首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical composition of each O-antigen subunit in gram-negative bacteria is a reflection of the unique DNA sequences within each rfb operon. By characterizing DNA sequences contained with each rfb operon, a diagnostic serotype-specific probe to Escherichia coli O serotypes that are commonly associated with bacterial infections can be generated. Recently, from an E. coli O157:H7 cosmid library, O-antigen-positive cosmids were identified with O157-specific antisera. By using the cosmid DNAs as probes, several DNA fragments which were unique to E. coli O157 serotypes were identified by Southern analysis. Several of these DNA fragments were subcloned from O157-antigen-positive cosmids and served as DNA probes in Southern analysis. One DNA fragment within plasmid pDS306 which was specific for E. coli O157 serotypes was identified by Southern analysis. The DNA sequence for this plasmid revealed homology to two rfb genes, the first of which encodes a GDP-mannose dehydratase. These rfb genes were similar to O-antigen biosynthesis genes in Vibrio cholerae and Yersinia enterocolitica serotype O:8. An oligonucleotide primer pair was designed to amplify a 420-bp DNA fragment from E. coli O157 serotypes. The PCR test was specific for E. coli O157 serotypes. PCR detected as few as 10 cells with the O157-specific rfb oligonucleotide primers. Coupled with current enrichment protocols, O157 serotyping by PCR will provide a rapid, specific, and sensitive method for identifying E. coli O157.  相似文献   

2.
From the Camelidae family members, several serotypes of Escherichia coli (E. coli) have recently been isolated from diarrhoeic and non-diarrhoeic faecal samples. To date Shiga toxin-producing E. coli (STEC) strains have never been typed in one-humped camel (Camelus dromedarius). In the present study, two E. coli O157:H7 strains isolated from sick dromedaries were investigated. Virulence gene profiles were determined using a custom E. coli virulence DNA microarray, composed of 70-mer oligonucleotide probes targeting 264 virulence or related genes of known E. coli pathotypes. Both strains displayed positive hybridization signals for the Locus of enterocyte effacement (LEE) gene probes (ler, eae, espA, espB, tir genes), two Shiga toxin probes (stx1 and stx2), the O157 O-antigen specific probe, various virulence plasmid (pO157) probes like katP in addition to other accessory virulence genes characterized in STEC.  相似文献   

3.
The confirmation at the DNA level of the existence of clonal variants within Escherichia coli O2 and O18 serotypes has been shown by Southern hybridization analysis of restriction endonuclease digested genomic DNA and subsequent probing with contiguous subclones of the E. coli O101 rfb region. The O101 rfb subclones are believed to represent a conserved region of DNA (Heuzenroeder et al. Molec. Microbiol, in press) and identify serotype variants by means of restriction fragment length polymorphisms (RFLP) within homologous DNA of O2 and O18 E. coli. A number of different restriction enzymes have been used singly and in combination to digest the genomic DNA, thereby allowing construction of restriction maps of the region displaying homology to the O101 rfb region subclones. This analysis further substantiates previously defined evolutionary relationships between O2 and O18 E. coli. These simple probes appear to be able to provide the same clonal information as a battery of isoenzyme, outer membrane protein (OMP) and lipopolysaccharide (LPS) analyses.  相似文献   

4.
Phages coding for production of Vero cytotoxins VT1 or VT2 in strains of Escherichia coli serotype O157.H7 or O157.H- were morphologically indistinguishable. Their genome size and restriction enzyme digests of the phage DNA were similar. These phages were clearly different in these respects from a VT1-encoding phage isolated from a strain of E. coli O26.H11 (H19). However the VT1 region cloned from the phage originating in the E. coli O157.H7 strain was identical to the VT1 region previously cloned from the phage carried by H19. Sequences encoding VT2 that were cloned from the phage in E. coli O157.H- have been mapped and the VT2 region identified by transposon insertion. The cloned regions coding for VT1 or VT2 production had no similarities in the presence of restriction enzyme sites over a distance of about 2 kb, and two VT1-specific probes spanning a region of about 1.4 kb did not hybridize under stringent conditions with cloned VT2 DNA. A 2 kb HincII fragment contained the VT2 genes but hybridized to VT1-encoding phages and recombinant plasmids via flanking phage DNA. A 0.85 kb AvaI-PstI fragment was a specific probe for VT2 sequences and did not hybridize under stringent conditions to phages or plasmid recombinants encoding VT1.  相似文献   

