dimensional chains constructed by bridging bpfp ligands and Co(II) ions. The existence of O?H-O hydrogen bond in 1 and S?H-O hydrogen bond in 2 play important roles in creating interesting supramolecular structures. Their third-order nonlinear optical (NLO) properties in DMF solution have been studied by Z-scan technique. The results reveal that polymers 1 and 2 exhibit strong NLO absorption effects (α2=9.00×10−11 m W−1 for 1; 1.41 × 10−10 m W−1 for 2) and self-focusing performance (n2=3.24×10−16 esu for 1; 3.05 × 10−16 esu for 2) in DMF solutions. The corresponding effective NLO susceptibilities χ(3) values are 3.08 × 10−12 esu (1) and 4.70 × 10−12 esu (2). All of the values are comparable to those of the reported good NLO materials. Additionally, the TG-DTA results of the two polymers are in agreement with the crystal structures.  相似文献   

12.
Three new copper(II) complexes of 5,5-diethlybarbiturate (barb), [Cu(barb)2(dmen)]·0.5H2O (dmen = N,N-dimethylethylenediamine) 1, [Cu(barb)2(bapa)] (bapa = bis(3-aminopropyl)amine) 2, and [Cu(barb)(apen)](barb)·2H2O (apen = N,N′-bis(3-aminopropyl)ethylenediamine) 3, have been synthesized and characterized by chemical, spectroscopic and thermal methods. Single crystal X-ray diffraction studies revealed that all complexes are mononuclear. The copper(II) ion exhibits a square-pyramidal coordination geometry in 1 and 3, but a trigonal-bipyramidal geometry in 2. The barb ligand shows different coordination modes. 1 presents the unequal coordination of the barb ligands: one is monodentate (N) and the other one is bidentate (N, O). In 2, both barb ligands are N-coordinated, whereas in 3, one barb ligand is N-coordinated, while the second barb ligand behaves as a counter-ion. The dmen, bapa and apen ligands act as bi-, tri- and tetradentate ligands, respectively. All complexes display a hydrogen-bonded network structure. The IR spectroscopic analysis shows that the ν(CO) stretching frequencies do not correlate predictably with the coordination mode of the barb ligand in 1. Thermal analysis data for 1-3 are in agreement with the crystal structures.  相似文献   

13.
A new stereoselective preparation of N-aceyl-d-galactosamine (1b) starting from the known p-methoxyphenyl 3,4-O-isopropylidene-6-O-(1-methoxy-1-methylethyl)-β-d-galactopyranoside (10) is described using a simple strategy based on (a) epimerization at C-2 of 10 via oxidation-reduction to give the talo derivative 11, (b) amination with configurational inversion at C-2 of 11 via a SN2-type reaction on its 2-imidazylate, (c) anomeric deprotection of the p-methoxyphenyl β-d-galactosamine glycoside 14, (d) complete deprotection. Applying the same protocol to 2,3:5,6:3′,4′-tri-O-isopropylidene-6′-O-(1-methoxy-1-methylethyl)-lactose dimethyl acetal (4), directly obtained through acetonation of lactose, the disaccharide β-d-GalNAcp-(1→4)-d-Glcp (1a) was obtained with complete stereoselectivity in good (40%) overall yield from lactose.  相似文献   

14.
The complexes [Cu2(o-NO2-C6H4COO)4(PNO)2] (1), [Cu2(C6H5COO)4(2,2′-BPNO)]n (2), [Cu2(C6H5COO)4(4,4′-BPNO)]n (3), [Cu(p-OH-C6H4COO)2(4,4′-BPNO)2·H2O]n (4), (where PNO = pyridine N-oxide, 2,2′-BPNO = 2,2′-bipyridyl-N,N′-dioxide, 4,4′-BPNO = 4,4′-bipyridyl-N,N′-dioxide) are prepared and characterized and their magnetic properties are studied as a function of temperature. Complex 1 is a discrete dinuclear complex while complexes 2-4 are polymeric of which 2 and 3 have paddle wheel repeating units. Magnetic susceptibility measurements from polycrystalline samples of 1-4 revealed strong antiferromagnetic interactions within the {Cu2}4+ paddle wheel units and no discernible interactions between the units. The complex 5, [Cu(NicoNO)2·2H2O]n·4nH2O, in which the bridging ligand to the adjacent copper(II) ions is nicotinate N-oxide (NicoNO) the transmitted interaction is very weakly antiferromagnetic.  相似文献   

15.
The reaction of [PdCl2(CH3CN)2] with N-alkylaminopyrazole (NN′) ligands, 1-[2-(ethylamino)ethyl]-3,5-dimethylpyrazole (deae), 1-[2-(ipropylamino)ethyl]-3,5-dimethylpyrazole (deai), and 1-[2-(tbutylamino)ethyl]-3,5-dimethylpyrazole (deat), affords a series of square planar Pd(II) complexes [PdCl2(NN′)] (NN′ = deae (1), deai (2) and deat (3)). The solid-state structures of complexes 1 and 3 were determined by single crystal X-ray diffraction studies. The NN′ ligands are coordinated through the Npz and Namine atoms to the metal atom, which completes its coordination with two chlorine atoms in a cis disposition. These palladium(II) compounds were characterised by elemental analyses, conductivity measurements, IR, 1H and 13C{1H} NMR spectroscopies. The NMR studies of the complexes prove the rigid conformation of the ligands when they are complexed.  相似文献   

