首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to determine the influence of different feeding strategies on the gut microbiota of organic growing-finishing pigs. A total of 76 pigs were allocated to four different dietary treatments (control, probiotics, maize silage and grass silage). Effects of the applied probiotic preparation on the composition of the intestinal and faecal microbiota were monitored. By using a DGGE (denaturing gradient gel electrophoresis)-based methodology, fingerprints of the intestinal microbiota were obtained. The total microbial DNA was isolated from faecal and colon samples and amplified with PCR using different primer sets to detect bifidobacteria and lactobacilli. PCR products were separated using DGGE and the resulting profiles were compared with the findings of the other dietary treatments. Bands were excised from the gels and sequenced for further identification. Particularly two different DGGE profiles of bifidobacteria were observed, while lactobacilli showed larger variety within the dietary treatments.  相似文献   

2.
The combination of a Simulator of the Human Intestinal Microbial Ecosystem with ad hoc molecular techniques (i.e. pyrosequencing, denaturing gradient gel electrophoresis and quantitative PCR) allowed an evaluation of the extent to which two plant polysaccharide supplements could modify a complex gut microbial community. The presence of Aloe vera gel powder and algae extract in product B as compared to the standard blend (product A) improved its fermentation along the entire simulated colon. The potential extended effect of product B in the simulated distal colon, as compared to product A, was confirmed by: (i) the separate clustering of the samples before and after the treatment in the phylogenetic-based dendrogram and OTU-based PCoA plot only for product B; (ii) a higher richness estimator (+33 vs. ?36 % of product A); and (iii) a higher dynamic parameter (21 vs. 13 %). These data show that the combination of well designed in vitro simulators with barcoded pyrosequencing is a powerful tool for characterizing changes occurring in the gut microbiota following a treatment. However, for the quantification of low-abundance species—of interest because of their relationship to potential positive health effects (i.e. bifidobacteria or lactobacilli)—conventional molecular ecological approaches, such as PCR–DGGE and qPCR, still remain a very useful complementary tool.  相似文献   

3.
4.
A rapid and effective method for the direct extraction of high molecular weight amplifiable DNA from two coral reef sediments was developed. DNA was amplified by the polymerase chain reaction (PCR) using 16S rDNA specific primers. The amplicons were digested with HaeIII, HinP1I and MspI and separated using polyacrylamide gel electrophoresis and silver staining. The resulting amplified ribosomal DNA restriction analysis (ARDRA) patterns were used as a fingerprint to discern differences between the coral reef sediment samples. Results indicated that ARDRA is an effective method for determining differences within the bacterial community amongst different environmental samples.  相似文献   

5.
Lactobacilli play an important role in maintaining the vaginal health of women. The development of suitable bacterial replacement therapies for the treatment of vaginosis requires knowledge of the vaginal lactobacilli species representation. The aim of this study was to identify at the species level vaginal Lactobacillus isolates obtained from Bulgarian women in childbearing age by using different molecular methods. Twenty-two strains of lactobacilli isolated from vaginal samples were identified and grouped according to their genetic relatedness. A combined approach, which included amplified ribosomal DNA restriction analysis (ARDRA), ribotyping and polymerase chain reaction (PCR) with species-specific oligonucleotide primers was applied. All vaginal isolates were grouped into 5 clusters in␣comparison with a set of 21 reference strains based␣on the initial ARDRA results, which was then confirmed by ribotyping. Finally, the strains were subjected to PCR analysis with eight different species-specific primer pairs, which allowed most of␣them to be classified as belonging to one of␣the␣following species: Lactobacillus crispatus, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus helveticus and Lactobacillus plantarum. In conclusion, this study suggests that the most straightforward identification strategy for vaginal lactobacilli would be grouping by ARDRA or ribotyping, followed by PCR specific primers identification at species level.  相似文献   

