首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Toward this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Because ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities, and the ligand rank order obtained at denaturation temperatures (?60 °C) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations where binding changes the cooperativity of the unfolding transition. In this article, we develop the basic analytical equations and provide several experimental examples.  相似文献   

2.
Thermal stability shift analysis is a powerful method for examining binding interactions in proteins. We demonstrate that under certain circumstances, protein-protein interactions can be quantitated by monitoring shifts in thermal stability using thermodynamic models and data analysis methods presented in this work. This method relies on the determination of protein stabilities from thermal unfolding experiments using fluorescent dyes such as SYPRO Orange that report on protein denaturation. Data collection is rapid and straightforward using readily available real-time polymerase chain reaction instrumentation. We present an approach for the analysis of the unfolding transitions corresponding to each partner to extract the affinity of the interaction between the proteins. This method does not require the construction of a titration series that brackets the dissociation constant. In thermal shift experiments, protein stability data are obtained at different temperatures according to the affinity- and concentration-dependent shifts in unfolding transition midpoints. Treatment of the temperature dependence of affinity is, therefore, intrinsic to this method and is developed in this study. We used the interaction between maltose-binding protein (MBP) and a thermostable synthetic ankyrin repeat protein (Off7) as an experimental test case because their unfolding transitions overlap minimally. We found that MBP is significantly stabilized by Off7. High experimental throughput is enabled by sample parallelization, and the ability to extract quantitative binding information at a single partner concentration. In a single experiment, we were able to quantify the affinities of a series of alanine mutants, covering a wide range of affinities (~ 100 nM to ~ 100 μM).  相似文献   

3.
Differential scanning calorimetry (DSC) determines the enthalpy change upon protein unfolding and the melting temperature of the protein. Performing DSC of a protein in the presence of increasing concentrations of specifically-binding ligand yields a series of curves that can be fit to obtain the protein–ligand dissociation constant as done in the fluorescence-based thermal shift assay (FTSA, ThermoFluor, DSF). The enthalpy of unfolding, as directly determined by DSC, helps improving the precision of the fit. If the ligand binding is linked to protonation reactions, the intrinsic binding constant can be determined by performing the affinity determination at a series of pH values. Here, the intrinsic, pH-independent, affinity of acetazolamide binding to carbonic anhydrase (CA) II was determined. A series of high-affinity ligands binding to CAIX, an anticancer drug target, and CAII showed recognition and selectivity for the anticancer isozyme. Performing the DSC experiment in buffers of highly different enthalpies of protonation enabled to observe the ligand unbinding-linked protonation reactions and estimate the intrinsic enthalpy of binding. The heat capacity of combined unfolding and unbinding was determined by varying the ligand concentrations. Taken together, these parameters provided a detailed thermodynamic picture of the linked ligand binding and protein unfolding process.  相似文献   

4.
The volume changes accompanying ligand binding to proteins are thermodynamically important and could be used in the design of compounds with specific binding properties. Measuring the volumetric properties could yield as much information as the enthalpic properties of binding. Pressure-based methods are significantly more laborious than temperature methods and are underused. Here we present a pressure shift assay (PressureFluor, analogous to the ThermoFluor thermal shift assay) that uses high pressure to denature proteins. The PressureFluor method was used to study the ligand binding thermodynamics of heat shock protein 90 (Hsp90). Ligands stabilize the protein against pressure denaturation, similar to the stabilization against temperature denaturation. The equations that relate the ligand dosing, protein concentration, and binding constant with the volumes and compressibilities of unfolding and binding are presented.  相似文献   

5.
Waldron TT  Murphy KP 《Biochemistry》2003,42(17):5058-5064
The observed stability of a protein is altered when ligands bind, which results in a shift in the melting temperature (T(m)). Binding to the native state in the absence of binding to the denatured state will necessarily lead to an increase in the T(m), while binding to the unfolded state in the absence of native state binding will decrease the T(m) relative to that of the protein in the absence of ligand. These effects are required by the thermodynamics of reversible folding. However, the relationship between binding affinity and the magnitude of the observed temperature shift is not a simple correlation (i.e., a larger shift in T(m) does not necessarily mean tighter binding) and is complicated by interaction with the denatured state. Using exact simulations, the range of behavior for the dependence of the observed T(m) shift on the energetics of ligand binding is investigated here. Specifically, differential scanning calorimetry (DSC) curves are simulated for protein unfolding in the presence of ligands binding to both the native and denatured states. The results have implications for drug screening and the determination of heat capacity changes for protein unfolding.  相似文献   