5.
A BamHI genomic library from Thermomonospora curvata was constructed in E. coli using cosmid vector pHC79. Four clones able to hydrolyze CMC were isolated. Restriction digests and Southern gel analysis revealed the presence of three different endoglucanase genes. DNA fragments contained in all of the endoglucanase cosmids hybridized to T. curvata chromosomal DNA. The cellulase genes were expressed in E. coli, but at rather low levels.  相似文献   

6.
基因芯片技术检测3种食源性致病微生物方法的建立   总被引:5,自引:0,他引:5  
建立一种运用多重PCR和基因芯片技术检测和鉴定志贺氏菌、沙门氏菌、大肠杆菌O157的方法, 为3种食源性致病菌的快速检测和鉴定提供了准确、快速、灵敏的方法。分别选取编码志贺氏菌侵袭性质粒抗原H基因(ipaH)、沙门氏菌肠毒素(stn)基因和致泻性大肠杆菌O157志贺样毒素(slt)基因设计引物和探针, 进行三重PCR扩增, 产物与含特异性探针的芯片杂交。对7种细菌共26株菌进行芯片检测, 仅3种菌得到阳性扩增结果, 证明此方法具有很高的特异性。3种致病菌基因组DNA和细菌纯培养物的检测灵敏度约为8 pg。对模拟食品样品进行直接检测, 结果与常规细菌学培养结果一致, 检测限为50 CFU/mL。结果表明:所建立的基因芯片检测方法特异性好, 灵敏度高, 为食源性致病菌的检测提供了理想手段, 有良好的应用前景。  相似文献   

7.
Two oligonucleotide probes derived from conserved motifs in peptide synthetases were hybridized with a cosmid library of Planobispora rosea genomic DNA. Detailed characterization of the physical organization of the positive cosmids indicated the existence of at least eight unlinked contigs containing multiple fragments that hybridized to both probes. Partial sequences of PCR products from the positive cosmids confirmed the existence of peptide synthetase genes. The combined results of hybridizations and physical mapping indicate that, in all likelihood, the isolated P. rosea contigs encode over 40 putative peptide synthetase modules. Similar results were obtained on screening a cosmid library of Actinoplanes teichomyceticus DNA. Furthermore, Southern hybridizations with several actinomycete strains, belonging to different genera, indicate that most strains contain multiple hybridizing bands well in excess of the number expected from the structure of the oligopeptides produced by these strains. Even strains not reported to produce oligopeptides gave clear positive signals when examined with the probes. These results strongly suggest that actinomycetes devote a notable fraction of their genomes to the non-ribosomal synthesis of peptides, and that most strains have the genetic potential to produce more oligopeptides than are currently described.  相似文献   

8.
Twenty-five and three strains of Escherichia coli O157:H7 were identified from 25 tenderloin beef and three chicken meat burger samples, respectively. The bacteria were recovered using the immunomagnetic separation procedure followed by selective plating on sorbitol MacConkey agar and were identified as E. coli serotype O157:H7 with three primer pairs that amplified fragments of the SLT-I, SLT-II and H7 genes in PCR assays. Susceptibility testing to 14 antibiotics showed that all were resistant to two or more antibiotics tested. Although all 28 strains contained plasmid, there was very little variation in the plasmid sizes observed. The most common plasmid of 60 MDa was detected in all strains. We used DNA fingerprinting by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) to compare the 28 E. coli O157:H7 strains. At a similarity level of 90%, the results of PFGE after restriction with XbaI separated the E. coli O157:H7 strains into 28 single isolates, whereas RAPD using a single 10-mer oligonucleotides separated the E. coli O157:H7 strains into two clusters and 22 single isolates. These typing methods should aid in the epidemiological clarification of the E. coli O157:H7 in the study area.  相似文献   

9.
Mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen were isolated by mutagenesis with UV irradiation, followed by a period of incubation in yellow light and then by penicillin enrichment. A cosmid vector, pRL25C, containing replicons functional in Escherichia coli and in Anabaena species was constructed. DNA from wild-type Anabaena sp. strain PCC 7120 was partially digested with Sau3AI, and size-fractionated fragments about 40 kilobases (kb) in length were ligated into the phosphatase-treated unique BamHI site of pRL25C. A library of 1,054 cosmid clones was generated in E. coli DH1 bearing helper plasmid pDS4101. A derivative of conjugative plasmid RP-4 was transferred to this library by conjugation, and the library was replicated to lawns of mutant Anabaena strains with defects in the polysaccharide layer of the envelopes of the heterocysts. Mutant EF116 was complemented by five cosmids, three of which were subjected to detailed restriction mapping; a 2.8-kb fragment of DNA derived from one of the cosmids was found to complement EF116. Mutant EF113 was complemented by a single cosmid, which was also restriction mapped, and was shown to be complemented by a 4.8-kb fragment of DNA derived from this cosmid.  相似文献   

