首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major challenge in cell biology is to elucidate molecular mechanisms that underlie the spatio-temporal control of cellular processes. These studies require microscope imaging techniques and associated optical probes that provide high-contrast and high-resolution images of specific proteins and their complexes. Auto-fluorescence however, can severely compromise image contrast and represents a fundamental limitation for imaging proteins within living cells. We have previously shown that optical switch probes and optical lock-in detection (OLID) image microscopy improve image contrast in high background environments. Here, we present the design, synthesis, and characterization of amino-reactive and cell permeable optical switches that integrate the highly fluorescent fluorophore, tetramethylrhodamine (TMR) and spironaphthoxazine (NISO), a highly efficient optical switch. The NISO moiety in TMR-NISO undergoes rapid and reversible, excited-state driven transitions between a colorless spiro (SP)-state and a colored merocyanine (MC)-state in response to irradiation with 365 and >530 nm light. In the MC-state, the TMR (donor) emission is almost completely extinguished by Förster resonance energy transfer (FRET) to the MC probe (acceptor), whereas in the colorless SP-state, the quantum yield for TMR fluorescence is maximal. Irradiation of TMR-NISO with a defined sequence of 365 and 546 nm manipulates the levels of SP and MC with concomitant modulation of FRET efficiency and the TMR fluorescence signal. High fidelity optical switching of TMR fluorescence is shown for TMR-NISO probes in vitro and for membrane permeable TMR-NISO within living cells.  相似文献   

2.
We present the design, synthesis and characterization of new functionalized fluorescent optical switches for rapid, all-visible light-mediated manipulation of fluorescence signals from labelled structures within living cells, and as probes for high-contrast optical lock-in detection (OLID) imaging microscopy. A triazole-substituted BIPS (TzBIPS) is identified from a rational synthetic design strategy that undergoes robust, rapid and reversible, visible light-driven transitions between a colorless spiro- (SP) and a far-red absorbing merocyanine (MC) state within living cells. The excited MC-state of TzBIPS may also decay to the MC-ground state emitting near infra-red fluorescence, which is used as a sensitive and quantitative read-out of the state of the optical switch in living cells. The SP to MC transition for a membrane-targeted TzBIPS probe (C12-TzBIPS) is triggered at 405 nm at an energy level compatible with studies in living cells, while the action spectrum of the reverse transition (MC to SP) has a maximum at 650 nm. The SP to MC transition is complete within the 790 ns pixel dwell time of the confocal microscope, while a single cycle of optical switching between the SP and MC states in a region of interest is complete within 8 ms (125 Hz) within living cells, the fastest rate attained for any optical switch probe in a biological sample. This property can be exploited for real-time correction of background signals in living cells. A reactive form of TzBIPS is linked to secondary antibodies and used, in conjunction with an enhanced scope-based analysis of the modulated MC-fluorescence in immuno-stained cells, for high-contrast immunofluorescence microscopic analysis of the actin cytoskeleton.  相似文献   

3.
In the last decade, the long-standing biologist's dream of seeing the molecular events within the living cell came true. This technological achievement is largely due to the development of fluorescence microscopy technologies and the advent of green fluorescent protein as a fluorescent probe. Such imaging technologies allowed us to determine the subcellular localization, mobility and transport pathways of specific proteins and even visualize protein-protein interactions of single molecules in living cells. Direct observation of such molecular dynamics can provide important information about cellular events that cannot be obtained by other methods. Thus, imaging of protein dynamics in living cells becomes an important tool for cell biology to study molecular and cellular functions. In this special issue of review articles, we review various imaging technologies of microscope hardware and fluorescent probes useful for cell biologists, with a focus on recent development of live cell imaging.  相似文献   

4.
Optical imaging of bacterial infection in living animals is usually conducted with genetic reporters such as light-emitting enzymes or fluorescent proteins. However, there are many circumstances where genetic reporters are not applicable, and there is a need for exogenous synthetic probes that can selectively target bacteria. The focus of this study is a fluorescent imaging probe that is composed of a bacterial affinity group conjugated to a near-infrared dye. The affinity group is a synthetic zinc (II) coordination complex that targets the anionic surfaces of bacterial cells. The probe allows detection of Staphylococcus aureus infection (5 x 10 (7) cells) in a mouse leg infection model using whole animal near-infrared fluorescence imaging. Region of interest analysis showed that the signal ratio for infected leg to uninfected leg reaches 3.9 +/- 0.5 at 21 h postinjection of the probe. Ex vivo imaging of the organs produced a signal ratio of 8 for infected to uninfected leg. Immunohistochemical analysis confirmed that the probe targeted the bacterial cells in the infected tissue. Optimization of the imaging filter set lowered the background signal due to autofluorescence and substantially improved imaging contrast. The study shows that near-infrared molecular probes are amenable to noninvasive optical imaging of localized S. aureus infection.  相似文献   