6.
Volume changes that accompany protein unfolding and ligand binding are important but largely neglected thermodynamic parameters that may facilitate rational drug design. Here, we determined the volume of lead compound ICPD47 binding to an anticancer target, heat shock protein 90 N-terminal domain, using a pressure shift assay (PressureFluor). The ligand exhibited a stabilizing effect on the protein by increasing its melting pressure and temperature. The Gibbs free energy of unfolding depends on the absence or presence of ligand and has an elliptical shape. Ellipse size increases upon addition of the strongly binding ligand, which stabilizes the protein. The three-dimensional (3D) ellipsoidal surface of the Gibbs free energy of unfolding was calculated with increasing ligand concentrations. The negative volume of ligand binding was relatively large and significantly exceeded the volume of protein unfolding. The pressure shift assay technique could be used to determine the volume changes associated with both protein unfolding as well as ligand binding to protein.  相似文献   

7.
A high-throughput solid-phase platform for ligand-binding assays using microtiter plates (Scintiplates) has been developed using the scintillation proximity assay principle. The system has been developed using human alpha(2B)-adrenergic receptor (alpha(2B)-AR) expressed from Semliki Forest virus vectors in CHO cells. Alpha(2B)-AR bind natural (adrenaline and noradrenaline) and synthetic ligands with different affinities to mediate a variety of physiological and pharmacological responses. Antagonist radioligands were used for the binding experiments, and the values obtained for the binding constants with the Scintiplate system are in good agreement with those obtained by the traditional filter-binding assay system. The Scintiplate assay offers the advantages of a high-throughput format over the filter-binding assay and is amenable for screening many compounds rapidly for generation of leads.  相似文献   

8.
Eg5 is a kinesin whose inhibition leads to cycle arrest during mitosis, making it a potential therapeutic target in cancers. Circular dichroism and isothermal titration calorimetry of our pyrrolotriazine-4-one series of inhibitors with Eg5 motor domain revealed enhanced binding in the presence of adenosine 5′-diphosphate (ADP). Using this information, we studied the interaction of this series with ADP-Eg5 complexes using a thermal shift assay. We measured up to a 7 °C increase in the thermal melting (Tm) of Eg5 for an inhibitor that produced IC50 values of 60 and 130 nM in microtubule-dependent adenosine triphosphatase (ATPase) and cell-based cytotoxicity assays, respectively. In general, the inhibitor potency of the pyrrolotriazine-4-one series in in vitro biological assays correlated with the magnitude of the thermal stability enhancement of ADP-Eg5. The thermal shift assay also confirmed direct binding of Eg5 inhibitors identified in a high-throughput screen and demonstrated that the thermal shift assay is applicable to a range of chemotypes and can be useful in evaluating both potent (nM) and relatively weakly binding (μM) leads. Overall, the thermal shift assay was found to be an excellent biophysical method for evaluating direct binding of a large number of compounds to Eg5, and it complemented the catalytic assay screens by providing an alternative determination of inhibitor potency.  相似文献   

9.
Three human proteins (hTAP1, hTAP2 and hTAP3) that are related to the yeast phosphatidylinositol/phosphatidylcholine transfer protein SEC14p were recently cloned in our laboratory. These proteins contain a relatively large hydrophobic pocket, the so called CRAL-TRIO domain, which is present also in other human proteins, such as CRALBP, alpha-TTP and MEG2. The CRAL-TRIO domains in these proteins bind ligands such as retinaldehyde, tocopherols and polyphosphoinositides, respectively. To screen for potential hTAPs ligands, we developed a semi-quantitative isoelectric point mobility shift assay (IPMS-assay) that allows assessing the binding of potential hydrophobic ligands to proteins. Purified proteins occupied with a charged ligand migrate differently on isoelectric focusing gels when compared with free protein. Competition of bound charged ligands with uncharged ones reverses the mobility shift, so that the relative affinities of the two ligands to the protein can be estimated.  相似文献   