6.
The broad-range PCR has been successfully developed to search for fastidious, slow-growing or uncultured bacteria, and is mostly used when an empirical antibiotic treatment has already been initiated. The technique generally involves standard PCR targeting the gene coding for 16S ribosomal RNA, and includes a post-PCR visualisation step on agarose gel which is a potential source of cross-over contamination. In addition, interpretation of the presence of amplified products on gels can be difficult. We then developed a new SYBR Green-based, universal real-time PCR assay targeting the gene coding for 16S ribosomal RNA, coupled with sequencing of amplified products. The real-time PCR assay was evaluated on 94 articular fluid samples collected from children hospitalised for suspicion of septic arthritis, as compared to the results obtained with bacterial cultures and conventional broad-range PCR. DNA extraction was performed with the automated MagNa Pure system. We could detect DNA from various bacterial pathogens including fastidious bacteria (Kingella kingae, Streptococcus pneumoniae, Streptococcus pyogenes, Salmonella spp, Staphylococcus aureus) from 23% of cases of septic arthritis giving negative culture results. The real-time technique was easier to interpret and allowed to detect four more cases than conventional PCR. PCR based molecular techniques appear to be essential to perform in case of suspicion of septic arthritis, provided the increase of the diagnosed bacterial etiologies. Real-time PCR technique is a sensitive and reliable technique, which can replace conventional PCR for clinical specimens with negative bacterial culture.  相似文献   

7.
Aims:  Bifidobacteria and lactobacilli are part of the human normal intestinal microbiota and may possibly be transferred to the placenta. It was hypothesized that intestinal bacteria or their components are present in the placenta and that the foetus may be exposed to them. We investigated the presence of bifidobacteria and lactobacilli and their DNA in the human placenta.
Methods and Results:  We studied 34 human placentae (25 vaginal and nine caesarean deliveries) for the presence Bifidobacterium spp. and Lactobacillus rhamnosus. Cultivation was used for the detection of viable cells and genus and species-specific PCR for the detection of DNA. No bifidobacteria or lactobacilli were found by cultivation. Bifidobacterial DNA was detected in 33 and L. rhamnosus DNA in 31 placenta samples.
Conclusions:  DNA from intestinal bacteria was found in most placenta samples. The results suggest that horizontal transfer of bacterial DNA from mother to foetus may occur via placenta.
Significance and Impact of the Study:  Bacterial DNA contains unmethylated CpG oligodeoxynucleotide motifs which induce immune effects. Specific CpG motifs activate Toll-like receptor 9 and subsequently trigger Th-1-type immune responses. Although the newborn infant is considered immunologically immature, exposure by bacterial DNA may programme the infant's immune development during foetal life earlier than previously considered.  相似文献   

8.
This study initially involved the isolation of a number of bifidobacteria from either the lumen or the epithelium of a porcine cecum. A total of 160 isolates were selected at random on MRS plates containing cysteine hydrochloride (0.5 g/liter) and mupirocin (50 mg/liter). All were identified as bifidobacteria based on fructose-6-phosphate phosphoketolase activity. Following genomic digestion with the restriction enzyme XbaI and pulsed-field gel electrophoresis (PFGE), the isolates produced 15 distinct macro-restriction patterns. Several of the PFGE patterns differed by only 1, 2, or 3 DNA fragments and were grouped as related patterns into seven PFGE types, termed A through G. The related patterns appeared to show genomic plasticity within the isolates arising from chromosomal mutations or possibly horizontal transfer of plasmids. The relative frequency of each PFGE type was maintained within each cecal sample, with PFGE type E representing approximately 50% of the isolates. Randomly amplified polymorphic DNA PCR, cell morphology, whole-cell protein profiling, 16S ribosomal DNA sequencing, and DNA-DNA hybridization were used to determine if the seven apparently unrelated PFGE types represented genetically distinct isolates. Four groups were identified: PFGE types A, C/D/G, B/E, and F, and these appeared to represent Bifidobacterium minimum, Bifidobacterium pseudolongum subsp. pseudolongum, and Bifidobacterium pseudolongum subsp. globosum and two new species, respectively. The data demonstrate the presence of considerable genomic diversity within a relatively simple bifidobacteria population, consisting of 15 distinct strains representing four groups, which was maintained throughout the porcine cecal contents and epithelial layer.  相似文献   

9.
Molecular biological methods based on genus-specific PCR, species-specific PCR, and amplified ribosomal DNA restriction analysis (ARDRA) of two PCR amplicons (523 and 914bp) using six restriction enzymes were used to differentiate among species of Bifidobacterium. The techniques were established using DNA from 16 type and reference strains of bifidobacteria of 11 species. The discrimination power of 914bp amplicon digestion was higher than that of 523bp amplicon digestion. The 914bp amplicon digestion by six restrictases provided unique patterns for nine species; B. catenulatum and B. pseudocatenulatum were not differentiated yet. The NciI digestion of the 914bp PCR product enabled to discriminate between each of B. animalis, B. lactis, and B. gallicum. The reference strain B. adolescentis CCM 3761 was reclassified as a member of the B. catenulatum/B. pseudocatenulatum group. The above-mentioned methods were applied for the identification of seven strains of Bifidobacterium spp. collected in the Culture Collection of Dairy Microorganisms (CCDM). The strains collected in CCDM were differentiated to the species level. Six strains were identified as B. lactis, one strain as B. adolescentis.  相似文献   

