首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马俊平  杨犀  律娜  刘飞  陈燕  朱宝利 《遗传》2015,37(6):568-574
动物T细胞受体(T cell receptor,TCR)基因由多个不同的高度同源的基因家族组成,通过全基因组测序很难获得准确的基因序列和排列位置。文章通过在NCBI中发布的鸡TCR的γ链(TCRγ或TRG)基因片段序列定位了鸡TRG基因所在区域,并确定了与鸡TRG基因位点对应的细菌人工染色体(BAC)克隆(CH261-174P24)。对该克隆进行高通量的重新测序和组装后,得到含有10个scaffolds的基因组草图,较完整地覆盖了鸡TRG基因位点及两侧区域。通过PCR扩增和测序证明了scaffold内部结构的正确性,校正了鸡参考基因组TRG基因位点一个可变基因和一个缺口序列(gap)附近各一处错误序列,以及可变基因区多处序列错误。文章通过校正鸡参考基因组TRG基因位点的序列,为鸡TRA/D和TRB基因位点的基因组序列分析提供了新方法。  相似文献   

2.

Background

All jawed-vertebrates have four T cell receptor (TCR) chains: alpha (TRA), beta (TRB), gamma (TRG) and delta (TRD). Marsupials appear unique by having an additional TCR: mu (TRM). The evolutionary origin of TRM and its relationship to other TCR remain obscure, and is confounded by previous results that support TRM being a hybrid between a TCR and immunoglobulin locus. The availability of the first marsupial genome sequence allows investigation of these evolutionary relationships.

Results

The organization of the conventional TCR loci, encoding the TRA, TRB, TRG and TRD chains, in the opossumMonodelphis domesticaare highly conserved with and of similar complexity to that of eutherians (placental mammals). There is a high degree of conserved synteny in the genomic regions encoding the conventional TCR across mammals and birds. In contrast the chromosomal region containing TRM is not well conserved across mammals. None of the conventional TCR loci contain variable region gene segments with homology to those found in TRM; rather TRM variable genes are most similar to that of immunoglobulin heavy chain genes.

Conclusion

Complete genomic analyses of the opossum TCR loci continue to support an origin of TRM as a hybrid between a TCR and immunoglobulin locus. None of the conventional TCR loci contain evidence that such a recombination event occurred, rather they demonstrate a high degree of stability across distantly related mammals. TRM, therefore, appears to be derived from receptor genes no longer extant in placental mammals. These analyses provide the first genomic scale structural detail of marsupial TCR genes, a lineage of mammals used as models of early development and human disease.  相似文献   

3.
4.
In a search for genes affecting intramuscular fat deposition, we constructed a bacterial artificial chromosome (BAC) library for the whole genome of Rongchang pig, a domestic Chinese swine breed. The library consisted of approximately 192,000 clones, with an averaged insert size of 116 kb. Frequency of non-insert clone of the BAC library was no higher than 1.8%, based on estimation of 220 BAC clones randomly selected. We estimated the coverage of the library to be more than seven porcine genome equivalents. Subsequent screening of the BAC library with a three-step PCR procedure resulted in identification of seven candidate genes that were potentially involved in intramuscular fat deposition. The number of positive BAC clones ranged from 2 to 4 for each of the seven genes. One positive clone, containing the lipin1 gene, was fully sequenced by shotgun method to generate 118,041 bp porcine genomic sequences. The BAC clone contained complete DNA sequence of porcine lipin1 gene including all the exons and introns. Our results indicate that this BAC library is a useful tool for gene identification and help to serve as an important resource for future porcine genomic study.  相似文献   

5.
6.
A porcine bacterial artificial chromosome (BAC) library was constructed using the pBeloBAC11 vector. It comprised 107,520 clones with an average insert size of 135 kb, representing an almost fivefold coverage of the swine haploid genome. Screening of the library allowed recovery of one to eight clones for 142 unique markers located all over the genome, while it failed for only one marker. About 4% chimeric clones were found. The library was also screened for the protease gene of type C porcine endoviral sequences (PERVs), and 62 clones were recovered, all but two of which contained one protease gene. We found 20 protease sequences (PERV-1 to PERV-20) which, despite differing by point mutations, were all coding sequences. The most frequent sequence, PERV-2, was 100% similar to a protease sequence expressed in the porcine PK-15 cell line. Most of the clones harbored envelope genes. Thirty-three BAC clones were mapped by fluorescence in situ hybridization to 22 distinct locations on 14 chromosomes, including the X and Y chromosomes. These overall results indicate that there is generally one PERV copy per integration site. Although PERV sequences were not tandemly arranged, clusters of integration sites were observed at positions 3p1.5 and 7p1.1. Southern blot experiments revealed 20-30 PERV copies in the Large White pig genome studied here, and variations in PERV content among pigs of different breeds were observed. In conclusion, this BAC collection represents a significant contribution to the swine large genomic DNA cloned insert resources and provides the first detailed map of PERV sequences in the swine genome. This work is the first step toward identification of potential active sites of PERV elements.  相似文献   

