首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
The matter of this work was to evaluate possibilities of biospecific immobilization of synthetic mannan-penicillin G acylase neoglycoconjugate on Concanavalin A support. The conjugate containing 37% (w/w) of yeast mannan was prepared. Significant biospecific interaction of this neoglycoenzyme with Con A was confirmed by precipitation method. The biospecific sorption of conjugate was investigated using Concanavalin A-triazine bead celluloses MT-100 with different content of Con A (from 1.4 to 9.8 mgCon A/gwet support). The results obtained under optimal conditions were compared with those from covalent immobilization of PGA. The sorbent capacity was observed higher for covalent binding of enzyme. On the other hand, the biospecifically immobilized neoglycoenzyme retained a greater amount of initial activity. The maximum amount of 6.6mgimmobilizedneoglycoenzyme/gwet Con A-sorbent (18.1 U/g) was achieved. The amount as well as activity of immobilized mannan-penicillin G acylase was increased by its two multiple layering on surface of sorbent (10.1mg, respectively, 23.5 U/gwet sorbent). Determined storage and operational (using flow calorimetric method) stabilities of biospecifically immobilized enzyme, were similar, possibly somewhat higher that those of covalent bound penicillin G acylase.  相似文献   

2.
If an adequate biocatalyst is identified for a specific reaction, immobilization is one possibility to further improve its properties. The immobilization allows easy recycling, improves the enzyme performance, and it often enhances the stability of the enzyme. In this work, the immobilization of the benzoylformate decarboxylase (BFD) variant, BFD A460I-F464I, from Pseudomonas putida was accomplished on spherical silica. Silicagel is characterized by its high mechanical stability, which allows its application in different reactor types without restrictions. The covalently bound enzyme was characterized in terms of its activity, stability, and kinetics for the formation of chiral 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde. Moreover, temperature as well as pressure dependency of immobilized BFD A460I-F464I activity and enantioselectivity were analyzed. The used wide-pore silicagel shows a good accessibility of the immobilized enzyme. The activity of the immobilized BFD A460I-F464I variant was determined to be 70% related to the activity of the free enzyme. Thereby, the enantioselectivity of the enzyme was not influenced by the immobilization. In addition, a pressure-induced change in stereoselectivity was found both for the free and for the immobilized enzyme. With increasing pressure, the enantiomeric excess (ee) of (R)-2-HPP can be increased from 44% (0.1 MPa) to 76% (200 MPa) for the free enzyme and from 43% (0.1 MPa) to 66% (200 MPa) for the immobilized enzyme.  相似文献   

3.
A Concanavalin A-β-galactosidase conjugate was prepared using glutaraldehyde as the crosslmking reagent. The conjugate bound to Sephadex G-50 beads was more thermostable and hydrolyzed lactose faster than the free enzyme. The immobilized enzyme may prove useful in the preparation of low lactose milk which is required by persons suffering from lactose intolerance.  相似文献   

4.
Soybean callus succinyl CoA synthetase (succinate: CoA ligase, (ADP-forming), EC 6.2.1.5), has been chemically bound to Sepharose 4B and some of its properties have been studied. The optimal conditions for binding have been determined. The immobilized enzyme retained 48% of the activity of the soluble enzyme and the coupling yield amounted to 50%. Sepharose-succinyl CoA synthetase can be stored at 4 degrees C for periods up to 90 days with only 25% loss of activity; it can also be repeatedly used without alteration of its enzymic activity. The complex showed enhanced thermal stability; pH optimum was between 7.0 and 8.0 for the bound enzyme, and 8.0 for the free enzyme. A general decrease in the Michaelis-Menten constants for the different substrates of the insoluble enzyme, as compared with values obtained for the free enzyme, was found. Plots of the rate product formation against ATP concentration changed from sigmoideal for the soluble succinyl CoA synthetase to hyperbolic for the immobilized enzyme.  相似文献   