10.
We report a gel-filtration-based chromatographic method for separation of specific, nonspecific, and free radioligand in a protein receptor-ligand binding assay for the example of the estrogen receptor ERalpha. This assay affords relative binding affinities (RBAs) without the need for a separate determination of nonspecific binding. The probit method is recommended as the most satisfactory method of evaluating the data. The assay responds to both estrogen agonists and antagonists, mixtures respond additively, and the slopes of the probit plots indicate that all ligands bind to the same site on the estrogen receptor. RBAs obtained with rat and rainbow trout ERalpha were in good agreement, and also with those from other reported assays, consistent with the interspecies conservation of key regions of the ligand binding domain among estrogen receptors.  相似文献   

11.
A series of detergents of varying chemical properties has been tested for solubilisation of bovine caudate nucleus D2 dopamine receptors using [3H]spiperone binding to assay the solubilised sites. The properties of the lysophosphatidylcholine (LPC)- and 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulphonate (CHAPS)-solubilised preparations are described in detail. The preparations are truly solubilised, and sucrose density gradient and gel filtration data are reported. Specific [3H]spiperone binding in the LPC-solubilised preparation assayed at 4 degrees C is solely to D2 dopamine receptors. If the assay temperature is raised to 25 degrees C, the amount of specific [3H]spiperone binding is largely unchanged, but it forms a greater proportion of the total [3H]spiperone binding owing to a reduction in nonstereospecific (spirodecanone) [3H]spiperone binding at the higher temperature. The effect of raising the assay temperature is important as it enables more precise determinations of specific [3H]spiperone binding to be made. Part of the specific [3H]spiperone binding at 25 degrees C is to solubilised S2 serotonin receptors in addition to D2 dopamine receptors. Good correlations are observed between the affinities for binding of ligands to the solubilised D2 receptors and corresponding data obtained on membrane-bound receptors. Agonist binding in LPC-solubilised preparations is insensitive to guanine nucleotides. It is speculated that the spirodecanone sites represent, in part, proteolysed or damaged D2 dopamine, or S2 serotonin, receptors. In the CHAPS-solubilised preparation the pharmacological profile of [3H]spiperone binding is unclear when assayed at 4 degrees C, but in assays at 25 degrees C a clear serotonin S2 receptor component of specific [3H]spiperone binding can be discerned.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We have developed a novel fluorescence-based homogeneous binding assay for high-throughput screening of chemical compounds. In this assay, a Cy5- or Cy5.5-labeled ligand binds to receptor immobilized on a particle, either a bead or a cell. The resulting localized signal can be detected by a modified microvolume fluorimeter (MVF). When a molecule which competes with the labeled ligand is present, the localized fluorescence on cells or beads is reduced. Image processing software enumerates events and analyzes fluorescence intensity. We describe MVF assays for the IL-1 and IL-5 receptors. Using synthetic peptides with a range of affinities for the IL-1 receptor, we obtained IC(50) data consistent with those determined by radioligand binding assays. Because the image processing software can discriminate among events with different diameters, we were able to develop a multiplex assay, in which the IL-1R and IL-5R assays were carried out in the same well with each receptor immobilized on a different size of bead. IC(50) values generated in the multiplex assay for ligands specific to each receptor were comparable to those determined independently. Finally, similar IC(50) values were obtained in a 16-microl volume in an 864-well plate. This homogeneous, nonradioactive, miniaturizable, and multiplex-capable assay holds much promise for screening of combinatorial libraries and compound collections.  相似文献   

13.
Various SH2 competitive binding assays, based on different techniques, have been described in the literature to identify and characterize SH2 ligands. The consideration that most reported methods show experimental limitations associated with assay parameters has prompted us to base our Src-SH2 inhibitor discovery program on the use of two different assays. In this study, two conceptually different biochemical methods designed to discover Src-SH2 inhibitors, respectively scintillation proximity assay (SPA) and surface plasmon resonance (SPR), have been evaluated and compared. For its high sensitivity and adaptability to automation SPA was chosen for high capacity screening (primary screen), whereas SPR was used for hits confirmation (secondary screening). However with the drastic improvement of inhibitor affinities, the limit of sensitivity was rapidly reached for the SPR assay based on the canonical pYEEI ligand. The substitution of the natural, monophosphorylated peptide ligand with a triphosphorylated peptide has allowed us to remarkably increase its sensitivity, so that molecules with nanomolar affinities could be easily differentiated in terms of IC(50) ranking. Such a new, improved SPR assay can be of great interest for the study of high affinity ligands of different SH2-based drug targets.  相似文献   