10.
Epstein-Barr virus recombinants from overlapping cosmid fragments.   总被引:14,自引:12,他引:2       下载免费PDF全文
Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the marker-rescuing cosmid DNA fragment and the fragment encoding the type 1 EBNA 3A gene, most had incorporated markers from at least two other transfected cosmid DNA fragments, indicating a propensity for multiple homologous recombinations. The frequency of incorporation of the nonselected transfected type 1 EBNA 3C gene, which is near the end of two of the transfected cosmids, was 26% overall, versus 3% in previous experiments using transfections with two EBV DNA cosmids. In contrast, the frequency of incorporation of a 12-kb EBV DNA deletion which was near the end of two of the transfected cosmids was only 13%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
A total of 5700 human chromosome 3-specific cosmid clones was isolated from a series of cosmid libraries constructed from somatic cell hybrids whose only human component was an entire chromosome 3 or a chromosome 3 containing an interstitial deletion removing 50% of long arm sequences. Several unique sequence chromosome 3-specific hybridization probes were isolated from each of 616 of these cosmids. These probes were then used to localize the cosmids by hybridization to a somatic cell hybrid deletion mapping panel capable of resolving chromosome 3 into nine distinct subregions. All 616 of the cosmids were localized to either the long or short arm of chromosome 3 and 63% of the short arm cosmids were more precisely localized. We have identified a total of 87 cosmids that contain fragments that are evolutionarily conserved. Fragments from these cosmids should prove useful in the identification of new chromosome 3-specific genes as well as in comparative mapping studies. The localized cosmids should provide excellent saturation of human chromosome 3 and facilitate the construction of physical and genetic linkage maps to identify various disease loci including Von Hippel Lindau disease and renal and small cell lung carcinoma.  相似文献   

12.
Nodulation by the Rhizobium strain IC3342 causes a leaf curl syndrome in certain tropical legumes such as pigeon pea (Cajanus cajan) (N.M. Upadhyaya, J.V.D.K. Kumar Rao, D.S. Letham, and P.J. Dart, Physiological and Molecular Plant Pathology 39:357-373, 1991). Transposon (Tn5) mutagenesis of this leaf curl-inducing (Curl+) Rhizobium strain yielded two Curl- Fix- and three Curl- Fix+ mutants. Plasmid visualization and subsequent Southern blot hybridization analyses with Tn5, nif and nod gene probes showed that the Tn5 element had inserted into the symbiotic (Sym) plasmid in three of the mutants. Restriction endonuclease analyses indicated that none of the Tn5 insertions were closely linked. Tn5-containing EcoRI fragments were cloned from each mutant and used as probes to isolate the corresponding wild-type DNA fragments from a cosmid (pLAFR3) genomic library. Fix+ and/or Curl+ phenotypes were restored in each mutant by the introduction of cosmids containing the corresponding wild-type DNA. A closely related but Curl- Rhizobium strain ANU240 was shown, by Southern hybridization, to contain conserved DNA sequences of all but one of the identified genetic regions of the Curl+ Rhizobium strain IC3342. Cosmids containing the genetic region unique to the strain IC3342, designated lcr1, conferred a Curl+ phenotype on the strain ANU240. DNA sequence analysis of the cloned lcr1 region revealed five open reading frames (ORFs). The ORF2 showed homology with the Escherichia coli regulatory gene ompR, and ORF4 showed homology with E. coli and Rhizobium meliloti regulatory genes fnr and fixK, respectively.  相似文献   

13.
A Ahmed 《Gene》1984,28(1):37-43
Insertion of a HindIII-EcoRI fragment carrying part of the gal operon from lambda gal+ into pBR322 yields a plasmid (pAA3) which confers strong galactose sensitivity on E. coli strains deleted for the gal operon. Sensitivity to galactose is caused by the expression of kinase and transferase (but not epimerase) genes from a promoter located in the tet gene of pBR322. Insertion of a DNA fragment carrying Tn9 at the HindIII junction blocks gal expression and produces a galactose-resistant phenotype. Hence, galactose resistance can be used to select DNA fragments cloned at the HindIII site. The system was used efficiently for cloning lambda, yeast, and human DNA. The cloned fragments can be screened directly for the presence of promoters by testing for tetracycline resistance. Alternatively, these plasmids can be used as cosmids for cloning large fragments of DNA at a number of sites. Construction of several related vectors is described.  相似文献   

