首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(A) binding protein (PABP) is an essential, well-conserved, multifunctional protein involved in translational initiation, mRNA biogenesis, and degradation [1--5]. We have used a cross-species complementation approach to address the nature of the essential requirement for PABP in yeast. The expression of Pab3p, a member of the Arabidopsis thaliana PABP multigene family, rescues the lethal phenotype associated with the loss of the yeast Pab1p. However, Pab3p neither protects the mRNA 5' cap from premature removal, nor does it support poly(A)-dependent translational initiation or the synergistic enhancement of translation by the poly(A) tail and 5' cap in yeast. However, Pab3p corrects the temporal lag prior to the entry of the mRNA into the degradation pathway characteristic of pab1 Delta yeast strains. Furthermore, this lag correction by Pab3p requires Pan3p, a subunit of poly(A) nuclease, an enzyme involved in the mRNA 3'-end processing. Importantly, the substitution of Pab3p for the yeast Pab1p is synthetically lethal with the PAN3 gene deletion. These results show that the function of PABP in mRNA biogenesis alone could be sufficient to support cell viability in yeast.  相似文献   

2.
3.
Eukaryotic poly(A) binding protein (PABP) is a ubiquitous, essential cellular factor with well-characterized roles in translational initiation and mRNA turnover. In addition, there exists genetic and biochemical evidence that PABP has an important nuclear function. Expression of PABP from Arabidopsis thaliana, PAB3, rescues an otherwise lethal phenotype of the yeast pab1Delta mutant, but it neither restores the poly(A) dependent stimulation of translation, nor protects the mRNA 5' cap from premature removal. In contrast, the plant PABP partially corrects the temporal lag that occurs prior to the entry of mRNA into the decay pathway in the yeast strains lacking Pab1p. Here, we examine the nature of this lag-correction function. We show that PABP (both PAB3 and the endogenous yeast Pab1p) act on the target mRNA via physically binding to it, to effect the lag correction. Furthermore, substituting PAB3 for the yeast Pab1p caused synthetic lethality with rna15-2 and gle2-1, alleles of the genes that encode a component of the nuclear pre-mRNA cleavage factor I, and a factor associated with the nuclear pore complex, respectively. PAB3 was present physically in the nucleus in the complemented yeast strain and was able to partially restore the poly(A) tail length control during polyadenylation in vitro, in a poly(A) nuclease (PAN)-dependent manner. Importantly, PAB3 in yeast also promoted the rate of entry of mRNA into the translated pool, rescued the conditional lethality, and alleviated the mRNA export defect of the nab2-1 mutant when overexpressed. We propose that eukaryotic PABPs have an evolutionarily conserved function in facilitating mRNA biogenesis and export.  相似文献   

4.
In Saccharomyces cerevisiae, the single poly(A) binding protein, Pab1, is the major ribonucleoprotein associated with the poly(A) tails of mRNAs in both the nucleus and the cytoplasm. We found that Pab1 interacts with Rna15 in two-hybrid assays and in coimmunoprecipitation experiments. Overexpression of PAB1 partially but specifically suppressed the rna15-2 mutation in vivo. RNA15 codes for a component of the cleavage and polyadenylation factor CF I, one of the four factors needed for pre-mRNA 3'-end processing. We show that Pab1 and CF I copurify in anion-exchange chromatography. These data suggest that Pab1 is physically associated with CF I. Extracts from a thermosensitive pab1 mutant and from a wild-type strain immunoneutralized for Pab1 showed normal cleavage activity but a large increase in poly(A) tail length. A normal tail length was restored by adding recombinant Pab1 to the mutant extract. The longer poly(A) tails were not due to an inhibition of exonuclease activities. Pab1 has previously been implicated in the regulation of translation initiation and in cytoplasmic mRNA stability. Our data indicate that Pab1 is also a part of the 3'-end RNA-processing complex and thus participates in the control of the poly(A) tail lengths during the polyadenylation reaction.  相似文献   

