首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The membrane F0 sector of mitochondrial ATP synthase complex was rapidly isolated by direct extraction with CHAPS from F1-depleted submitochondrial particles. The preparation thus obtained is stable and can be reconstituted in artificial phospholipid membranes to result in oligomycin-sensitive proton conduction, or recombined with purified F1 to give the oligomycin-sensitive F0F1-ATPase complex. The F0 preparation and constituent polypeptides were characterized by SDS-polyacrylamide gel electrophoresis and immunoblot analysis. The functional role of F0 polypeptides was examined by means of trypsin digestion and reconstitution studies. It is shown that, in addition to the 8 kDa DCCD-binding protein, the nuclear encoded protein [(1987) J. Mol. Biol. 197, 89-100], characterized as an intrinsic component of F0 (F0I, PVP protein [(1988) FEBS Lett. 237,9-14]) [corrected] is involved in H+ translocation and the sensitivity of this process to the F0 inhibitors, DCCD and oligomycin.  相似文献   

2.
3.
1. Oligomycin and dicyclohexylcarbodiimide-sensitive ATPase was isolated from beef-heart mitochondria and treated with 3.5 M NaBr in order to remove F1. The residue, called F0, was found to consist of seven components. Five of these are stained by Coomassie blue after dodecylsulfate-polyacrylamide-gel electrophoresis. Two of them correspond to the oligomycin-sensitivity-conferring protein and coupling factor F6, with apparent molecular weights of 21,000 and 9,400, respectively. Three additional polypeptides of molecular weights 23,000, 10,500 and 8,600 were not identified with known proteins. Two components not stained with Coomassie blue were detected by autoradiography of the gels of F0 preincubated with [14C]dicyclohexylcarbodiimide. These two components probably represent monomeric and oligomeric forms of the dicyclohexylcarbodiimide-binding protein. 2. F0 induced an oligomycin and dicyclohexylcarbodiimide-sensitive enhancement of K+ + valinomycin-driven proton translocation across the membrane of artificial phospholipid vesicles. 3. The interaction of F0 with purified, soluble beef heart F1 was investigated. F0 was capable of binding F1 and conferring oligomycin and dicyclohexylcarbodiimide sensitivity and cold stability on its ATPase activity. Furthermore F0 was found to diminish the specific activity of F1-ATPase. A comparison of these effects at varying F0/F1 ratios shows that F0 binds F1 in both an oligomycin-sensitive and an oligomycin-insensitive manner, and that both types of binding involve a conferral of cold stability and a decrease in specific activity. High F0/F1 ratios favoured in oligomycin-sensitive type of binding, indicating that F1 binds preferentially to oligomycin-sensitivity-conferring sites. Treatment of ATPase complex with trypsin resulted in an F0 with a decreased proportion of oligomycin-sensitivity-conferring binding sites and a diminished ability to lower the specific activity an cold lability of F1. 4. Reconstitution of F0 treated with trypsin and F1, oligomycin-sensitivity-conferring protein and F6 showed that at a constant amount of F1 bound, both oligomycin-sensitivity-conferring protein and F6 increased the oligomycin sensitivity of ATPase activity. It was therefore concluded that both of these coupling factors are involved in the conferral of oligomycin sensitivity. 5. The effect of the order of addition of F1, oligomycin-sensitivity-conferring protein and F6 to F0 on the reconstitution of oligomycin-sensitive ATPase activity, and of F1 and oligomycin-sensitivity-conferring protein to submitochondrial particles on the reconstitution of respiratory control, was investigated. The highest values of oligomycin sensitivity and respiratory control were obtained when F1 was added as the first component, indicating that F1 plays a directing role in the organisation of the components.  相似文献   