14.
Strategies for interfering with protein aggregation are important for elucidating and controlling the pathologies of amyloid diseases. We have previously identified compounds that block the cellular toxicity of the beta-amyloid peptide, but the relationship between their ability to inhibit toxicity and their affinity for A beta is unknown. To elucidate this relationship, we have developed an assay capable of measuring the affinities of small molecules for beta-amyloid peptide. Our approach employs immobilized beta-amyloid peptide at low density to minimize the problems that arise from variability in the beta-amyloid aggregation state. We found that low-molecular weight (MW of 700-1700) ligands for beta-amyloid can be identified readily by using surface plasmon resonance. The best of these bound effectively (K(d) approximately 40 microM) to beta-amyloid. The affinities measured for peptides in the SPR assay correspond to results from A beta cell toxicity assays. The most potent ligands for immobilized beta-amyloid are the most potent inhibitors of the neuronal cell toxicity of beta-amyloid. Compounds with dissociation constants above approximately 100 microM did not show significant activity in the cell toxicity assays. Our data support the hypothesis that ligands exhibiting greater affinity for the beta-amyloid peptide are effective at altering its aggregation and inhibiting cell toxicity.  相似文献   

15.
The binding characteristics of a series of PPARgamma ligands (GW9662, GI 262570, cis-parinaric acid, 15-deoxy-Delta(12,14)-prostaglandin J(2), LY171883, indomethacin, linoleic acid, palmitic acid and troglitazone) to human PPARgamma ligand binding domain have been investigated for the first time by using surface plasmon resonance biosensor technology, CD spectroscopy and molecular docking simulation. The surface plasmon resonance biosensor determined equilibrium dissociation constants (KD values) are in agreement with the results reported in the literature measured by other methods, indicating that the surface plasmon resonance biosensor can assume a direct assay method in screening new PPARgamma agonists or antagonists. Conformational changes of PPARgamma caused by the ligand binding were detected by CD determination. It is interesting that the thermal stability of the receptor, reflected by the increase of the transition temperature (T(m)), was enhanced by the binding of the ligands. The increment of the transition temperature (DeltaT(m)) of PPARgamma owing to ligand binding correlated well with the binding affinity. This finding implies that CD could possibly be a complementary technology with which to determine the binding affinities of ligands to PPARgamma. Molecular docking simulation provided reasonable and reliable binding models of the ligands to PPARgamma at the atomic level, which gave a good explanation of the structure-binding affinity relationship for the ligands interacting with PPARgamma. Moreover, the predicted binding free energies for the ligands correlated well with the binding constants measured by the surface plasmon resonance biosensor, indicating that the docking paradigm used in this study could possibly be employed in virtual screening to discover new PPARgamma ligands, although the docking program cannot accurately predict the absolute ligand-PPARgamma binding affinity.  相似文献   

16.
Signal transduction processes are typically initiated by the interaction of signal molecules with sensor domains. The current lack of information on the signal molecules that feed into regulatory circuits forms a major bottleneck that hampers the understanding of regulatory processes. McKellar et al. report a high‐throughput approach for the identification of signal molecules, which is based on thermal shift assays of recombinant sensor domains in the absence and presence of compounds from commercially available ligand collections. Initial binding studies with the sensor domain of the PctA chemoreceptor of Pseudomonas aeruginosa showed a close match between thermal shift assay results and microcalorimetric studies reported previously. Using thermal shift assays the authors then identify signals that bind to three chemoreceptors of the kiwifruit pathogen P. syringae pv. Actinidiae NZ‐V13. Microcalorimetric binding studies and chemotaxis assays have validated the relevance of these ligands. The power of this technique lies in the combination of a high‐throughput analytical tool with commercially available compound collections. The approach reported is universal since it can be employed to identify signal molecules to any type of sensor domain. There is no doubt that this technique will facilitate the identification of many signal molecules in future years.  相似文献   

