首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Ca2+ and calmodulin (CaM) on the activation of purified bovine brain Ins(1,4,5)P3 kinase was quantified and interpreted according to the model of sequential equilibria generally used for other calmodulin-stimulated systems. Two main conclusions can be drawn. (i) CaM.Ca3 and CaM.Ca4 together are the biologically active species in vitro, as is the case for the great majority of other calmodulin targets. (ii) These species bind in a non-co-operative way to the enzyme with an affinity constant of 8.23 x 10(9) M-1, i.e. approx 10-fold higher than for most calmodulin-activated target enzymes. The dose-response curve of the activation of Ins(1,4,5)P3 kinase by calmodulin is not significantly impaired by melittin and trifluoperazine, whereas under very similar assay conditions the half-maximal activation of bovine brain cyclic AMP phosphodiesterase requires over 30-50-fold higher concentrations of CaM when 1 microM melittin or 20 microM-trifluoperazine is present in the assay medium. Similarly, 1 microM of the anti-calmodulin peptides seminalplasmin and gramicidin S, as well as 20 microM of N-(6-aminohexyl)-5-chloro-1-naphthalene-sulphonamide (W7), do not inhibit the activation process. These data suggest that binding and activation of Ins(1,4,5)P3 kinase require surface sites of calmodulin which are different from those involved in the binding of most other target enzymes or of model peptides.  相似文献   

2.
The calcium-dependent binding of melittin by calmodulin effectively inhibits the hemolytic activity of melittin in suspensions of washed rabbit erythrocytes. Protection is also obtained with troponin C (+/-Ca++), denatured phosphorylase kinase, and denatured calcineurin but not with whole troponin or the native enzymes. These effects can be used both in assays for melittin in venom samples and in determinations of calmodulin or related proteins.  相似文献   

3.
Functional significance of the central helix in calmodulin   总被引:6,自引:0,他引:6  
The 3-A crystal structure of calmodulin indicates that it has a polarized tertiary arrangement in which calcium binding domains I and II are separated from domains III and IV by a long central helix consisting of residues 65-92. To investigate the functional significance of the central helix, mutated calmodulins were engineered with alterations in this region. Using oligonucleotide-primed site-directed mutagenesis, Thr-79 was converted to Pro-79 to generate CaMPM. CaMPM was further mutated by insertion of Pro-Ser-Thr-Asp between Asp-78 and Pro-79 to yield CaMIM. Calmodulin, CaMPM, and CaMIM were indistinguishable in their ability to activate calcineurin and Ca2+-ATPase. All mutated calmodulins would also maximally activate cGMP-phosphodiesterase and myosin light chain kinase, however, the concentrations of CaMPM and CaMIM necessary for half-maximal activation (Kact) were 2- and 9-fold greater, respectively, than CaM23. Conversion of the 2 Pro residues in CaMIM to amino acids that predict retention of helical secondary structure did not restore normal calmodulin activity. To investigate the nature of the interaction between mutated calmodulins and target enzymes, synthetic peptides modeled after the calmodulin binding region of smooth and skeletal muscle myosin light chain kinase were prepared and used as inhibitors of calmodulin-dependent cGMP-phosphodiesterase. The data suggest that the different kinetics of activation of myosin light chain kinase by CaM23 and CaMIM are not due to differences in the ability of the activators to bind to the calmodulin binding site of this enzyme. These observations are consistent with a model in which the length but not composition of the central helix is more important for the activation of certain enzymes. The data also support the hypothesis that calmodulin contains multiple sites for protein-protein interaction that are differentially recognized by its multiple target proteins.  相似文献   