5.
Nuclear poly(A)‐binding proteins (PABPs) are evolutionarily conserved proteins that play key roles in eukaryotic gene expression. In the fission yeast Schizosaccharomyces pombe, the major nuclear PABP, Pab2, functions in the maturation of small nucleolar RNAs as well as in nuclear RNA decay. Despite knowledge about its nuclear functions, nothing is known about how Pab2 is imported into the nucleus. Here, we show that Pab2 contains a proline‐tyrosine nuclear localization signal (PY‐NLS) that is necessary and sufficient for its nuclear localization and function. Consistent with the role of karyopherin β2 (Kapβ2)‐type receptors in the import of PY‐NLS cargoes, we show that the fission yeast ortholog of human Kapβ2, Kap104, binds to recombinant Pab2 and is required for Pab2 nuclear localization. The absence of arginine methylation in a basic region N‐terminal to the PY‐core motif of Pab2 did not affect its nuclear localization. However, in the context of a sub‐optimal PY‐NLS, we found that Pab2 was more efficiently targeted to the nucleus in the absence of arginine methylation, suggesting that this modification can affect the import kinetics of a PY‐NLS cargo. Although a sequence resembling a PY‐NLS motif can be found in the human Pab2 ortholog, PABPN1, our results indicate that neither a functional PY‐NLS nor Kapβ2 activity are required to promote entry of PABPN1 into the nucleus of human cells. Our findings describe the mechanism by which Pab2 is imported into the nucleus, providing the first example of a PY‐NLS import system in fission yeast. In addition, this study suggests the existence of alternative or redundant nuclear import pathways for human PABPN1.  相似文献   

6.
H Imataka  A Gradi    N Sonenberg 《The EMBO journal》1998,17(24):7480-7489
Most eukaryotic mRNAs possess a 5' cap and a 3' poly(A) tail, both of which are required for efficient translation. In yeast and plants, binding of eIF4G to poly(A)-binding protein (PABP) was implicated in poly(A)-dependent translation. In mammals, however, there has been no evidence that eIF4G binds PABP. Using 5' rapid amplification of cDNA, we have extended the known human eIF4GI open reading frame from the N-terminus by 156 amino acids. Co-immunoprecipitation experiments showed that the extended eIF4GI binds PABP, while the N-terminally truncated original eIF4GI cannot. Deletion analysis identified a 29 amino acid sequence in the new N-terminal region as the PABP-binding site. The 29 amino acid stretch is almost identical in eIF4GI and eIF4GII, and the full-length eIF4GII also binds PABP. As previously shown for yeast, human eIF4G binds to a fragment composed of RRM1 and RRM2 of PABP. In an in vitro translation system, an N-terminal fragment which includes the PABP-binding site inhibits poly(A)-dependent translation, but has no effect on translation of a deadenylated mRNA. These results indicate that, in addition to a recently identified mammalian PABP-binding protein, PAIP-1, eIF4G binds PABP and probably functions in poly(A)-dependent translation in mammalian cells.  相似文献   

7.
8.
9.
10.
During vertebrate oogenesis and early embryogenesis, gene expression is governed mainly by translational control. The recruitment of Poly(A) Binding Protein (PABP) during poly(A) tail lengthening appears to be the key to translational activation during this period of development in Xenopus laevis. We showed that PABP1 and ePABP proteins are both present during oogenesis and early development. We selected ePABP as an eRF3 binding protein in a two-hybrid screening of a X. laevis cDNA library and demonstrated that this protein is associated with translational complexes. It can complement essential functions of the yeast homologue Pab1p. We discuss specific expression patterns of the finely tuned PABP1 and ePABP proteins.  相似文献   

11.
12.
The mammalian GTP-binding protein GSPT, whose carboxyl-terminal sequence is homologous to the eukaryotic elongation factor EF1alpha, binds to the polypeptide chain releasing factor eRF1 to function as eRF3 in the translation termination. The amino-terminal domain of GSPT was, however, not required for the binding. Search for other GSPT-binding proteins in yeast two-hybrid screening system resulted in the identification of a cDNA encoding polyadenylate-binding protein (PABP), whose amino terminus is associating with the poly(A) tail of mRNAs presumably for their stabilization. The interaction appeared to be mediated through the carboxyl-terminal domain of PABP and the amino-terminal region of GSPT. Interestingly, multimerization of PABP with poly(A), which is ascribed to the action of its carboxyl-terminal domain, was completely inhibited by the interaction with the amino-terminal domain of GSPT. These results indicate that GSPT/eRF3 may play important roles not only in the termination of protein synthesis but also in the regulation of mRNA stability. Thus, the present study is the first report showing that GSPT/eRF3 carries the translation termination signal to 3'-poly(A) tail ubiquitously present in eukaryotic mRNAs.  相似文献   