14.
A cosmid gene library of the genome of Lactococcus lactis subsp. lactis 712 has been constructed in the broad host range plasmid pLAFR1 in Escherichia coli LE392. Three lactococcal genes from the bank were identified by heterologous complementation of specific mutations in strains of E. coli. A cosmid clone encoding a putative lactose transport gene was identified by complementing an E. coli lacY mutant. The complemented clone supported the uptake of 14C lactose in transport assays. The DNA fragment responsible was subcloned and localised to a 1.28 kb fragment of the lactococcal chromosome.  相似文献   

15.
Twenty of the twenty-two MudII1734 insertions impairing the chrysobactin iron-assimilation system of Erwinia chrysanthemi 3937 were localized to a 50 kbp genomic insert contained in the R-prime plasmid, R'4 (Enard et al., 1988). Using the conjugative plasmid pULB110 (RP4::mini-Mu) and the generalized transducing phage phi EC2, we located this iron-transport region and the two unlinked mutations on the chromosome linkage map. Chrysobactin is a catechol-type siderophore and, as we have previously observed with the entA locus of Escherichia coli, the E. chrysanthemi-derived R'4 was found to complement E. coli entB and entE mutations. A 2.9 kb EcoRi and a 4.8 kb BamHI fragment in the R'4 sharing homology with the E. coli entCEBAP15 operon DNA were subcloned. These fragments were used as DNA/DNA hybridization probes to screen a wild-type gene library, yielding a recombinant cosmid (pEC7) able to complement mutations disrupting the 2,3-dihydroxybenzoic acid biosynthetic pathway in both Erwinia and Escherichia spp. as well as the E. coli entE mutation. Physical mapping of the genomic MudII1734 insertions corresponding to these mutations led to the identification of a cluster of genes confined to a DNA sequence of about 10 kb required for both biosynthetic and receptor functions.  相似文献   

16.
AIMS: The aims of the study were to identify the specific genes of O-antigen gene cluster from Shiga toxin-producing Escherichia coli (STEC) O103 and to provide the basis for a specific real-time PCR test for rapid detection of E. coli O103. METHODS AND RESULTS: The published primers complementary to JUMPstart and gnd gene, the conserved flanking sequences of O-antigen genes clusters in E. coli and related species, were used to amplify the 12-kbp O103 O-antigen biosynthesis locus of STEC O103. A DNA library representative of this cluster allowed two O103-specific probes to be identified in the flippase (wzx) and UDP-galactose-4-epimerase (galE) genes. Two specific O103 serotyping real-time PCR tests based on these two genes were successfully developed. CONCLUSIONS: These results confirm that the O-antigen gene cluster sequences of E. coli allow rapidly a specific O-antigen real-time PCR assay to be designed. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings increase the number of real-time PCR-assays available to replace the classical O-serotyping among E. coli O-antigen.  相似文献   

17.
In this study, we determined the nucleotide sequence of the p gene contained within a 5-kb EcoRI restriction fragment cloned from Shiga-like toxin II (SLT-II)-converting phage 933W of Escherichia coli O157:H7 strain EDL933. The p gene was 702 bp long and had 95.3% sequence similarity to the p gene of phage lambda. Multiple hybridization patterns were obtained when genomic DNA fragments were hybridized with both p and slt-I, slt-II, or slt-IIc sequences. All O157 isolates also possessed an analog of lambda gene p which was not linked with either slt-I or slt-II. Restriction fragment length polymorphism comparisons of clinical O157 isolates and derivates undergoing genotype turnover during infection were made, and loss of large DNA fragments that hybridized with slt-II and p sequences was observed. To further analyze the DNA region containing the p and slt genes, we amplified fragments by using a PCR with one primer complementary to p and the other complementary to either the slt-I or the slt-II gene. PCR analysis with enterohemorrhagic E. coli O157 and non-O157 strains yielded PCR products that varied in size between 5.1 and 7.8 kb. These results suggest that even within O157 isolates, the genomes of SLT-converting phages differ. The methods described here may assist in further investigation of SLT-encoding phages and their role in the epidemiology of infection with enterohemorrhagic E. coli.  相似文献   