17.
Polycyclic aromatic hydrocarbons are among the most threatening pollutants widely present in the environment. Simple and economic methods of continuous monitoring of these compounds in real time are not yet available, although becoming increasingly needed. Odorant-binding proteins (OBPs) present unique characteristics of thermal and chemical stability for building robust, reliable, and inexpensive biosensors for such molecules. To investigate this possibility, we have engineered the pig OBP, whose three-dimensional structure has been resolved, introducing a tryptophan residue in the core of the binding pocket, as a fluorescence reporter for the presence of bound ligands. Binding affinities of several polyaromatic hydrocarbons to mutagenically modified OBPs were measured in competitive binding assays. Moreover, the presence of aromatic ligands was also successfully monitored in the modified OBPs by recording the quenching of intrinsic fluorescence of the protein. These data indicate that OBPs bind several aromatic polycyclic compounds with good affinities, that the specificity of these proteins can be easily modified by changing specific amino acid residues and that the introduction of a tryptophan residue in the binding site allows monitoring of aromatic ligands using direct fluorescence measurements.  相似文献   

18.
A lanthanide-based assay for ligand-receptor interactions provides an attractive alternative to the traditional radiolabeled determinations in terms of sensitivity, throughput, and biohazards. We designed and tested peptide ligands modified with an Eu-DTPA chelate. These labeled ligands were used in competitive binding assays with results comparable to those obtained using the traditional radiolabeled binding assays. The sensitivity of time-resolved fluorescence is sufficient to detect attomoles of europium, allowing assays in 96-well plates, compared with 30-mm dishes for (125)I binding assays to whole cells. We verified binding of Eu-DTPA-NDP-alpha-MSH to cells overexpressing the human melanocortin-4 receptor. The Eu-labeled ligand bound to these cells with an affinity similar to that of unlabeled NDP-alpha-MSH and was used to optimize a competitive binding assay. The lanthanide-based assays provided superior results with higher throughput and eliminated the need for radioactive waste disposal. This assay is appropriate for high-throughput screening of ligand libraries.  相似文献   

19.
Combined applications of affinity purification procedures and mass-spectrometric analyses (affinity mass spectrometry or affinity-directed mass spectrometry) have gained broad interest in various fields of biological sciences. We have extended these techniques to the purification and analysis of closely related peptides from complex mixtures and to the characterization of binding motifs and relative affinities in protein-protein interactions. The posttranslational modifications in the carboxy-terminal region of porcine brain tubulin are used as an example for the applicability of affinity mass spectrometry in the characterization of complex patterns of related peptides. We also show that affinity mass spectrometry allows the mapping of sequential binding motifs of two interacting proteins. Using the ActA/Mena protein-protein complex as a model system, we show that we can selectively purify Mena-binding peptides from a tryptic digest of ActA. The results from this assay are compared to data sets obtained earlier by classical methods using synthetic peptides and molecular genetic experiments. As a further expansion of affinity mass spectrometry, we have established an internally standardized system that allows comparison of the affinities of related ligands for a given protein. Here the affinities of two peptide ligands for the monoclonal tubulin-specific antibody YL1/2 are determined in terms of half-maximal competition.  相似文献   

20.
Aptamers as reagents for high-throughput screening   总被引:1,自引:0,他引:1  
Green LS  Bell C  Janjic N 《BioTechniques》2001,30(5):1094-6, 1098, 1100 passim
The identification of new drug candidates from chemical libraries is a major component of discovery research in many pharmaceutical companies. Given the large size of many conventional and combinatorial libraries and the rapid increase in the number of possible therapeutic targets, the speed with which efficient high-throughput screening (HTS) assays can be developed can be a rate-limiting step in the discovery process. We show here that aptamers, nucleic acids that bind other molecules with high affinity, can be used as versatile reagents in competition binding HTS assays to identify and optimize small-molecule ligands to protein targets. To illustrate this application, we have used labeled aptamers to platelet-derived growth factor B-chain and wheat germ agglutinin to screen two sets of potential small-molecule ligands. In both cases, binding affinities of all ligands tested (small molecules and aptamers) were strongly correlated with their inhibitory potencies in functional assays. The major advantages of using aptamers in HTS assays are speed of aptamer identification, high affinity of aptamers for protein targets, relatively large aptamer-protein interaction surfaces, and compatibility with various labeling/detection strategies. Aptamers may be particularly useful in HTS assays with protein targets that have no known binding partners such as orphan receptors. Since aptamers that bind to proteins are often specific and potent antagonists of protein function, the use of aptamers for target validation can be coupled with their subsequent use in HTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号