13.
Regulation of poly(A) tail length during mRNA 3'-end formation requires a specific poly(A)-binding protein in addition to the cleavage/polyadenylation machinery. The mechanism that controls polyadenylation in mammals is well understood and involves the nuclear poly(A)-binding protein PABPN1. In contrast, poly(A) tail length regulation is poorly understood in yeast. Previous studies have suggested that the major cytoplasmic poly(A)-binding protein Pab1p acts as a length control factor in conjunction with the Pab1p-dependent poly(A) nuclease PAN, to regulate poly(A) tail length in an mRNA specific manner. In contrast, we recently showed that Nab2p regulates polyadenylation during de novo synthesis, and its nuclear location is more consistent with a role in 3'-end processing than that of cytoplasmic Pab1p. Here, we investigate whether PAN activity is required for de novo poly(A) tail synthesis. Components required for mRNA 3'-end formation were purified from wild-type and pan mutant cells. In both situations, 3'-end formation could be reconstituted whether Nab2p or Pab1p was used as the poly(A) tail length control factor. However, polyadenylation was more efficient and physiologically more relevant in the presence of Nab2p as opposed to Pab1p. Moreover, cell immunofluorescence studies confirmed that PAN subunits are localized in the cytoplasm which suggests that cytoplasmic Pab1p and PAN may act at a later stage in mRNA metabolism. Based on these findings, we propose that Nab2p is necessary and sufficient to regulate poly(A) tail length during de novo synthesis in yeast.  相似文献   

14.
Eukaryotic mRNAs harboring premature translation termination codons are recognized and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway. The mechanism for discriminating between mRNAs that terminate translation prematurely and those subject to termination at natural stop codons remains unclear. Studies in multiple organisms indicate that proximity of the termination codon to the 3' poly(A) tail and the poly(A) RNA-binding protein, PAB1, constitute the critical determinant in NMD substrate recognition. We demonstrate that mRNA in yeast lacking a poly(A) tail can be destabilized by introduction of a premature termination codon and, importantly, that this mRNA is a substrate of the NMD machinery. We further show that, in cells lacking Pab1p, mRNA substrate recognition and destabilization by NMD are intact. These results establish that neither the poly(A) tail nor PAB1 is required in yeast for discrimination of nonsense-codon-containing mRNA from normal by NMD.  相似文献   

15.
The eukaryotic mRNA 3′ poly(A) tail and its associated poly(A)-binding protein (Pab1p) are important regulators of gene expression. One role for this complex in the yeast Saccharomyces cerevisiae is in translation initiation through an interaction with a 115-amino-acid region of the translation initiation factor eIF4G. The eIF4G-interacting domain of Pab1p was mapped to its second RNA recognition motif (RRM2) in an in vitro binding assay. Moreover, RRM2 of Pab1p was required for poly(A) tail-dependent translation in yeast extracts. An analysis of a site-directed Pab1p mutation which bound to eIF4G but did not stimulate translation of uncapped, polyadenylated mRNA suggested additional Pab1p-dependent events during translation initiation. These results support the model that the association of RRM2 of yeast Pab1p with eIF4G is a prerequisite for the poly(A) tail to stimulate the translation of mRNA in vitro.  相似文献   

16.
A number of meiosis‐specific mRNAs are initially weakly transcribed, but then selectively removed during fission yeast mitotic growth. These mRNAs harbour a region termed DSR (determinant of selective removal), which is recognized by the YTH family RNA‐binding protein Mmi1p. Mmi1p directs the destruction of these mRNAs in collaboration with nuclear exosomes. However, detailed molecular mechanisms underlying this process of selective mRNA elimination have remained elusive. In this study, we demonstrate the critical role of polyadenylation in this process. Two‐hybrid and genetic screens revealed potential interactions between Mmi1p and proteins involved in polyadenylation. Additional investigations showed that destruction of DSR‐containing mRNAs by exosomes required polyadenylation by a canonical poly(A) polymerase. The recruitment of Pab2p, a poly(A)‐binding protein, to the poly(A) tail was also necessary for mRNA destruction. In cells undergoing vegetative growth, Mmi1p localized with exosomes, Pab2p, and components of the polyadenylation complex in several patchy structures in the nucleoplasm. These patches may represent the sites for degradation of meiosis‐specific mRNAs with untimely expression.  相似文献   