4.
A site-directed mutagenesis study of yeast calmodulin   总被引:2,自引:0,他引:2  
A site-directed mutagenesis study was carried out in order to understand the regulatory mechanism of calmodulin. We started from the yeast (Saccharomyces cerevisiae) calmodulin gene since it has many differences in amino acid sequence and inferior functional properties compared with the vertebrate calmodulin. Recombinant yeast calmodulins were generated in Escherichia coli transformed by constructed expression plasmids. Three recombinant calmodulins were obtained. The first two were YCM61G, in which the Ca2(+)-binding site 2 (the four Ca2(+)-binding EF-hand structures in calmodulin were numbered from the N-terminus) was converted to the same as that in vertebrate calmodulin, and YCM delta 132-148, in which the C-terminal half sequence of site 4 was deleted. These two recombinant calmodulins had the same maximum Ca2+ binding (3 mol/mol) as yeast calmodulin, which indicates that site 4 of yeast calmodulin was the one losing Ca2+ binding capacity. YCM delta 132-148 could not activate target enzymes, whereas its Ca2+ binding profile was similar to those of yeast calmodulin and YCM61G. Therefore, the structure in site 4 which cannot bind Ca2+ is indispensable for the regulatory function of yeast calmodulin. The complete regulatory function of vertebrate calmodulin can be attained by the combination of 4 Ca2+ binding structures. The negative charge cluster in the central alpha-helix region is suggested to stabilize the active conformation of calmodulin, since the third yeast calmodulin mutant, YCM83E, which had the negative charge cluster, increased the maximum activation of myosin light chain kinase.  相似文献   

5.
Using site-directed mutagenesis we have expressed in Escherichia coli three engineered calmodulins (CaM) containing deletions in the solvent-exposed region of the central helix. These are CaM delta 84, Glu-84 removed; CaM delta 83-84, Glu-83 and Glu-84 removed; and CaM delta 81-84, Ser-81 through Glu-84 removed. The abilities of these proteins to activate skeletal muscle myosin light chain kinase, plant NAD kinase, and bovine brain calcineurin activities were determined, as were their abilities to bind a synthetic peptide based on the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Similar results were obtained with all three deletion proteins. Vm values for enzymes activated by the deletion proteins are all within 10-20% of those values obtained with bacterial control calmodulin. Relative to bacterial control values, changes in Kact or Kd values associated with the deletions are all less than an order of magnitude: Kact values for NAD kinase and myosin light chain kinase are increased 5-7-fold, Kd values for binding of the synthetic peptide are increased 4-7-fold, and Kact values for calcineurin are increased only 1-3-fold. In assays of NAD kinase and myosin light chain kinase activation some differences between bovine calmodulin and bacterial control calmodulin were observed. With NAD kinase, Kact values for the bacterial control protein are increased 4-fold relative to values for bovine calmodulin, and Vm values are increased by 50%; with myosin light chain kinase, Kact values are increased 2-fold and Vm values are decreased 10-15% relative to those values obtained with bovine calmodulin. These differences between bacterial control and bovine calmodulins probably can be attributed to known differences in postranslational processing of calmodulin in bacterial and eucaryotic cells. No differences between bovine and control calmodulins were observed in assays of calcineurin activation or peptide binding. Our observations indicate that contacts with the deleted residues, Ser-81 through Glu-84, are not critical in the calmodulin-target complexes we have evaluated. Formation of these calmodulin-target complexes also does not appear to be greatly affected by the global alterations in the structure of calmodulin that are associated with the deletions. In models in which the central helix is maintained in the altered calmodulins, each deleted residue causes the two lobes of calmodulin to be twisted 100 degrees relative to one another and brought 1.5 A closer together.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Properties of calcium-dependent regulatory proteins from fungi and yeast   总被引:2,自引:0,他引:2  
Calmodulins were isolated from vegetative mycelia of Basidiomycetes fungi, Agaricus campestris and Coprinus lagopus. These calmodulins showed similar mobilities to those of animal calmodulins on nondenaturing polyacrylamide gel electrophoresis in the presence or absence of Ca2+. The molecular weights of both calmodulins were determined to be 16,000. Agaricus calmodulin consisted of 148 amino acids including epsilon-N-trimethyllysine and cysteine. The UV-absorption spectrum showed the relatively high content of phenylalanine in Basidiomycetes calmodulins. The difference UV-absorption spectrum due to the blue shift by Ca2+ was observed. Both calmodulins activated muscle myosin light chain kinase and pea NAD+ kinase in a Ca2+-dependent manner, and the activities were inhibited by trifluoperazine or chlorpromazine. A calmodulin-like protein was partially purified from baker's yeast, Saccharomyces cerevisiae. However, detection of a calmodulin-like protein in prokaryotes was not successful.  相似文献   