7.
A porcine bacterial artificial chromosome (BAC) library consisting of 103,488 clones has been constructed. The average insert size in the BAC vector was calculated to be 133 kb based on the examination of 189 randomly selected clones, indicating that the library contained 4.4 genome equivalents. The library can be screened by two-step PCR. The first screening step is performed on 22 superpools, each containing 4704 clones (49 x 96 well plates). In the second screening step, 49 plates comprising a superpool are arrayed in a 7 x 7 matrix and 4D-PCR is performed. Screening of the library superpools by PCR for 125 marker sequences selected from different regions of swine genome revealed 123 sequences, indicating that the library is not biased. Subsequent screenings (4D-PCR) were successfully applied for identification of clones containing each marker sequence. This porcine BAC library and the PCR screening system are useful for isolation of genomic DNA fragments containing desired sequences.  相似文献   

8.
Leukemia inhibitory factor receptor (LIFR), epidermal growth factor receptor (EGFR), and their respective ligands have been implicated in regulating growth and development of the early pig conceptus. We isolated a PAC clone containing the porcine gene for LIFR and a BAC clone with the porcine EGFR gene, respectively. On each of these clones one microsatellite marker was identified by sequencing a collection of subclones. These gene-associated markers were evaluated by genotyping of 202 unrelated boars of four different breeds. Based on fluorescence in situ hybridization and radiation hybrid mapping, the porcine LIFR gene was assigned to SSC16q13-->q14. The EGFR gene mapped to SSC9q26.  相似文献   

9.
In the present study cytogenetic localization of eight fatty acid binding protein genes in the pig genome was shown. BAC clones, containing sequences of selected genes (FABP1, FABP2, FABP3, FABP4, FABP5, FABP6, FABP7 and FABP8) were derived from porcine BAC libraries and mapped by FISH to porcine chromosomes (SSC) 3q12, 8q25, 6q26, 4q12, 4q12, 16q22, 1p22 and 4q12, respectively. Detailed analyses of regions containing gene clusters (FABP4, FABP5, FABP8) in chromosome 4 were performed and their order was established. It was shown that these three genes are located beyond the FAT1 region. Assignment of the FABP genes to chromosome regions harboring quantitative trait loci (QTL) for fat deposition is discussed.  相似文献   

10.
The whey acidic protein (WAP) is the major whey protein of rodent, rabbit and camel. Recently, it was identified in the milk of swine (Simpson et al., 1998. J. Mol. Endocrinol. 20, 27-35). In this paper, the cloning of the pig WAP cDNA and of bacterial artificial chromosome (BAC) construct containing the entire porcine WAP gene is reported. The comparison of the coding sequence of the pig WAP gene to rodent or lagomorph WAP sequence already published demonstrated that only exon sequences are partially conserved. The porcine WAP gene was localized on the subtelomeric region of the chromosome 18. The estimation of the expression of the swine WAP gene in the mammary gland from lactating animals revealed a high level of expression. In order to compare the expression level of the porcine WAP gene from the large genomic fragment which contained 70 kb downstream and 50 kb upstream the pig WAP gene or the smaller one (1 kb downstream and 2.4 kb upstream), these two genomic fragments were transfected in HC11 cell line. The BAC construct was expressed 15 times higher than the plasmid when reported to the integrated copy number. This report suggests that the HC11 cell line is a useful tool to identify the regulatory sequences of milk protein genes.  相似文献   