10.
In temperate forest soils, filamentous ectomycorrhizal and saprotrophic fungi affiliated to the Agaricomycetes and Pezizomycotina contribute to key biological processes. The diversity of soil fungal communities is usually estimated by studying molecular markers such as nuclear ribosomal gene regions amplified from soil-extracted DNA. However, this approach only reveals the presence of the corresponding genomic DNA in the soil sample and may not reflect the diversity of the metabolically active species. To circumvent this problem, we investigated the performance of the mitochondrial cytochrome c oxidase 1 (COX1)-encoding gene as a fungal molecular marker for environmental RNA-based studies. We designed PCR primers to specifically amplify Agaricomycetes and Pezizomycotina COX1 partial sequences and amplified them from both soil DNA and reverse-transcribed soil RNA. As a control, we also amplified the nuclear internal transcribed spacer ribosomal region from soil DNA. Fungal COX1 sequences were readily amplified from soil-extracted nucleic acids and were not significantly contaminated by nontarget sequences. We show that the relative abundance of fungal taxonomic groups differed between the different sequence data sets, with for example ascomycete COX1 sequences being more abundant among sequences amplified from soil DNA than from soil cDNAs.  相似文献   

11.
Genotypic Microbial Community Profiling: A Critical Technical Review   总被引:6,自引:0,他引:6  
Microbial ecology has undergone a profound change in the last two decades with regard to methods employed for the analysis of natural communities. Emphasis has shifted from culturing to the analysis of signature molecules including molecular DNA-based approaches that rely either on direct cloning and sequencing of DNA fragments (shotgun cloning) or often rely on prior amplification of target sequences by use of the polymerase chain reaction (PCR). The pool of PCR products can again be either cloned and sequenced or can be subjected to an increasing variety of genetic profiling methods, including amplified ribosomal DNA restriction analysis, automated ribosomal intergenic spacer analysis, terminal restriction fragment length polymorphism, denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, single strand conformation polymorphism, and denaturing high-performance liquid chromatography. In this document, we present and critically compare these methods commonly used for the study of microbial diversity.  相似文献   

12.
We studied the dynamics of the microbial population during ripening of Cueva de la Magahá cheese using a combination of classical and molecular techniques. Samples taken during ripening of this Spanish goat's milk cheese in which Lactococcus lactis and Streptococcus thermophilus were used as starter cultures were analyzed. All bacterial isolates were clustered by using randomly amplified polymorphic DNA (RAPD) and identified by 16S rRNA gene sequencing, species-specific PCR, and multiplex PCR. Our results indicate that the majority of the 225 strains isolated and enumerated on solid media during the ripening period were nonstarter lactic acid bacteria, and Lactobacillus paracasei was the most abundant species. Other Lactobacillus species, such as Lactobacillus plantarum and Lactobacillus parabuchneri, were also detected at the beginning and end of ripening, respectively. Non-lactic-acid bacteria, mainly Kocuria and Staphylococcus strains, were also detected at the end of the ripening period. Microbial community dynamics determined by temporal temperature gradient gel electrophoresis provided a more precise estimate of the distribution of bacteria and enabled us to detect Lactobacillus curvatus and the starter bacteria S. thermophilus and L. lactis, which were not isolated. Surprisingly, the bacterium most frequently found using culture-dependent analysis, L. paracasei, was scarcely detected by this molecular approach. Finally, we studied the composition of the lactobacilli and their evolution by using length heterogeneity PCR.  相似文献   

13.
DNA fingerprinting analysis such as amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic PCR (rep-PCR), ribosomal intergenic spacer analysis (RISA), and denaturing gradient gel electrophoresis (DGGE) are frequently used in various fields of microbiology. The major difficulty in DNA fingerprinting data analysis is the alignment of multiple peak sets. We report here an R program for a clustering-based peak alignment algorithm, and its application to analyze various DNA fingerprinting data, such as ARDRA, rep-PCR, RISA, and DGGE data. The results obtained by our clustering algorithm and by BioNumerics software showed high similarity. Since several R packages have been established to statistically analyze various biological data, the distance matrix obtained by our R program can be used for subsequent statistical analyses, some of which were not previously performed but are useful in DNA fingerprinting studies.  相似文献   