5.
Genetically encoded probes for the optical imaging of excitable cell activity have been constructed by fusing fluorescent proteins to functional proteins that are involved in physiological signaling systems, such as those that control membrane potential, free calcium and cyclic nucleotide concentrations and pH. Using specific promoters and targeting signals, the probes are introduced into an intact organism and directed to specific tissue regions, cell types, and subcellular compartments, thereby extracting specific signals more efficiently and in a more relevant physiological context than before. Optical imaging using genetically encoded probes has enabled us to decipher spatio-temporal information coded in complex tissues.  相似文献   

6.
Diagnosis of diseases by different imaging methods can provide complementary information about the functional status of diseased tissues or organs. To overcome the current difficulties in coregistering images from different imaging modalities with a high degree of accuracy, we prepared near-infrared (NIR) monomolecular multimodal imaging agents (MOMIAs) consisting of a heptamethine carbocyanine and 111In-DOTA chelate that served as antennae for optical and scintigraphic imaging, respectively. Their spectral properties clearly show that coordination of indium to MOMIA increased the fluorescence intensity of the compounds. The MOMIAs are exceptionally stable in biological media and serum up to 24 h at 37 degrees C. Biodistribution of the compounds in mice obtained by fluorescence photon and gamma-counts demonstrated a similar distribution trend of the molecular probe in different tissues, suggesting that the detected fluorescence and gamma-emissions emanated from the same source (MOMIA). At 24 h postinjection, the MOMIAs were excreted by the renal and hepatobiliary systems and the blood level of a representative MOMIA was very low, thereby reducing background noise caused by circulating molecular probes. These findings demonstrate the feasibility of preparing single molecules with the capacity to emit discernible and diagnostic fluorescent and gamma-radiations for optical and nuclear imaging of living organisms.  相似文献   

7.
Labeling of RGD peptides with near-infrared fluorophores yields optical probes for noninvasive imaging of tumors overexpressing ανβ3 integrins. An important prerequisite for optimum detection sensitivity in vivo is strongly absorbing and highly emissive probes with a known fluorescence lifetime. The RGD-Cy5.5 optical probe was derived by coupling Cy5.5 to a cyclic arginine-glycine-aspartic acid-d-phenylalanine-lysine (RGDfK) peptide via an aminohexanoic acid spacer. Spectroscopic properties of the probe were studied in different matrices in comparison to Cy5.5. For in vivo imaging, human glioblastoma cells were subcutaneously implanted into nude mice, and in vivo fluorescence intensity and lifetime were measured. The fluorescence quantum yield and lifetime of Cy5.5 were found to be barely affected on RGD conjugation but dramatically changed in the presence of proteins. By time domain fluorescence imaging, we demonstrated specific binding of RGD-Cy5.5 to glioblastoma xenografts in nude mice. Discrimination of unspecific fluorescence by lifetime-gated analysis further enhanced the detection sensitivity of RGD-Cy5.5-derived signals. We characterized RGD-Cy5.5 as a strongly emissive and stable probe adequate for selective targeting of ανβ3 integrins. The specificity and thus the overall detection sensitivity in vivo were optimized with lifetime gating, based on the previous determination of the probes fluorescence lifetime under application-relevant conditions.  相似文献   

8.
Localization-based superresolution optical imaging is rapidly gaining popularity, yet limited availability of genetically encoded photoactivatable fluorescent probes with distinct emission spectra impedes simultaneous visualization of multiple molecular species in living cells. We introduce PAmKate, a monomeric photoactivatable far-red fluorescent protein, which facilitates simultaneous imaging of three photoactivatable proteins in mammalian cells using fluorescence photoactivation localization microscopy (FPALM). Successful probe identification was achieved by measuring the fluorescence emission intensity in two distinct spectral channels spanning only ∼100 nm of the visible spectrum. Raft-, non-raft-, and cytoskeleton-associated proteins were simultaneously imaged in both live and fixed fibroblasts coexpressing Dendra2-hemagglutinin, PAmKate-transferrin receptor, and PAmCherry1-β-actin fusion constructs, revealing correlations between the membrane proteins and membrane-associated actin structures.  相似文献   