16.
The 80% methanolic extract of Euonymus alatus leaves and twigs afforded three new lignans, (−)-threo-4,9,4′,9′-tetrahydroxy-3,7,3′,5′-tetramethoxy-8-O-8′-neolignan (1), (−)-threo-4,9,4′,9′-tetrahydroxy-3,5,7,3′-tetramethoxy-8-O-8′-neolignan (2), (7R,8R,7′R)-(+)-lyoniresinol (3), together with seventeen known lignans (4-20). The structures of 1-20 were elucidated by extensive 1D and 2D spectroscopic methods including 1H NMR, 13C NMR, 1H-1H COSY, HMQC, HMBC and NOESY. All the isolated compounds except for dilignans (19 and 20) significantly inhibited nitric oxide production in lipopolysaccharide-stimulated RAW264.7 cells.  相似文献   

17.
In search for new conglomerates, seven stereochemically labile complexes between MCl2 (M = Co, Cu, Ni, Zn) and bidentate ligands, the commercially available N,N,N′-trimethylethane-1,2-diamine (trimeda) and the somewhat bulkier N-isopropyl-N,N′,N′-trimethylethane-1,2-diamine (itmeda), have been synthesized and characterized using single crystal X-ray diffraction. The trimeda and itmeda ligands exhibit chirogenic nitrogen centers and may form chiral metal complexes that are candidates for total spontaneous resolution. Copper(II) chloride forms the dimeric meso complexes [{CuCl2(trimeda)}2] (1) and [{CuCl2(itmeda)}2] (2), while [CoCl2(trimeda)2] (3) and [NiCl2(trimeda)2] (4) exhibit six-coordinate but chiral (R,R)- and (S,S)-complexes. Three examples of the chiral target complex, comprising four-coordinate stereochemically labile monomers, was successfully prepared, viz. [NiCl2(itmeda)] (5), [ZnCl2(itmeda)] (6), and [CoCl2(itmeda)] (7).In all seven complexes, the λ-conformation of the five-membered trimeda-metal chelate ring corresponds to the (S)-configuration at nitrogen, and vice versa. Supramolecular interactions in 3 and 4 form hydrogen-bonded heterochiral ribbons. However, crystals of 5-7 display homochiral interactions resulting in polar phases. Weak CH-Cl interactions in 5 and 6 form homochiral layers. In 7, interactions form homochiral helices along the a-axis.  相似文献   

18.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RNHC(S)NHP(S)(OiPr)2 [R = pyridin-2-yl (HLa), pyridin-3-yl (HLb), 6-amino-pyridin-2-yl (HLc)] with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to mononuclear [Cu(PPh3)2La,b-S,S′] (1, 2) and [Cu(PPh3)Lc-S,S′] (3) complexes. Using copper(I) iodide instead of Cu(PPh3)3I, polynuclear complexes [Cun(L-S,S′)n] (4-6) were obtained. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy, ES-MS and elemental analyses. The crystal structures of Cu(PPh3)2Lb (2) and Cu(PPh3)Lc (3) were determined by single-crystal X-ray diffraction.  相似文献   

19.
Reaction between Re2(OAc)4Cl2 and N,N′-dicyclohexylbenzamidine (HDCyBA) under molten conditions yielded Re2(DCyBA)2Cl4 (1); reaction of [Bu4N]2[Re2Cl8] with N,N′-di(3-methoxyphenyl)formamidine (HDmAniF) resulted in Re2(DmAniF)2Cl4 (2); reaction of cis-Re2(OAc)2Cl4 with HDmAniF under reflux conditions resulted in cis-Re2(OAc)2(DmAniF)2Cl2 (3). Reaction between Re2(OAc)4Cl2 and α,α,α′,α′-tetramethyl-1,3-benzenedipropionic acid (H2esp) under reflux conditions led to Re2(esp)2Cl2 (4). Crystallographic studies of compounds 1-4 revealed Re-Re bond lengths of 2.1679(6), 2.1804(5), 2.2468(7), and 2.2304(6) Å, respectively, which are consistent with the presence of Re-Re quadruple bond. Also reported are electrochemical properties of compounds 1-4.  相似文献   

20.
A number of complexes of the types [PtBr2Me2(N?N)] (N?N = 4,4′-di-Me-2,2′-bpy (1); 4,4′-di-t-Bu-2,2′-bpy (2); 2,2′-bpz (3); bpym (4)) and [PtBr2Me2(L)2] (L = H-pz (5); 4-Me-H-pz (6); H-idz (7); H-im (8); H-bim (9); quaz (10)) are reported. Characterization by NMR (1H, 13C and 195Pt), IR and EI-MS is given. In addition, crystal structures of several of these complexes are described. Furthermore, interactions within these structures including intramolecular hydrogen bonding and π-π stacking interactions are reported. The reactivity of selected mononuclear complexes was investigated and yielded two dinuclear complexes [PPh4][(PtBrMe2)2(μ-Br)(μ-pz)2] (11) and [(PtBr2Me2)2(μ-bpym)] (12), respectively. The latter complex is accompanied by a solid-state structure. Finally, the thermal stability of all complexes is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号