4.
1. A new method for the isolation of the oliogomycin-sensitive ATPase from beef-heart mitochondria is described. 2. A Triton-soluble ATPase complex was isolated as a by-product of the standard procedure, or as the main product when the submitochondrial particles were pretreated with 1% Triton. The ATPase activity of this complex is sensitive neither to oligomycin nor to dicyclohexylcarbodiimide. 3. The ATPase activity of the oligomycin-sensitive ATPase complex is nearly completely dependent on added phospholipids. The highest activation was found with asolectin. 4. The oligomycin-sensitive complex can be integrated into phospholipid vesicles resulting in an ATP- and Mg2+-dependent energization of the vesicles as monitored with the fluorescent dye 9-amino-6-chloro-2-methoxyacridine. 5. Aurovertin-binding studies based on fluorescence measurement reveal the presence of 1.5 mumol aurovertin-binding sites per g protein for the oligomycin-sensitive complex and about 2.2 mumol for the oligomycin-insensitive complex. 6. The preparation of the oligomycin-sensitive complex contains at least 6--7 polypeptides in addition to those derived from F1. One of these polypeptides, with an apparent molecular weight of 31 000, is virtually absent from the oligomycin-insensitive complex. 7. Some of these polypeptides have been identified and isolated.  相似文献   

5.
F0F1-ATPase of plant mitochondria: isolation and polypeptide composition   总被引:1,自引:0,他引:1  
A simple and high yield purification procedure for the isolation of F0F1-ATPase from spinach leaf mitochondria has been developed. This is the first report concerning purification and composition of the plant mitochondrial F0F1-ATPase. The enzyme is selectively extracted from inner membrane vesicles with the zwitterionic detergent, 3-[(3-cholamidopropyl) dimethyl ammonio]-1- propane sulfonate (CHAPS). The purified enzyme exhibits a high oligomycin-sensitive ATPase activity (3,6 mumol.min-1.mg-1). SDS-PAGE of the purified F0F1-ATPase complex reveals protein bands of molecular masses of 54 kDa (F1 alpha,beta), 33 kDa (F1 gamma), 28 kDa, 23 kDa, 21 kDa (F1 delta), 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa (F1 epsilon) and 8.5 kDa. All polypeptides migrate as one complex in a polyacrylamide gradient gel under non-denaturing conditions in the presence of 0.1% Triton X-100. Five polypeptides could be identified as subunits of F1. Polypeptides of molecular masses 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa constitute the F0 part of the complex. Our results show that polypeptide composition of the plant mitochondrial F0 differs from other eukaryotic F0 of yeast, mammals and chloroplasts.  相似文献   

6.
Liver mitochondria from rats fed ethanol chronically demonstrated a 35% decrease in mitochondrial ATPase activity. Moreover, the ATPase activity was inhibited only 61% by addition of oligomycin. Treatment of mitochondria from ethanol-fed rats with the detergent, Lubrol-WX, caused the release of 36% of the F1 from the resulting inner membrane particles. In comparison, only 5% of the F1 was dissociated when control mitochondria were subjected to the Lubrol treatment. However, when the units of ATPase activity from the supernatant and particles obtained after Lubrol treatment were added together, their sums were equivalent in preparations from control and ethanol-fed animals. Moreover, polyacrylamide gel electrophoresis analyses indicated equal amounts of the alpha + beta subunits of F1 in mitochondria from control and ethanol-fed rats. Reconstitution experiments with urea particles and F1 prepared from both control and ethanol mitochondria revealed a decrease in oligomycin sensitivity which could be attributed to an alteration in the functioning of either the oligomycin sensitivity conferring protein or a membrane sector subunit that interacts with oligomycin. Analysis by reconstitution also demonstrated that there were no ethanol-elicited alterations in the properties of the F1 portion of the ATP synthase complex. These observations indicate that the activity of the ATP synthase complex is altered significantly by ethanol-elicited changes in the functioning of those polypeptides involved in modulating both oligomycin sensitivity and the association of F1 with membrane sector subunits.  相似文献   

7.
1. The isolation of F0F1-ATPase complex from Rhodospirillum rubrum chromatophores by the use of taurodeoxycholate is described. 2. The enzyme preparation contains about 12 polypeptides; five are subunits of the F1 moiety. 3. The ATPase activity of the purified enzyme is dependent on the addition of phospholipids. 4. Km-vales for Mg2+-ATP and Ca2+-ATP are similar to the values obtained for the membrane-bound enzyme. 5. The F0F1-ATPase complex is more than 70% inhibited by oligomycin and N,N'-dicyclohexylcarbodiimide. 6. The F0F1-ATPase complex was integrated into liposomes. The reconstituted proteoliposomes catalyzed energy transduction as shown by ATP-dependent quenching of acridine dye fluorescence and ATP-32Pi exchange.  相似文献   