7.
Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.  相似文献   

8.
A calmodulin-activated phosphorylation activity was identified in microsomal (endoplasmic reticulum) preparations from rat adipocytes. Activity was not detected in mitochondrial or plasma membrane fractions. Although the phosphorylation of several proteins was enhanced by addition of calmodulin, the major calmodulin-sensitive protein had a molecular weight of 54,000. A series of experiments were conducted to determine if the microsomal phosphorylation was either calmodulin-containing phosphorylase kinase or calmodulindependent myosin light chain kinase. The phosphorylation of the 54,000 Dalton band in microsomal preparations was 1) not significantly reduced by potential competing protein substrates, e.g. actomyosin or phosphorylase b, 2) nearly equally well phosphorlyated at pH 8.6 or pH 7.0, unlike actomyosin or phosphorylase b, and 3) not increased by addition of phosphorylase kinase or myosin light chain kinase. The results demonstrate that this microsomal calmodulinactivated phosphorylation is catalysed by a protein kinase distinct from phosphorylase kinase or myosin light chain kinase.  相似文献   

9.
Trifluoperazine (TFP) binding by 14 calmodulins, including 12 produced by site-directed mutagenesis, was determined. While vertebrate calmodulin binds 4.2 +/- 0.2 equiv of TFP, Escherichia coli expressed but unmutated calmodulins bind about 5.0 +/- 0.5 equiv of TFP. The cause for this difference is not known. The E. coli expressed proteins consist of two different series expressed from different calmodulin genes, CaMI and SYNCAM. The wild-type genes code for proteins that differ by nine conservative amino acid substitutions. Both these calmodulins bind 5 equiv of TFP with similar affinities, thus none of these conservative substitutions has any additional effect on TFP binding. Some altered calmodulins (deletion of EE83-84 or SEEE81-84, changing DEE118-120----KKK, M124----I,E120----K, or E82----K) have no appreciable effect on TFP binding. Other mutations affect either the binding of one TFP (deletion of E84) or about two TFP (changing E84----K, EEE82-84----KKK, E67----A, DEQ6-8----KKK, or E11----K). The mutations that affect TFP binding are localized to three regions of calmodulin: The amino-terminal alpha-helix, the central helix between the two globular ends of calmodulin, and a calcium-binding site in the second calcium-binding domain. The results are consistent with each of these regions either directly participating in drug binding or involved structurally in maintaining or inducing the correct conformation for TFP binding in the amino-terminal half of calmodulin.  相似文献   

10.
The transient receptor potential-like ion channel from Drosophila melanogaster was originally identified as a calmodulin binding protein (Philips et al., 1992) involved in the dipterian phototransduction process. We used a series of fusion proteins and an epitope expression library of transient receptor potential-like fusion proteins to characterize calmodulin binding regions in the transient receptor potential-like channel through the use of [125I]calmodulin and biotinylated calmodulin and identified two distinct sites at the C-terminus of the transient receptor potential-like ion channel. Calmodulin binding site 1, predicted from searching of the primary structure for amphiphilic helices (Philips et al., 1992), covers a 16 amino acid sequence (S710-I725) and could only be detected through biotinylated calmodulin. Calmodulin binding site 2 comprises at least 13 amino acids (K859ETAKERFQRVAR871) and binds both [125I]calmodulin and biotinylated calmodulin. Both sites (i) bind calmodulin at least in a one to one stoichiometry, (ii) differ in their affinity for calmodulin revealing apparent Ki values of 12.3 nM (calmodulin binding site 1) and 1.7 nM (calmodulin binding site 2), respectively, (iii) bind calmodulin only in the presence of Ca2+ with 50% of site 1 and site 2, respectively, occupied by calmodulin in the presence of 0.1 microM (calmodulin binding site 1) and 3.3 microM Ca2+ (calmodulin binding site 2) and give evidence that (iv) a Ca2+-calmodulin-dependent mechanism contributes to transient receptor potential-like cation channel modulation when expressed in CHO cells.  相似文献   

11.
Melittin is a 26-amino acid amphipathic peptide which binds to calmodulin in a calcium-dependent manner. The utility of melittin as a peptide replica of the calmodulin-binding region of calmodulin acceptor proteins (CaMBPs) was investigated. Antibody against melittin was raised and purified by antigen affinity chromatography. Interaction of the antibody with CaMBPs was initially suggested by the ability of anti-melittin-Sepharose, but not nonimmune IgG-Sepharose, to bind calmodulin-dependent cyclic AMP phosphodiesterase. Direct interaction of melittin antibody with the calmodulin-binding domain of acceptor proteins was demonstrated by quantitative inhibition of calmodulin binding to the purified CaMBPs, myosin light chain kinase, and eel electric organ CaMBP55. These results indicate that melittin antibody identifies regions of structural similarity between calmodulin acceptor proteins, and this region includes a common calmodulin-binding domain.  相似文献   