5.
We immobilized human milk galactosyltransferase covalently to CNBr- and tresylchloride-activated Sepharose. The enzyme was also immobilized non-covalently to Concanavalin A-Sepharose and to monoclonal anti-galactosyltransferase antibodies which were boundvia their Fc-fragment to Protein G-Sepharose. With the covalent methods, up to 72% of the enzyme could be bound to the carrier, but more than 90% of the specific activity was lost. In contrast, non-covalent immobilization yielded only about 50% immobilization efficiency, but 21% and 25% of specific activity, respectively, could be recovered. The stability of immobilized galactosyltransferase as compared to native enzyme was considerably increased: at room temperature, 55% of initial immobilized activity was lost after 65 hours compared to 95% of loss of soluble enzyme activity. Immobilized galactosyltransferase was then used for continuous galactosylation of the glycoproteins ovalbumin, endo H-treated yeast invertase and bovine serum albumin-N-acetylglucosamine in a slurry reactor. 55%, 35% and 25%, respectively, of all acceptor sites on these glycoproteins could be galactosylated by this method.  相似文献   

6.
Glucoamylase from four different companies was studied: three had similar stability (half-life at 50°C about 140 hr); the fourth was less stable (half-life at 50°C about 20 hr). The immobilized enzymes were all less stable than their soluble counterparts: immobilized enzyme stability depended on the soluble enzyme used, the support, and method of immobilization. Thus enzyme bound to Enzacryl-TIO was less stable than enzyme bound to hornblende (metal-link method); this, in turn, was less stable than enzyme bound to hornblende by a silane–glutaraldehyde process. Bound enzyme stability was also improved by the presence of substrate or product (starch maltose or glucose). After 110 hr at 50°C in the presence of maltose (10% (w/v)) one preparation (a more stable soluble enzyme boul1d to hornblende by a silane–glutaraldehyde process) retained over 95% of its activity: activity loss was too low to permit the estimation of a half-life.  相似文献   

7.
Purified α-amylase from a soil bacterium Bacillus sp. SKB4 was immobilized on coconut coir, an inexpensive cellulosic fiber, with the cross-linking agent glutaraldehyde. The catalytic properties and stability of the immobilized enzyme were compared with those of its soluble form. The enzyme retained 97.2% of its activity and its catalytic properties were not drastically altered after immobilization. The pH optimum and stability of the immobilized enzyme were shifted towards the alkaline range compared to the free enzyme. The optimum temperature for enzymatic activity was 90°C in both forms of the enzyme. The soluble and immobilized enzyme retained 19% and 70% of original activity, respectively, after pre-incubation for 1 h at 90°C. Immobilized amylase was less susceptible to attack by heavy metal ions and showed higher Km and Vmax values than its free form. The bound enzyme showed significant activity and stability after 6 months of storage at 4°C. All of these characteristics make the new carrier system suitable for use in the bioprocess and food industries.  相似文献   

8.
Oxalate oxidase (EC 1.2.3.4) was purified from beet stems and immobilized on concanavalin A. The bound enzyme showed a high resistance of denaturation and increased the storage stability at 4 degrees C. The immobilized oxidase showed a broad optimum at pH 3.5-5, compared to the free enzyme with a sharp optimum at pH 4.5. There was a 3-fold increase in the apparent Km value on immobilization. The lectin interaction also eliminated the inhibitory effect produced on the enzyme by azide, nitrate and glycollate. The stimulatory effect on the enzyme activity by the flavins was not seen with the bound enzyme. The interaction of oxidase on concanavalin A-Sepharose 4B column and its reversal with methyl alpha-D-mannoside, indicated the presence of polysaccharides. The glycoprotein nature was further confirmed by periodic acid-sciff staining procedure of the enzyme after gel electrophoresis.  相似文献   