8.
Preincubation of coupled submitochondrial particles with low concentrations of triorganotin compounds results in complete inhibition of the oligomycin-sensitive ATPase activity without any significant effect on the rate of succinate-driven ATP synthesis. The residual ATP synthetic activity is inhibited by oligomycin and uncouplers. The differential inhibition of ATP synthesis and hydrolysis by the triorganotin compounds examined suggests that the two processes are not 'mirror images' of each other, but that they occur through different routes and that the F1F0-ATPase is at least bifunctional.  相似文献   

9.
Proton translocating ATPase (F0F1) from bovine heart mitochondria was reconstituted into planar phospholipid bilayers, and its electrogenicity was directly demonstrated. The F0F1 ATPase was solubilized using 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonic acid (CHAPS) as a detergent followed by sucrose density gradient centrifugation according to the method originally described by McEnery et al. for rat liver mitochondria (McEnery et al. (1986) J. Biol. Chem. 259, 4642-4651), with minor modifications. The purified ATPase was reconstituted into proteoliposomes and then reconstituted into planar phospholipid bilayers by the modified fusion method (Hirata et al. (1986) J. Biol. Chem. 261, 9839-9843). A short-circuit current of up to 0.4 pA was induced by adding ATP, and this current was suppressed by the F1 ATPase inhibitor NaN3 or by a specific mitochondrial F0 inhibitor, oligomycin. The direction of the current corresponded to the flow of positive charges from the F1 side to the F0 side. All these facts clearly demonstrate that the mitochondrial F0F1 ATPase was successfully reconstituted into planar phospholipid bilayers, and the current was generated by the ATPase.  相似文献   

10.
Mitochondrial H+ -ATPase complex, purified by the lysolecithin extraction procedure, has been resolved into a "membrane" (NaBr-F0) and a "soluble" fraction by treatment with 3.5 M sodium bromide. The NaBr-F0 fraction is completely devoid of beta, delta, and epsilon subunits of the F, ATPase and largely devoid of alpha and gamma subunits of F1, where F0 is used to denote the membrane fraction and F1, coupling factor 1. This is confirmed by complete loss of ATPase and Pi-ATP exchange activities. The addition of F1 (400 micrograms X mg-1 F0) results in complete restoration of oligomycin sensitivity without any reduction in the F1-ATPase activity. Presumably, this is due to release of ATPase inhibitor protein from the F1-F0 complex consequent to sodium bromide extraction. Restoration of Pi-ATP exchange and H+ -pumping activities require coupling factor B in addition to F1-ATPase. The oligomycin-sensitive ATPase and 32Pi-ATP exchange activities in reconstituted F1-F0 have the same sensitivity to uncouplers and energy transfer inhibitors as in starting submitochondrial particles from the heavy layer of mitochondria and F1-F0 complex. The data suggest that the altered properties of NaBr-F0 observed in other laboratories are probably inherent to their F1-F0 preparations rather than to sodium bromide treatment itself. The H+ -ATPase (F1-F0) complex of all known prokaryotic (3, 8, 9, 10, 21, 32, 34) and eukaryotic (11, 26, 30, 33, 35-37) phosphorylating membranes contain two functionally and structurally distinct entities. The hydrophilic component F1, composed of five unlike subunits, shows ATPase activity that is cold labile as well as uncoupler- and oligomycin-insensitive. The membrane-bound hydrophobic component F0, having no energy-linked catalytic activity of its own, is indirectly assayed by its ability to regain oligomycin sensitive ATPase and Pi-ATP exchange activities on binding to F1-ATPase (33). The purest preparations of bovine heart mitochondrial F0 show seven or eight major components in polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate or SDS-PAGE (1, 2, 12, 14), ranging from 6 to 54 ku in molecular weight (12). The precise structure and polypeptide composition of mitochondrial F0 is not known. The F0 preparations from bovine heart reported so far have been derived from H+ -ATPase preparations isolated in the presence of cholate and deoxycholate (11, 33, 36, 37).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The receptor for low density lipoprotein was purified from bovine adrenal cortex in the presence of the nonionic detergent octylglucoside. Receptors were incorporated into the bilayer of egg phosphatidylcholine vesicles by a detergent-dialysis method. Reconstituted receptors were functional in that they bound low density lipoprotein as well as a monoclonal antibody directed against the receptor in a specific, saturable fashion. Binding activity of reconstituted receptors was measured by a gel chromatography assay. The orientation of the receptor molecule within the phospholipid bilayer was investigated by binding assays following proteolytic digestion. Reconstituted receptors showed an orientation that was functionally indistinguishable from that of low density lipoprotein receptors in the plasma membrane of intact human fibroblasts.  相似文献   