18.
AIMS: To develop and evaluate a multiplex PCR (mPCR) system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) and their main virulence marker genes. METHODS AND RESULTS: A series of mPCR assays were developed using primer pairs that identify the sequences of Shiga toxins 1 and 2 (stx1 and stx2, including the stx2c, stx2d, stx2e and stx2f variants), intimin (eaeA), and enterohaemorrhagic E. coli enterohaemolysin (ehlyA). Moreover, two additional genes (rfb O157 and fliC H7), providing the genotypic identification of the O157:H7 E. coli serotype, were detected. As an internal positive control, primers designated to amplify the E. coli 16S rRNA were included in each mPCR. All the amplified genes in the E. coli reference strains were sucessfully identified by this procedure. The method was then used for the examination of 202 E. coli isolates recovered from cattle and children. Among them, 25 (12.4%) were stx positive including the strains of O157:H7 serotype (six isolates) and O157:NM serogroup (four strains). Moreover, 20 STEC strains possessed the eaeA (intimin) and ehlyA (enterohaemolysin) genes. CONCLUSIONS: The developed mPCR-based system enabled specific detection of STEC bacteria and identification of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to identify STEC bacteria and the majority of their virulence gene markers, including four variants of Shiga toxin, as well as the differentiation of O157:H7 from non-O157 isolates represents a considerable advancement over other PCR-based methods for rapid characterization of STEC.  相似文献   

19.
Buroker  N. E.  Magenis  R. E.  Weliky  K.  Bruns  G.  Litt  M. 《Human genetics》1986,72(1):86-94
Summary Human gene mapping would be greatly facilitated if marker loci with sufficient polymorphism information content were generally available. As a source of such markers, we have used cosmids from a human genomic library. We have used a rapid method for screening random cosmids to identify those homologous to genomic regions especially rich in restriction fragment length polymophisms (Litt and White 1985). This method allows whole cosmids to be used as probes against Southern transfers of genomic DNA; regions of cosmid probes homologous to repeated genomic sequences are rendered unable to anneal with Southern transfers by prerendered of the probes with a vast excess of non-radioactive genomic DNA. From one cosmid (C1-11) identified by this procedure, we have isolated four single-copy probes, each of which identifies a polymorphic locus. Despite the existence of some linkage disequilibrium in this system, the polymorthism information content was computed as 0.73. Using a somatic cell hybrid mapping panel, we have mapped probes from cosmid 1–11 to human chromosome 12q. Additionally, in situ hybridization of the whole cosmid to metaphase spreads allowed more precise assignment of the locus to the region 12cenq13. The locus revealed by probes from cosmid 1–11 has been designated D12S6.  相似文献   

20.
We recently reported a novel genetic locus located in the sbcB-his region of the chromosomal map of Escherichia coli K-12 which directs the expression of group 6-positive phenotype in Shigella flexneri lipopolysaccharide, presumably due to the transfer of O-acetyl groups onto rhamnose residues of the S. flexneri O-specific polysaccharide (Z. Yao, H. Liu, and M. A. Valvano, J. Bacteriol. 174:7500-7508, 1992). In this study, we identified the genetic region encoding group 6 specificity as part of the rfb gene cluster of E. coli K-12 strain W3110 and established the DNA sequence of most of this cluster. The rfbBDACX block of genes, located in the upstream region of the rfb cluster, was found to be strongly conserved in comparison with the corresponding region in Shigella dysenteriae type 1 and Salmonella enterica. Six other genes, four of which were shown to be essential for the expression of group 6 reactivity in S. flexneri serotypes Y and 4a, were identified downstream of rfbX. One of the remaining two genes showed similarities with rfc (O-antigen polymerase) of S. enterica serovar typhimurium, whereas the other, located in the downstream end of the cluster next to gnd (gluconate-6-phosphate dehydrogenase), had an IS5 insertion. Recently, it has been reported that the IS5 insertion mutation (rfb-50) can be complemented, resulting in the formation of O16-specific polysaccharide by E. coli K-12 (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994). We present immunochemical evidence suggesting that S. flexneri rfb genes also complement the rfb-50 mutation; in the presence of rfb genes of E. coli K-12, S. flexneri isolates express O16-specific polysaccharide which is also acetylated in its rhamnose residues, thereby eliciting group 6 specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号