12.
Among numerous protein kinases found in mammalian cell systems there is a distinct subfamily of serine/threonine kinases that are regulated by calmodulin or other related activators in a calcium concentration dependent manner. Members of this family are involved in various cellular processes like cell proliferation and death, cell motility and metabolic pathways. In this contribution we shall review the available structural biology data on five members of this kinase family (calcium/calmodulin dependent kinase, twitchin kinase, titin kinase, phosphorylase kinase, myosin light chain kinase). As a common element, all these kinases contain a regulatory tail, which is C-terminal to their catalytic domain. The available 3D structures of two members, the serine/threonine kinases of the giant muscle proteins twitchin and titin in the autoinhibited conformation, show how this regulatory tail blocks their active sites. The structures suggest that activation of these kinases requires unblocking the active site from the C-terminal extension and conformational rearrangement of the active site loops. Small angle scattering data for myosin light chain kinase indicate a complete release of the C-terminal extension upon calcium/calmodulin binding. In addition, members of this family are regulated by diverse add-on mechanisms, including phosphorylation of residues within the activation segment or the P+1 loop as well as by additional regulatory subunits. The available structural data lead to the hypothesis of two different activation mechanisms upon binding to calcium sensitive proteins. In one model, the regulatory tail is entirely released ("fall-apart"). The alternative model ("looping-out") proposes a two-anchored release mechanism.  相似文献   

13.
J A Cox 《Federation proceedings》1984,43(15):3000-3004
khe conformational and functional events in calmodulin (CaM) are disproportionate to the mean saturation by Ca2+. The enhancement of intrinsic tyrosine fluorescence closely follows the appearance of species CaM X Can greater than or equal to 1; the exposure of the hydrophobic patch at the surface of CaM coincides with the appearance of CaM X Can greater than or equal to 2. For the activation of four different target enzymes, i.e., brain phosphodiesterase and adenylate cyclase, red blood cell Ca,Mg-ATPase, and skeletal muscle phosphorylase b kinase, CaM X Can greater than or equal to 3 is required. The different enzymes have the same affinity for the active species. The direct interaction of CaM with Ca2+ and phosphorylase b kinase has been analyzed according to the theory of energy coupling: whereas the first two stoichiometric calcium-binding constants in the complex are not significantly different from those of free CaM, the third Ca2+ binds with an affinity at least 10(6)-fold higher to enzyme-bound CaM than to free CaM, which corresponds to a free energy coupling of -7 kcal/mol CaM. The similarities in the activation mechanism of different enzymes suggest the existence of one unique CaM-binding domain. The characteristics of the interaction between CaM and melittin, a small amphiphatic cytotoxin, led us to propose melittin as a model for such a CaM-binding domain.  相似文献   

14.
Calmodulin was covalently modified with 10-(1-propionyloxysuccinimide)-2-trifluoromethylphenothiazine++ + to stoichiometries between 0 and 2 mol/mol in the presence of Ca2+. The modified calmodulins, oleic acid, and trypsin were assayed for their ability to activate pea plant NAD kinase, bovine brain 3',5'-cAMP phosphodiesterase, and human erythrocyte Ca2+-ATPase. All modified calmodulins activated both phosphodiesterase and Ca2+-ATPase; at the highest concentration assayed, calmodulin modified with 2 mol of reagent/mol activated phosphodiesterase and Ca2+-ATPase to 53% and 100%, respectively, of the activation obtained with unmodified calmodulin. However, higher concentrations of the modified calmodulins were required to observe the same activation; at least 900-fold and 100-fold higher concentrations were required for the two enzymes, respectively. NAD kinase was not activated by any calmodulin labeled to a stoichiometry greater than 1 mol/mol even when a concentration equal to 17,000 times the apparent dissociation constant of calmodulin for NAD kinase was assayed. Therefore, the modified protein (and not some fraction resistant to labeling) is active toward the mammalian enzymes but inactive toward plant NAD kinase. The different response of the three enzymes to the chemical modification suggests that the enzymes may utilize different binding domains on calmodulin. NAD kinase also was not activated by other known activators of the two mammalian enzymes, namely lipids and limited proteolysis. In parallel experiments using the same agents on each enzyme, NAD kinase was the only enzyme of the three that was not activated by oleic acid and several other lipids or by limited trypsin digestion. These results show that NAD kinase possesses several attributes which would not be predicted by current models of the mechanism of activation of enzymes by calmodulin.  相似文献   