17.
The poly(A)-binding protein Pab1p interacts directly with the eukaryotic translation initiation factor 4G (eIF4G) to facilitate translation initiation of polyadenylated mRNAs in yeast [1,2]. Although the eIF4G-PABP interaction has also been demonstrated in a mammalian system [3,4], its biological significance in vertebrates is unknown. In Xenopus oocytes, cytoplasmic polyadenylation of several mRNAs coincides with their translational activation and is critical for maturation [5-7]. Because the amount of PABP is very low in oocytes [8], it has been argued that the eIF4G-PABP interaction does not play a major role in translational activation during oocyte maturation. Also, overexpression of PABP in Xenopus oocytes has only a modest stimulatory effect on translation of polyadenylated mRNA and does not alter either the efficiency or the kinetics of progesterone-induced maturation [9]. Here, we report that the expression of an eIF4GI mutant defective in PABP binding in Xenopus oocytes reduces translation of polyadenylated mRNA and dramatically inhibits progesterone-induced maturation. Our results show that the eIF4G-PABP interaction is critical for translational control of maternal mRNAs during Xenopus development.  相似文献   

18.
The nuclear poly(A) binding protein, PABPN1, promotes mRNA polyadenylation in the cell nucleus by increasing the processivity of poly(A) polymerase and contributing to poly(A) tail length control. In its C-terminal domain, the protein carries 13 arginine residues that are all asymmetrically dimethylated. The function of this modification in PABPN1 has been unknown. Part of the methylated domain serves as nuclear localization signal, binding the import receptor transportin. Here we report that arginine methylation weakens the affinity of PABPN1 for transportin. Recombinant, unmethylated PABPN1 binds more strongly to transportin than its methylated counterpart from mammalian tissue, and in vitro methylation reduces the affinity. Transportin and RNA compete for binding to PABPN1. Methylation favors RNA binding. Transportin also inhibits in vitro methylation of the protein. Finally, a peptide corresponding to the nuclear localization signal of PABPN1 competes with transportin-dependent nuclear import of the protein in a permeabilized cell assay and does so less efficiently when it is methylated. We hypothesize that transportin binding might delay methylation of PABPN1 until after nuclear import. In the nucleus, arginine methylation may favor the transition of PABPN1 to the competing ligand RNA and serve to reduce the risk of the protein being reexported to the cytoplasm by transportin.  相似文献   

19.
Poly(A)-binding protein in mouse and man was recently found to be highly post-translationally modified. Here we analysed an ortholog of this protein, Pab1 from Saccharomyces cerevisiae, to assess the conservation and thus likely importance of these modifications. Pab1 showed the presence of six sites of methylated glutamate, five sites of lysine acetylation, and one phosphorylation of serine. Many modifications on Pab1 showed either complete conservation with those on human or mouse PABPC1, were present on nearby residues and/or were present in the same domain(s). The conservation of methylated glutamate, an unusual modification, was of particular note and suggests a conserved function. Comparison of methylated glutamate sites in human, mouse and yeast poly(A)-binding protein, along with methylation sites catalysed by CheR l-glutamyl protein methyltransferase from Salmonella typhimurium, revealed that the methylation of glutamate preferentially occurs in EE and DE motifs or other small regions of acidic amino acids. The conservation of methylated glutamate in the same protein between mouse, man and yeast suggests the presence of a eukaryotic l-glutamyl protein methyltransferase and that the modification is of functional significance.  相似文献   

20.
The translational regulation of maternal mRNAs is the primary mechanism by which stage-specific programs of protein synthesis are executed during early development. Translation of a variety of maternal mRNAs requires either the maintenance or cytoplasmic elongation of a 3' poly(A) tail. Conversely, deadenylation results in translational inactivation. Although its precise function remains to be elucidated, the highly conserved poly(A) binding protein I (PABP) mediates poly(A)-dependent events in translation initiation and mRNA stability. Xenopus oocytes contain less than one PABP per poly(A) binding site suggesting that the translation of maternal mRNAs could be either limited by or independent of PABP. In this report, we have analyzed the effects of overexpressing PABP on the regulation of mRNAs during Xenopus oocyte maturation. Increased levels of PABP prevent the maturation-specific deadenylation and translational inactivation of maternal mRNAS that lack cytoplasmic polyadenylation elements. Overexpression of PABP does not interfere with maturation-specific polyadenylation, but reduces the recruitment of some mRNAs onto polysomes. Deletion of the C-terminal basic region and a single RNP motif from PABP significantly reduces both its binding to polyadenylated RNA in vivo and its ability to prevent deadenylation. In contrast to a yeast PABP-dependent poly(A) nuclease, PABP inhibits Xenopus oocyte deadenylase in vitro. These results indicate that maturation-specific deadenylation in Xenopus oocytes is facilitated by a low level of PABP consistent with a primary function for PABP to confer poly(A) stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号