9.
A novel method for the preparation of highly active immobilized enzymes is described. It is based on the binding of enzymes to suitable carriers via monoclonal antibodies, which bind to the enzyme with high affinity without affecting its catalytic activity. The applicability of the method forwarded has been illustrated by the preparation of two samples of highly active immobilized carboxypeptidase A (CPA) preparations as follows: A mouse monoclonal antibody (mAb 100)to CPA that binds to the enzyme with a high-affinity constant without affecting its catalytic activity was prepared, purified, and characterized. Covalent binding of this monoclonal antibody to Eupergit C (EC) or noncovalent binding to Sepharose-protein A (SPA)yielded the conjugated carriers EC-mAb and SPA.mAb, respectively, which reacted specifically with CPA to give the immobilized enzyme preparations EC-mAb.CPA and SPA.mAb.CPA displaying full catalytic activity and improved stability. At pH 7.5 and a temperature range of 4-37 degrees C an apparent binding constant of approximately 10(8)M(-1) characterizing the interaction of CPA with EC-mAb and SPA.mAb, was obtained. To compare the properties of EC-mAb.CPA and SPA.mAb.CPA with those of immobilized CPA preparations obtained by some representative techniques of covalent binding of the enzyme with a corresponding carrier, the following immobilized CPA preparations were obtained and their properties investigated: EC-CPA (I), a preparation obtained by direct binding of EC with CPA; EC-NH-GA-CPA (II), a derivative obtained by covalent binding of CPA to aminated EC via glutaraldehyde; EC-NH-Su-CPA (III), a CPA derivative obtained by binding the enzyme to aminated EC via a succinyl residue; and EC-HMD-GA-CPA (IV), obtained by binding the enzyme via glutaraldehyde to a hexamethylene diamine derivative of EC. Full enzymic activity for all of the bound enzyme, such as that recorded for the immobilized CPA preparations EC-mAb.CPA and SPA.mAb.CPA, was not detected in any of the insoluble covalently bound enzyme preparations.  相似文献   

10.
Xanthine dehydrogenase (EC 1.2.1.37) was isolated from chicken livers and immobilized by adsorption to a Sepharose derivative, prepared by reaction of n-octylamine with CNBr-activated Sepharose 4B. Using a crude preparation of enzyme for immobilization it was observed that relatively more activity was adsorbed than protein, but the yield of immobilized activity increased as a purer enzyme preparation was used. As more activity and protein were bound, relatively less immobilized activity was recovered. This effect was probably due to blocking of active xanthine dehydrogenase by protein impurities. The kinetics of free and immobilized xanthine dehydrogenase were studied in the pH range 7.5-9.1. The Km and V values estimated for free xanthine dehydrogenase increase as the pH increase; the K'm and V values for the immobilized enzyme go through a minimum at pH 8.1. By varying the amount of enzyme activity bound per unit volume of gel, it was shown that K'm is larger than Km are result of substrate diffusion limitation in the pores of the support material. Both free and immobilized xanthine dehydrogenase showed substrate activation at low concentrations (up to 2 microM xanthine). Immobilized xanthine dehydrogenase was more stable than the free enzyme during storage in the temperature range of 4-50 degrees C. The operational stability of immobilized xanthine dehydrogenase at 30 degrees C was two orders of magnitude smaller than the storage stability, t 1/2 was 9 and 800 hr, respectively. The operational stability was, however, better than than of immobilized milk xanthine oxidase (t 1/2 = 1 hr). In addition, the amount of product formed per unit initial activity in one half-life, was higher for immobilized xanthine dehydrogenase than for immobilized xanthine oxidase. Unless immobilized milk xanthine oxidase can be considerable stabilized, immobilized chicken liver xanthine dehydrogenase is more promising for application in organic synthesis.  相似文献   

11.
We have investigated methods of stabilizing prolidase by chemical modification and covalent coupling to various supports, for use in protein hydrolysis and possible use in enzyme replacement therapy. Purified acetone powder of calf brain prolidase was further purified by gel filtration on Sephadex G-200 and chromatography on DEAE-Sephadex A25. Polyacrylamide gel electrophoresis showed that the number of bands was reduced from 11 to 2. Since yields were low, the purified (NH4)2SO4 fraction was used in all experiments. Thiolation of the enzyme reduced the amount of protein coupled to AH-or CH-Sepharose 4B. Activities were highest when the protein was linked through its carboxyl groups. The coupled enzyme showed much greater thermal stability than its free counterpart. Of the bound preparations, the thiolated was less stable than the untreated. Untreated and thiolated enzymes bound to either matrix showed higher activity at low pH and less at high pH than the free material. Thiolation shifted the pH maximum from 6.8 to 7.5. The free thiolated enzyme and that bound to activated SH-Sepharose 4B showed greater thermal stability and a broader pH range of optimal activity than the bound untreated enzyme. These results show that prolidase can be immobilized by coupling to an insoluble matrix through various types of covalent bonds with retention of activity and increased stability.  相似文献   