15.
Calmodulin contains several binding sites for hydrophobic compounds. The apparent specificity of various 'calmodulin antagonists' for these sites was investigated. The Ki values for the inhibition of calmodulin-activated cyclic-nucleotide phosphodiesterase and myosin light-chain kinase was determined. In addition, the Kd values of the same compounds for binding to calmodulin were measured. The compounds could be separated into four groups. Group I and II compounds inhibited competitively the activation of the phosphodiesterase and myosin light-chain kinase by calmodulin. Group I compounds inhibited the activation of the phosphodiesterase and myosin light-chain kinase at identical concentrations. In contrast, group II compounds inhibited the activation of the phosphodiesterase at 5-10-fold lower concentrations than that of myosin light-chain kinase. Group III compounds inhibited the activation of these enzymes by an uncompetitive mechanism. Group IV compounds inhibited the activation of the phosphodiesterase with Ki values above 10 microM and did not affect the activation of myosin light-chain kinase. Binding of [3H]bepridil to calmodulin under equilibrium conditions yielded one high-affinity site (apparent Kd 0.4 microM) and four low affinity sites (apparent Kd 44 microM). Group I compounds interfered with the binding of bepridil to the high and low-affinity sites in a competitive manner. Group II compounds interfered in a non-competitive manner with the high-affinity site and apparently competed only with one of the low-affinity sites. Group III compounds did not compete with any of the bepridil-binding sites. Nimodipine, a group III compound, bound to one site on calmodulin with a Kd value of 1.1 microM. Other dihydropyridines competed with [3H]nimodipine for this site. The group I and II compounds, trifluoperazine and prenylamine, did not affect the binding of [3H]nimodipine. These data show that 'calmodulin antagonists' can be differentiated into at least three distinct groups. Kinetic and binding data suggest that the three groups bind to at least three different sites on calmodulin. Selective occupation of these sites may inhibit specifically the activation of distinct enzymes.  相似文献   

16.
The activation of phosphorylase kinase (EC 2.7.1.38; ATP:phosphorylase b phosphotransferase) by the catalytic subunit of cAMP-dependent protein kinase (EC 2.7.1.37; ATP:protein phosphotransferase) is inhibited by calmodulin. The mechanism of that inhibition has been studied by kinetic measurements of the interactions of the three proteins. The binding constant for calmodulin with phosphorylase kinase was found to be 90 nM when measured by fluorescence polarization spectroscopy. Glycerol gradient centrifugation studies indicated that 1 mol of calmodulin was bound to each phosphorylase kinase. Phosphorylation of the phosphorylase kinase did not reduce the amount of calmodulin bound. Kinetic studies of the activity of the catalytic subunit of cAMP-dependent protein kinase on phosphorylase kinase as a function of phosphorylase kinase and calmodulin concentrations were performed. The results of those studies were compared with mathematical models of four different modes of inhibition: competitive, noncompetitive, substrate depletion, and inhibition by a complex between phosphorylase kinase and calmodulin. The data conform best to the model in which the inhibitory species is a complex of phosphorylase kinase and calmodulin. The complex apparently competes with the substrate, phosphorylase kinase, which does not have exogenous calmodulin bound to it. In contrast, the phosphorylation of the synthetic phosphate acceptor peptide, Kemptide, is not inhibited by calmodulin.  相似文献   

17.
The gel-overlay technique with 125I-labelled calmodulin allowed the detection of several calmodulin-binding proteins of Mr 280 000, 150 000, 97 000, 56 000, 35 000 and 24 000 in canine cardiac sarcoplasmic reticulum. Only two calmodulin-binding proteins could be identified unambiguously. Among them, the 97 000-Mr protein that undergoes phosphorylation in the presence of Ca2+ and calmodulin, is likely to be glycogen phosphorylase. In contrast, the (Ca2+ + Mg2+)-activated ATPase did not appear to bind calmodulin under our experimental conditions. The second known calmodulin target is dephosphophospholamban, which migrates with an apparent Mr of 24 000. The dimeric as well as the monomeric form of phospholamban was found to bind calmodulin. Phospholamban shifts the apparent Kd of erythrocyte (Ca2+ + Mg2+)-activated ATPase for calmodulin, suggesting thus a tight binding of calmodulin to the proteolipid. Interestingly enough, phospholamban phosphorylation by either the catalytic subunit of cyclic AMP-dependent protein kinase or the Ca2+/calmodulin-dependent phospholamban kinase was found to inhibit calmodulin binding.  相似文献   