11.
To clarify the structure of the porcine genomic region that contains quantitative trait loci (QTL) related to fat, we constructed a bacterial artificial chromosome (BAC) contig of the region from DST to SRPK1 on porcine chromosome 7 and performed low-redundancy 'skim' shotgun sequencing of the clones that composed a minimum tiling path of the contig. This analysis revealed that the gene order from VPS52 to SRPK1 is conserved between human and swine and that comparison with the human sequence identified a rearrangement in the swine genome at the proximal end of VPS52. Analysis of the nucleotide sequences of three BAC clones that included the rearrangement point demonstrated that COL21A1 and DST, which were not present in the corresponding human region, were located adjacent to the rearrangement point. These results provide useful information about the genomic region containing QTL for fat in pigs and help to clarify the structure of the so-called 'extended-class II' region distal to the porcine major histocompatibility complex class II region.  相似文献   

12.
The human chromosome (HSA)19q region has been shown to correspond to swine chromosome (SSC) 6q11-->q21 by bi-directional chromosomal painting and gene mapping. However, since the precise correspondence has not been determined, 26 genes localized in HSA19q13.3-->q13.4 were assigned to the SSC6 region mainly by radiation hybrid (RH) mapping, and additionally, by somatic cell hybrid panel (SCHP) mapping, and fluorescent in situ hybridization (FISH). Out of the 26 genes, 24 were assigned to a swine RH map with LOD scores greater than 6 (threshold of significance). The most likely order of the 24 genes along SSC6 was calculated by CarthaGene, revealing that the order is essentially the same as that in HSA19q13.3-->q13.4. For AURKC and RPS5 giving LOD scores not greater than 6, SCHP mapping and FISH were additionally performed; SCHP mapping assigned AURKC and RPS5 to SSC6q22-->q23 and SSC6q21, respectively, which is consistent with the observation of FISH. Consequently, all the genes (26 genes) examined in the present study were shown to localize in SSC6q12-->q23, and the order of the genes along the chromosomes was shown to be essentially the same in swine and human, though several intrachromosomal rearrangements were observed between the species.  相似文献   

13.
We screened a porcine bacterial artificial chromosome (BAC) and a P1 derived artificial chromosome (PAC) library to construct a sequence-ready approximately 1.2-Mb BAC/PAC contig of the ryanodine receptor-1 gene (RYR1) region on porcine chromosome (SSC) 6q1.2. This genomic segment is of special interest because it harbors the locus for stress susceptibility in pigs and a putative quantitative trait locus for muscle growth. Detailed physical mapping of this gene-rich region allowed us to assign to this contig 17 porcine genes orthologous to known human chromosome 19 genes. Apart from the relatively well-characterized porcine gene RYR1, the other 16 genes represent novel chromosomal assignments and 14 genes have been cloned for the first time in pig. Comparative analysis of the porcine BAC/PAC contig with the human chromosome (HSA) 19q13.13 map revealed a completely conserved gene order of this segment between pig and human. A detailed porcine-human-mouse comparative map of this region was constructed.  相似文献   

14.
Pinschers affected by coat color dilution show a specific pigmentation phenotype. The dilute pigmentation phenotype leads to a silver-blue appearance of the eumelanin-containing fur and a pale sandy color of pheomelanin-containing fur. In Pinscher breeding, dilute black-and-tan dogs are called "blue," and dilute red or brown animals are termed "fawn" or "Isabella fawn." Coat color dilution in Pinschers is sometimes accompanied by hair loss and a recurrent infection of the hair follicles. In human and mice, several well-characterized genes are responsible for similar pigment variations. To investigate the genetic cause of the coat color dilution in Pinschers, we isolated BAC clones containing the canine ortholog of the known murine color dilution gene Mlph. RH mapping of the canine MLPH gene was performed using an STS marker derived from BAC sequences. Additionally, one MLPH BAC clone was used as probe for FISH mapping, and the canine MLPH gene was assigned to CFA25q24.  相似文献   

15.
To provide a gene-based comparative map and to examine a porcine genome assembly using bacterial artificial chromosome-based sequence, we have attempted to assign 128 genes localized on human chromosome 14q (HSA14q) to a porcine 7000-rad radiation hybrid (IMpRH) map. This study, together with earlier studies, has demonstrated the following. (i) 126 genes were incorporated into two SSC7 RH linkage groups by C artha G ene analysis. (ii) In the remaining two genes, TOX4 linked to TCRA located in SSC7 by two-point analysis, whereas SIP1 showed no significant linkage with any gene/marker registered in the IMpRH Web Server. (iii) In the two groups, the gene clusters located from 19.9 to 36.5 Mb on HSA14q11.2-q13.3 and from 64.0 to 104.3 Mb on HSA14q23-q32.33 respectively were assigned to SSC7q21-q26. (iv) Comparison of the gene order between the present RH map and the latest porcine sequence assembly revealed some inconsistencies, and a redundant arrangement of 16 genes in the sequence assembly.  相似文献   