12.
Tannase enzyme from Aspergillus oryzae was immobilized on various carriers by different methods. The immobilized enzyme on chitosan with a bifunctional agent (glutaraldehyde) had the highest activity. The catalytic properties and stability of the immobilized tannase were compared with the corresponding free enzyme. The bound enzyme retained 20·3% of the original specific activity exhibited by the free enzyme. The optimum pH of the immobilized enzyme was shifted to a more acidic range compared with the free enzyme. The optimum temperature of the reaction was determined to be 40 °C for the free enzyme and 55 °C for the immobilized form. The stability at low pH, as well as thermal stability, were significantly improved by the immobilization process. The immobilized enzyme exhibited mass transfer limitation as reflected by a higher apparent Km value and a lower energy of activation. The immobilized enzyme retained about 85% of the initial catalytic activity, even after being used 17 times.  相似文献   

13.
The synthesis and characterization of biocatalysts based on lipase from Rhizomucor miehei (RML) immobilized on chitosan-based supports were investigated. The enzyme was immobilized on chitosan following two strategies: (i) physical adsorption; and (ii) covalent bonding using glutaraldehyde. The content of enzyme bound in the supports, as precipitable protein, was analyzed using UV/visible methods. FTIR-ATR spectroscopy was employed to characterize the prepared biocatalysts, as well the native enzyme and a commercial biocatalyst Lipozyme RM IM, used as reference materials. Analysis of the amide I′ signal allowed to follow the changes in the secondary structure of the enzyme after binding to the support and its thermal stability. The hydrolysis of ethyl stearate monitored in situ by FTIR-ATR was used as a test reaction. Results showed that RML was bound to Chit and Glut–Chit with minor changes in its secondary structure, thermal stability and enzymatic activity in a selected reaction test.  相似文献   

14.
Pectinase was immobilized onto thermo-sensitive amphiphilic block copolymers poly(styrene-b-Nisopropylacrylamide) PS-b-poly(N-isopropylacrylamide) (PNIPAM) by covalent attachment. Biochemical studies have found that the stability of the PS-b-PNIPAM support is not impeded by the bound proteins despite that up to 242.5 mg of enzyme is immobilized per gram of carrier particles. The immobilized enzyme retained nearly 65% of its initial activity over 30 days, and the optimum temperature and pH also increased to the range of 60 ∼ 70°C and 4.0 ∼ 6.0, respectively. The immobilized enzyme also exhibited great operational stability, and more than 60% residual activity was observed in the immobilized enzyme after 10 batch reactions. Moreover, the lower critical solution temperature of the PS-b-PNIPAM support could be switched on or off by a small change in solution temperature. Thus, the immobilized pectinase could be recovered and showed durable activity during the recycle process.  相似文献   

15.
A Thermoalkalophilic amylase was produced from an environmental bacterial isolate. The enzyme was then immobilized through its amino groups onto the epoxy rings of magnetic poly glycidyl methacrylate [m-poly (GMA)] beads. The free enzyme was active within a large pH range, between 7 and 12 and displayed the optimum activity at 95°C and pH 10. The immobilization appeared to increase the stability of the enzyme as its bound form showed optimum activity at 105°C and pH 11.0. Kinetic studies demonstrated that immobilized enzyme had higher K(m) and lower V(max) values. The activity of the free and bound enzyme was determined, at 37°C and pH 10.0 and pH 11.0, respectively, in the presence of various organic solvents and detergents (5%, v/v). Results obtained indicated that detergents, sodium dodecyl sulfate (SDS) and TritonX-100, caused six fold increase and that various organic solvents also increased the activity of the amylase.  相似文献   

16.
The octameric enolase from Bacillus stearothermophilus was immobilized onto Sepharose 4B activated by the cyanogen bromide reaction under conditions for achieving essentially a single-point attachment. The immobilized enzyme was dissociated with guanidine hydrochloride to yield bound monomeric enolase. The Sepharose-bound subunit regained activity upon removal of the denaturant. It was also possible to rehydribize immobilized monomers to native octamers. Of note, the thermal stability of the immobilized enolase subunit does not appreciably differ from that of the parent soluble octameric enzyme. Thus, these results indicate that single subunits of thermophilic enolase are active and that oligomerization is not a prerequisite for the enzymic activity as well as for thermal stability.  相似文献   