12.
(Ca2+ + Mg2+)ATPase (EC 3.6.1.3) was solubilized from human erythrocyte membranes by detergent extraction with Triton N-101 (0.5 mg/mg membrane protein) and purified by calmodulin affinity chromatography. ATPase activity was assayed in mixtures of Triton N-101 and phospholipid, without reconstitution into bilayer vesicles. At low levels of phospholipid (5 micrograms/ml), the ATPase activity was highly sensitive to the detergent concentration, with maximal activity occurring at or near the critical micelle concentration of the detergent. With increased amounts of phospholipid (50 micrograms/ml), detergent concentrations greater than the critical micelle concentration were required for maximal activity. Detergent alone did not support ATPase activity. Sonicated phospholipid in the form of vesicles was equally ineffective. Activity seemed to be dependent on the presence of detergent/phospholipid mixed micelles. The acidic phospholipids, phosphatidylserine and phosphatidylinositol, as well as the commercial phospholipid preparation, Asolectin, gave activities five to eight times greater than the same amount of phosphatidylcholine. Mixtures of phosphatidylserine and phosphatidylcholine produced intermediate ATPase activities, with the maximal value dependent on the phosphatidylserine concentration. Addition of phosphatidylcholine to fixed concentrations of phosphatidylserine caused a rise in activity that was independent of the ratio of the two phospholipids or the total phospholipid concentration. Phosphatidylcholine may therefore be irreplaceable for some aspect of ATPase function. The number of phospholipid molecules present in mixed micelles at maximal ATPase activity was calculated to be near 50. This value implied that the hydrophobic surface of the ATPase molecule must be completely coated by a single layer of phospholipid molecules for maximum activity to occur.  相似文献   

13.
The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA.  相似文献   

14.
Reconstitution of CF0F1 into liposomes using a new reconstitution procedure   总被引:3,自引:0,他引:3  
The H(+)-ATPase (ATP synthase) from chloroplasts was isolated, purified and reconstituted into phosphatidylcholine/phosphatidic-acid liposomes. Liposomes prepared by reverse-phase evaporation were treated with various amounts of Triton X-100 and protein incorporation was studied at each step of the solubilization process. After detergent removal by SM2-Biobeads, the activities of the resulting proteoliposomes were measured indicating that the most efficient reconstitution was obtained by insertion of the protein into preformed, detergent-saturated liposomes. The conditions for the reconstitution were optimized with regard to ATP synthesis driven by an artificially generated delta pH/delta psi. An important benefit of the new reconstituted CF0F1 liposomes is the finding that the rate of ATP synthesis remains constant up to 10 s, indicating a low basal membrane permeability.  相似文献   

15.
B Norling  B Hamasur  E Glaser 《FEBS letters》1987,223(2):309-314
Cross-reconstitution of isolated potato mitochondrial F1-ATPase with F1-depleted beef heart and yeast submitochondrial particles is reported. Potato F1 binds to the heterologous membrane and confers oligomycin sensitivity on the ATPase activity of the reconstituted system. Binding of F1 is promoted by the presence of Mg2+ with the maximal stimulatory effect at 20 mM. Mg2+ increase the sensitivity to oligomycin of the reconstituted system consisting of potato F1 and yeast membranes, however, they do not influence oligomycin sensitivity of potato F1 and beef heart membranes.  相似文献   