9.
A variety of proteases are overexpressed or activated during pathogenesis and represent important targets for therapeutic drugs. We have previously shown that optical imaging probes sensitive in the near-infrared fluorescence (NIRF) spectrum can be used for in vivo imaging of enzyme activity. In the current study, we show that these probes can be designed with specificity for specific enzymes, for example, cathepsin D which is known to be overexpressed in many tumors. A NIR cyanine fluorochrome served as the optical reporter and was attached to the amino terminal of an 11 amino acid peptide sequence with specificity for cathepsin D. The peptides were subsequently attached to a synthetic graft copolymer for efficient tumoral delivery. The close spatial proximity of the multiple fluorochromes resulted in quenching of fluorescence in the bound state. A 350-fold signal amplification was observed post cleavage during in vitro testing. Cell culture experiments using a rodent tumor cell line stably transfected with human cathepsin D confirmed enzyme specific activation within cells. This sequence but not a scrambled control sequence showed enzyme specificity in vitro. We conclude that activatable NIRF optical probes can be synthesized to potentially probe for specific enzymes in living organisms.  相似文献   

10.
11.
Quantitative imaging of protein interactions in the cell nucleus   总被引:2,自引:0,他引:2  
Voss TC  Demarco IA  Day RN 《BioTechniques》2005,38(3):413-424
Over the past decade, genetically encoded fluorescent proteins have become widely used as noninvasive markers in living cells. The development of fluorescent proteins, coupled with advances in digital imaging, has led to the rapid evolution of live-cell imaging methods. These approaches are being applied to address biological questions of the recruitment, co-localization, and interactions of specific proteins within particular subcellular compartments. In the wake of this rapid progress, however, come important issues associated with the acquisition and analysis of ever larger and more complex digital imaging data sets. Using protein localization in the mammalian cell nucleus as an example, we will review some recent developments in the application of quantitative imaging to analyze subcellular distribution and co-localization of proteins in populations of living cells. In this report, we review the principles of acquiring fluorescence resonance energy transfer (FRET) microscopy measurements to define the spatial relationships between proteins. We then discuss how fluorescence lifetime imaging microscopy (FLIM) provides a method that is independent of intensity-based measurements to detect localized protein interactions with spatial resolution. Finally, we consider potential problems associated with the expression of proteins fused to fluorescent proteins for FRET-based measurements from living cells.  相似文献   

12.
Marvelous background rejection in total internal reflection fluorescence microscopy (TIR-FM) has made it possible to visualize single-fluorophores in living cells. Cell signaling proteins including peptide hormones, membrane receptors, small G proteins, cytoplasmic kinases as well as small signaling compounds have been conjugated with single chemical fluorophore or tagged with green fluorescent proteins and visualized in living cells. In this review, the reasons why single-molecule analysis is essential for studies of intracellular protein systems such as cell signaling system are discussed, the instrumentation of TIR-FM for single-molecule imaging in living cells is explained, and how single molecule visualization has been used in cell biology is illustrated by way of two examples: signaling of epidermal growth factor in mammalian cells and chemotaxis of Dictyostelium amoeba along a cAMP gradient. Single-molecule analysis is an ideal method to quantify the parameters of reaction dynamics and kinetics of unitary processes within intracellular protein systems. Knowledge of these parameters is crucial for the understanding of the molecular mechanisms underlying intracellular events, thus single-molecule imaging in living cells will be one of the major technologies in cellular nanobiology.  相似文献   

13.
Microscopy has become increasingly important for analysis of cells and cell function in recent years. This is due in large part to advances in light microscopy that facilitate quantitative studies and improve imaging of living cells. Analysis of fluorescence signals has often been a key feature in these advances. Such studies involve a number of techniques, including imaging of fluorescently labeled proteins in living cells, single-cell physiological experiments using fluorescent indicator probes, and immunofluorescence localization. The importance of fluorescence microscopy notwithstanding, there are instances in which electron microscopy provides unique information about cell structure and function. Correlative microscopy in which a fluorescence signal is reconciled with a signal from the electron microscope is an additional tool that can provide powerful information for cellular analysis. Here we review two different methodologies for correlative fluorescence and electron microscopy using ultrathin cryosections and the advantages attendant on this approach. (J Histochem Cytochem 49:803-808, 2001)  相似文献   

14.
Miyawaki A 《Neuron》2005,48(2):189-199
Fluorescence imaging has enabled us to decipher spatiotemporal information coded in complex tissues. Genetically encoded probes that enable fluorescence imaging of excitable cell activity have been constructed by fusing fluorescent proteins to functional proteins that are involved in physiological signaling. The probes are introduced into an intact organism and targeted to specific tissues, cell types, or subcellular compartments, thereby allowing specific signals to be extracted more efficiently than was previously possible. In this primer, I will describe how this approach has met neuroscientists' demands and desires.  相似文献   