16.
17.
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS or SACS) is a neurodegenerative disease frequent in northeastern Québec. In a previous study, we localized the disease gene to chromosome region 13q11 by identifying excess sharing of a marker allele in patients followed by linkage analysis and haplotyping. To create a detailed physical map of this region, we screened CEPH mega-YACs with 41 chromosome 13 sequence-tagged-sites (STSs) known to map to 13q11-q12. The YAC contig, composed of 27 clones, extends on the genetic map from D13S175 to D13S221, an estimated distance of at least 19.3 cM. A high-resolution BAC and PAC map that includes the ARSACS critical region flanked by D13S1275 and D13S292 was constructed. These YAC and BAC/PAC maps allowed the accurate placement of 29 genes and ESTs previously mapped to the proximal region of chromosome 13q. We confirmed the position of two candidate genes within the critical region and mapped the other 27 genes and ESTs to nearby intervals. Six BAC/PAC clones form a contig between D13S232 and D13S787 for sequencing within the ARSACS critical region.  相似文献   

18.
We have obtained a partial cDNA and three BAC clones for the porcine insulin-like growth factor binding protein 1 gene (IGFBP-1). Results of fluorescence in situ and radiation hybrid (RH) mapping assigned this gene to porcine chromosome (SSC) 18q24-qter. We found two types of polymerase chain reaction–restriction-fragment-length polymorphisms (PCR–RFLP) in intron 2 by using FokI and AluI.  相似文献   

19.
A precise genetic map containing anonymous markers and genes is indispensable for the efficient selection of candidate gene(s) responsible for quantitative trait loci (QTL) traits. For this purpose, a first version of a radiation hybrid cell (RH) map has been constructed by using the INRA-University of Minnesota RH panel for 757 markers (IMpRH) (Hawken et al. 1999, Mamm. Genome 10: 824–830). In this study, 280 swine genomic fragments in BAC clones were assigned to the IMpRH map; 255 BAC clones were successfully linked to first-generation linkage groups (LOD > 4.8). The remaining 25 clones could not be mapped, because their lod-scores to the closest markers in the first generation map were less than 4.8. In addition, 16 BAC clones, mapped to swine Chromosome (Chr) 1 by IMpRH mapping, were subjected to isolation of microsatellites (MSs). Thirty-one MSs were isolated from 15 BAC clones, and 24 of 31 (77%) MSs derived from 14 clones were found to be polymorphic. We also mapped both termini of 12 BAC clones to the IMpRH map, in order to measure resolution of the IMpRH map; the resolution was found to range from 8 kb/centiRay to more than 126 kb/centiRay depending on the region. Received: 21 June 2001 / Accepted: 28 September 2001  相似文献   

20.
The aim of this study was to establish a porcine physical map along the chromosome SSC7q by construction of BAC contigs between microsatellites Sw1409 and S0102. The SLA class II contig, located on SSC7q, was lengthened. Four major BAC contigs and 10 short contigs span a region equivalent to 800 cR measured by IMpRH7000 mapping. The BAC contigs were initiated by PCR screening with primers derived from human orthologous segments, extended by chromosome walking, and controlled and oriented by RH mapping with the two available panels, IMpRH7000Rad and IMNpRH12000Rad. The location of 43 genes was revealed by sequenced segments, either from BAC ends or PCR products from BAC clones. The 220 BAC end sequences (BES) were also used to analyze the different marks of evolution. Comparative mapping analysis between pigs and humans demonstrated that the gene organization on HSA6p21 and on SSC7p11 and q11-q14 segments was conserved during evolution, with the exception of long fragments of HSA6p12 which shuffled and spliced the SLA extended class II region. Additional punctual variations (unique gene insertion/deletion) were observed, even within conserved segments, revealing the evolutionary complexity of this region. In addition, 18 new polymorphic microsatellites have been selected in order to cover the entire SSC7p11-q14 region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号