16.
The proton ATPase of rat liver mitochondria has been purified by a simple procedure which involves the use of the novel, zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate to solubilize the membrane-bound complex. The purified enzyme has a high, oligomycin-sensitive ATPase activity (11.3 +/- 2.9 mumol/min/mg) in the absence of added phospholipids. It shows, in four different gel electrophoretic systems, the five bands characteristic of the F1 portion of the complex and three additional Coomassie blue-stainable bands which have apparent molecular weights of 28,000, 19,000, and 13,600. A fourth Coomassie blue-stainable component of about 10,000-12,500 daltons comigrates with the delta subunit, whereas a fifth component, detectable only by absorption at 280 nm, is observed between the dye front and the 10,000-dalton species. The enzyme complex has been reconstituted into liposomal vesicles of asolectin. Under these conditions the enzyme catalyzes an ATP-Pi exchange reaction and is capable of translocating protons in an ATP-dependent manner as assayed by quenching of 9-amino-6-chloro-2-methoxyacridine. Both activities are inhibited by the addition of oligomycin, uncoupler, dicyclohexylcarbodiimide, and cadmium. At high detergent concentration, the complex appears in negative stain electron microscopy in a dispersed state. The tripartite structure is clearly visible in monomeric, dimeric, or trimeric forms of the molecule. At the low detergent concentration, the proton ATPase tends to cluster into densely packed arrays. This represents the first report of the properties of a functionally active proton ATPase solubilized and purified in the presence of a zwitterionic detergent.  相似文献   

17.
Bovine heart submitochondrial particles depleted of F1 by treatment with urea ("F1-depleted particles') were incubated with soluble F1-ATPase. The binding of F1 to the particles and the concomitant conferral of oligomycin sensitivity on the ATPase activity required the presence of cations in the incubation medium. NH4+, K+, Rb+, Na+ and Li+ promoted reconstitution maximally at 40-74 mM, guanidinium+ and Tris+ at 20-30 mM, and Ca2+ and Mg2+ at 3-5 mM. The particles exhibited a negative zeta-potential, as determined by microelectrophoresis, and this was neutralized by mono- and divalent cations in the same concentration range as that needed to promote F1 binding and reconstitution of oligomycin-sensitive ATPase. It is concluded that the cations act by neutralizing negative charges on the membrane surface, mainly negatively charged phospholipids. These results are discussed in relation to earlier findings reported in the literature with F1-depleted thylakoid membranes and with submitochondrial particles depleted of both F1 and the coupling proteins F6 and oligomycin sensitivity-conferring protein.  相似文献   

18.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
A new nonionic detergent, heptylthioglucoside, was synthesized and found to be more soluble than octylthioglucoside in water at low temperatures. Use of this detergent for solubilization and reconstitution of membrane proteins of Escherichia coli was examined. Heptylthioglucoside was as effective as octylthioglucoside and octylglucoside in solubilizing membrane proteins, and by the heptylthioglucoside-dilution procedure the H+-translocating ATPase (F1F0) and melibiose carrier could easily be reconstituted into liposomes. It is concluded that heptylthioglucoside is very useful in studies on membrane proteins.  相似文献   

20.
At low concentrations, diethylstilbestrol (DES) is shown to be a potent F0-directed inhibitor of the F0F1-ATPase of rat liver mitochondria. In analogy to other F0-directed inhibitors, DES inhibits both the ATPase and ATP-dependent proton-translocation activities of the purified and membrane bound enzyme. When added at low concentrations with dicyclohexylcarbodiimide (DCCD), a covalent inhibitor, DES acts synergistically to inhibit ATPase activity of the complex. At higher concentrations, DES restores DCCD-inhibited ATPase activity. However, there is no restoration of ATP-dependent proton translocation. Under these conditions DCCD remains covalently bound to the F0F1-ATPase complex and F1 remains bound to Fo. Significantly, when the F0F1-ATPase is inhibited by the Fo-directed inhibitor venturicidin rather than DCCD, DES is also able to restore ATPase activity. In contrast, DES is unable to restore ATPase activity to F0F1 preparations inhibited by the Fo-directed inhibitors oligomycin or tricyclohexyltin. However, combinations of [DES + DCCD] or [DES + venturicidin] can restore ATPase activity to F0F1 preparations inhibited by either oligomycin or tricyclohexyltin. Results presented here indicate that the F0 moiety of the rat liver mitochondrial proton ATPase contains a distinct binding site for DES. In addition, they suggest that at saturating concentrations simultaneous occupancy of the DES binding site and sites for either DCCD or venturicidin promote "uncoupled" ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号