15.
Here, we aimed to assess the feasibility of anti‐ESAT‐6 monoclonal antibody (mAb) coupling with IR783 and rhodamine fluorescent probe in the detection of ESAT‐6 expression in tuberculosis tissue of mice using near‐infrared fluorescence imaging. IR783 and rhodamine were conjugated to the anti‐ESAT‐6 mAb or IgG. Mice in the experimental group were injected with fluorescence‐labeled mAb probe, and mice in the control group were injected with fluorescence‐labeled non‐specific IgG antibody. Twenty‐four hours later, the lung tissue of mice was examined using ex vivo near‐infrared fluorescence imaging. In addition, the contrast‐to‐noise ratio (CNR) was calculated by measuring the signal intensities of the pulmonary lesions, normal lung tissue and background noise. The frozen lung tissue section was examined under fluorescence microscopy and compared with hemoxylin and eosin (HE) staining. The ex vivo near‐infrared fluorescence imaging showed that the fluorescence signal in the lung tuberculosis lesions in the experimental group was significantly enhanced, whereas there was only a weak fluorescence signal or even no fluorescence signal in the control group. CNR values were 64.40 ± 7.02 (n = 6) and 8.75 ± 3.87 (n = 6), respectively (t = 17.01, p < 0.001). The fluorescence accumulation distribution detected under fluorescence microscopy was consistent with HE staining of the tuberculosis region. In conclusion, anti‐ESAT‐6 mAb fluorescent probe could target and be applied in specific ex vivo imaging of mice tuberculosis, and may be of further use in tuberculosis in living mice. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Second harmonic generating (SHG) nanoprobes have recently emerged as versatile and durable labels suitable for in vivo imaging, circumventing many of the inherent drawbacks encountered with classical fluorescent probes. Since their nanocrystalline structure lacks a central point of symmetry, they are capable of generating second harmonic signal under intense illumination - converting two photons into one photon of half the incident wavelength - and can be detected by conventional two-photon microscopy. Because the optical signal of SHG nanoprobes is based on scattering, rather than absorption as in the case of fluorescent probes, they neither bleach nor blink, and the signal does not saturate with increasing illumination intensity. When SHG nanoprobes are used to image live tissue, the SHG signal can be detected with little background signal, and they are physiologically inert, showing excellent long-term photostability. Because of their photophysical properties, SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues with unmatched sensitivity and temporal resolution.  相似文献   

17.
In vivo molecular and cellular imaging with quantum dots   总被引:27,自引:0,他引:27  
Quantum dots (QDs), tiny light-emitting particles on the nanometer scale, are emerging as a new class of fluorescent probe for in vivo biomolecular and cellular imaging. In comparison with organic dyes and fluorescent proteins, QDs have unique optical and electronic properties: size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Recent advances have led to the development of multifunctional nanoparticle probes that are very bright and stable under complex in vivo conditions. A new structural design involves encapsulating luminescent QDs with amphiphilic block copolymers and linking the polymer coating to tumor-targeting ligands and drug delivery functionalities. Polymer-encapsulated QDs are essentially nontoxic to cells and animals, but their long-term in vivo toxicity and degradation need more careful study. Bioconjugated QDs have raised new possibilities for ultrasensitive and multiplexed imaging of molecular targets in living cells, animal models and possibly in humans.  相似文献   

18.
The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins.  相似文献   

19.
Peptide-based molecular beacons are Förster resonance energy transfer-based target-activatable probes. They offer control of fluorescence emission in response to specific cancer targets and thus are useful tools for in vivo cancer imaging. With our increasing knowledge about human genome in health and disease, peptide-based “smart” probes are continually developed for in vivo optical imaging of specific molecular targets, biological pathways and cancer progression and diagnosis. A class of fluorescent photosensitizers further extends the application of peptide beacons to cancer therapeutics. This review highlights the applications of peptide beacons in cancer imaging, the simultaneous treatment and response monitoring and smart therapeutics with a focus on recent improvements in the design of these probes.  相似文献   

20.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is highly enriched in excitatory synapses in the central nervous system and is critically involved in synaptic plasticity, learning, and memory. However, the precise temporal and spatial regulation of CaMKII activity in living cells has not been well described, due to lack of a specific method. Here, based on our previous work, we attempted to generate an optical probe for fluorescence lifetime imaging (FLIM) of CaMKII activity by fusing the protein with donor and acceptor fluorescent proteins at its amino- and carboxyl-termini. We first optimized the combinations of fluorescent proteins by taking advantage of expansion of fluorescent proteins towards longer wavelength in fluorospectrometric assay. Then using digital frequency domain FLIM (DFD-FLIM), we demonstrated that the resultant protein can indeed detect CaMKII activation in living cells. These FLIM versions of Camui could be useful for elucidating the function of CaMKII both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号