17.
The enzyme beta-D-glucosidase has been immobilized on concanavalin A-Sepharose to give a maximum loading of 2050 units/g dry weight of support material. The immobilized beta-D-glucosidase was also entrapped within calcium alginate gel spheres with apparently only 35% retention of activity when assayed with 10mM cellobiose. However, it was discovered that, unlike the immobilized enzyme, the entrapped immobilized enzyme was not subject to substrate inhibition up to 100mM cellobiose, suggesting that a concentration gradient of cellobiose existed between the bulk solution and the interior of the gel sphere. Thus, the activity of the entrapped immobilized enzyme was almost twice as high as that of the immobilized enzyme when assayed with 100mM cellobiose. Concanavalin A-Sepharose-immobilized beta-D-glucosidase and the bacterium Zymomonas mobilis coimmobilized in calcium alginate gel spheres converted cellobiose to ethanol in both batch and continuous-flow fermentation systems.  相似文献   

18.
Peroxidase from horseradish has been immobilized onto zirconia coated arylamine and alkylamine glass through the process of diazotization and glutaraldehyde coupling, respectively. Arylamine glass bound enzyme retained 77% of the initial activity with a conjugation yield of 18 mg g-1 support, while alkylamine glass bound enzyme retained 38% of the initial activity with a conjugation yield of 16 mg g-1 support. The immobilized enzyme showed an increase in optimum pH, temperature for maximum activity, energy of activation (Ea), and thermal stability but decrease in time for linearity and Km for H2O2. Vmax value of arylamlne conjugated enzyme decreased but Vmax of alkylamine conjugated enzyme was unaltered compared to free enzyme. Both arylamine and alkylamine bound enzyme showed higher stability in cold compared to that of free enzyme. The application of glass bound peroxidase in discrete analysis of serum urate is demonstrated.  相似文献   

19.
Cellulose fibres from bagasse were oxidized by sodium periodate in sulphuric acid media at positions 2 and 3 of the anhydroglucose unit to produce dialdehyde cellulose. The aldehyde groups of the dialdehyde cellulose were able to react with amino groups of a glucoamylase to form covalent bonds and result in a dialdehyde cellulose immobilized enzyme. The optimum pH of this immobilized enzyme and free enzyme were in the range of 3.0–5.0 and 3.5–5.0, respectively. The optimum temperature for both the free and immobilized enzymes was 60–65 °C. The relative remaining activity of the immobilized enzyme was 36% and its stability was very good, since it could be reused for over 30 cycles. Its activity decreased from the first to the seventh reuse cycles, due to the slow detachment of non-covalently bound enzyme. However, activity tended to stabilize after the seventh cycle of reuse, indicating very stable covalent binding between the enzyme and dialdehyde cellulose.  相似文献   

20.
Immobilization of glycoenzymes through carbohydrate side chains.   总被引:1,自引:0,他引:1  
Glucoamylase, peroxidase, glucose oxidase, and carboxypeptidase Y were covalently bound to water-insoluble supports through their carbohydrate side chains. Two approaches were used. First, the carbohydrate portions of the enzymes were oxidized with periodate to generate aldehyde groups. Treatment with amines (ethylenediamine or glycyltyrosine) and borohydride provided groups through which the protein could be immobilized. Ethylenediamine was attached to glucoamylase, peroxidase, glucose oxidase, and carboxypeptidase Y to the extent of 24, 20, 30, and 15 mol/mol of enzyme, respectively. These derivatives were coupled to an aminocaproate adduct of CL-Sepharose via an N-hydroxysuccinimide ester or to CNBr-activated Sepharose. Coupling yields were in the range of 37–50%. Retained activities of the bound aminoalkyl-enzymes were 41% (glucoamylase), 79% (peroxidase), 71% (glucose oxidase), 83% (carboxypeptidase Y). A glycyltyrosine derivative of carboxypeptidase Y was bound to diazotized arylamine-glass. Coupling yield was 42% and retained esterase activity was 84%. In the second approach, the enzyme was adsorbed to immobilized concanavalin A and the complex was crosslinked. Adsorption of carboxypeptidase Y on immobilized concanavalin A followed by crosslinking with glutaraldehyde was also effective. The bound enzyme retained 96% of the native esterase activity and showed very good operational stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号