18.
N C Strynadka  M N James 《Proteins》1990,7(3):234-248
Crystals of troponin C are stabilized by an intermolecular interaction that involves the packing of helix A from the N-terminal domain of one molecule onto the exposed hydrophobic cleft of the C-terminal domain of a symmetry related molecule. Analysis of this molecular recognition interaction in troponin C suggests a possible mode for the binding of amphiphilic helical molecules to troponin C and to calmodulin. From the template provided by this troponin C packing, it has been possible to build a model of the contact region of mastoporan as it might be bound to the two Ca2+ binding proteins. A possible binding mode of melittin to calmodulin is also proposed. Although some of the characteristics of binding are similar for the two amphiphilic peptides, the increased length of melittin requires a significant bend in the calmodulin central helix similar to that suggested recently for the myosin light chain kinase calmodulin binding peptide (Persechini and Kretsinger: Journal of Cardiovascular Pharmacology 12:501-512, 1988). Not only are the hydrophobic interactions important in this model, but there are several favorable electrostatic interactions that are predicted as a result of the molecular modeling. The regions of troponin-C and calmodulin to which amphiphilic helices bind are similar to the regions to which the neuroleptic drugs such as trifluoperazine have been predicted to bind (Strynadka and James: Proteins 3:1-17, 1988).  相似文献   

19.
Ca(2+)-dependent ganglioside-binding protein was isolated from a soluble cytosol fraction of mouse brains using a ganglioside affinity column prepared with a mixture of bovine brain gangliosides. It was identified as calmodulin based on the following features identical with those of calmodulin: molecular weight, pI, chromatographic profile and amino acid sequences of lysyl-endopeptidase digests, and ability to activate cyclic nucleotide phosphodiesterase. Bovine brain calmodulin derivatized with 5-dimethylaminonaphthalene-1-sulfonyl (dansyl-calmodulin), tetramethylrhodamine isothiocyanate, or biotin was also shown to bind to the ganglioside affinity column Ca2+ dependently and elute with gangliosides GD1a, GD1b, GT1b, GQ1b, GM1, and GM2, melittin, and trifluoperazine but not with GgOse4Cer and oligosaccharides of GM1, GD1a, and GT1b. Modification of the Lys94 residue of calmodulin by biotinylation drastically reduced the capacity for ganglioside binding. Ganglioside GD1b caused a blue shift and increase in intensity of the fluorescence emission spectrum of dansyl-calmodulin in the presence of Ca2+. The increment in fluorescence was proportional to the amount of GD1b added and was maximal at the molar ratio of GD1b to calmodulin, approximately 7.8. Gangliosides are thus shown to specifically bind to calmodulin, and this binding may be a general mechanism for regulating calmodulin-dependent enzymes with consequent cellular response, such as cell differentiation.  相似文献   

20.
Trypsin-treated Ca2+/calmodulin-dependent phosphodiesterase (CA2+-PDE), which had lost its sensitivity to Ca2+-calmodulin, was inhibited by various calmodulin antagonists, trifluoperazine, chlorpromazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and aminoalkyl chain analogues of W-7 (A-3, A-4, A-5, I-240, A-6, A-7). These inhibitory effects were less than those on calmodulin-activated Ca2+-PDE. The ability of these compounds to inhibit trypsin-treated Ca2+-PDE correlated well with the inhibitory effect on calmodulin-activated Ca2+-PDE. W-7 inhibited trypsin-treated Ca2+-PDE in a competitive fashion with respect to cyclic GMP and the Ki value was 300 microM. The inhibition of trypsin-treated Ca2+-PDE by W-7 (300 microM) or A-7 (100 microM) was overcome by the addition of excess calmodulin. Trypsin-treated Ca2+-PDE can bind to W-7-coupled cyanogen bromide-activated Sepharose 4B in the presence of 1 mM EGTA. These results suggest that Ca2+-PDE possesses a binding site for calmodulin antagonists and that the binding site for these antagonists on this enzyme may be structurally similar to the binding site on calmodulin itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号