14.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   

15.
16.
The nature of the micro-flora present in sputa of six different cystic fibrosis (CF) patients was assessed using routine microbiological culture and molecular methods. Bacterial genes for the small subunit ribosomal RNA (ssu rDNA) were specifically amplified from DNA extracted from the sputum samples, cloned and characterised by hybridisation and DNA sequencing. A large number of clones from six sputa were screened. Initially, oligonucleotide hybridisation was performed with five probes, specific for Gram-positives and Gram-negatives in general and the main pathogens for the CF patient (Staphylococcus aureus, Pseudomonas aeruginosa and Haemophilus influenzae). For a single sputum sample, the results were fully congruent when culture and molecular methods were compared. In the other five sputa, discrepancies for S. aureus and/or H. influenzae were documented. Although S. aureus DNA and H. influenzae DNA was detected in three and four sputa, respectively, strains could not be cultured. Although the PCR approach is not capable of distinguishing viable from dead bacteria, all of the CF patients had a history of S. aureus infections, while one of the CF patients once had cultivable H. influenzae in the sputum as well. A number of clones for probe-unidentified Gram-negative or Gram-positive bacterial species were further analysed by sequencing and additional potential pathogens were identified. Although routine culture of sputum frequently points to mono-specific exacerbations, our molecular data indicate that the other CF-related pathogens appear to be persistently present as well. We conclude that routine culture for bacterial pathogens from CF sputa yields limited microbiological information since it frequently fails to identify a number of pathogenic bacterial species that are potentially present in a viable status in the lungs of these patients.  相似文献   

17.
The aim of this study was to identify and discriminate bacteria contained in commercial fermented milks with bifidobacteria by the use of amplified ribosomal DNA restriction analysis (ARDRA) and randomly amplified polymorphic DNA (RAPD) techniques. ARDRA of the 16S rDNA gene and RAPD were performed on 13 Lactobacillus strains, 13 Streptococcus and 13 Bifidobacterium strains isolated from commercial fermented milk. Lactobacillus delbrueckii, Streptococcus thermophilus and Bifidobacterium animalis isolates were identified by genus- and species-PCR and also, they were differentiated at genus and species level by ARDRA using MwoI restriction enzyme. The ARDRA technique allowed for the discrimination among these three related genus with the use of only one restriction enzyme, since distinctive profiles were obtained for each genus. Therefore it can be a simple, rapid and useful method for routine identification. Also, RAPD technique allowed the discrimination of all bacteria contained in dairy products, at genus- and strain-level by the performance of one PCR reaction.  相似文献   

18.
This study was designed to isolate different strains of the genus Bifidobacterium from the fecal material of neonates and to assess their ability to produce the cis-9, trans-11 conjugated linoleic acid (CLA) isomer from free linoleic acid. Fecal material was collected from 24 neonates aged between 3 days and 2 months in a neonatal unit (Erinville Hospital, Cork, Ireland). A total of 46 isolates from six neonates were confirmed to be Bifidobacterium species based on a combination of the fructose-6-phosphate phosphoketolase assay, RAPD [random(ly) amplified polymorphic DNA] PCR, pulsed-field gel electrophoresis (PFGE), and partial 16S ribosomal DNA sequencing. Interestingly, only 1 of the 11 neonates that had received antibiotic treatment produced bifidobacteria. PFGE after genomic digestion with the restriction enzyme XbaI demonstrated that the bifidobacteria population displayed considerable genomic diversity among the neonates, with each containing between one and five dominant strains, whereas 11 different macro restriction patterns were obtained. In only one case did a single strain appear in two neonates. All genetically distinct strains were then screened for CLA production after 72 h of incubation with 0.5 mg of free linoleic acid ml(-1) by using gas-liquid chromatography. The most efficient producers belonged to the species Bifidobacterium breve, of which two different strains converted 29 and 27% of the free linoleic acid to the cis-9, trans-11 isomer per microgram of dry cells, respectively. In addition, a strain of Bifidobacterium bifidum showed a conversion rate of 18%/microg dry cells. The ability of some Bifidobacterium strains to produce CLA could be another human health-promoting property linked to members of the genus, given that this metabolite has demonstrated anticarcinogenic activity in vitro and in vivo.  相似文献   

19.
The species Bifidobacterium lactis, with its main representative strain Bb12 (DSM 10140), is a yoghurt isolate used as a probiotic strain and is commercially applied in different types of yoghurts and infant formulas. In order to ensure the genetic identity and safety of this bacterial isolate, species- and strain-specific molecular tools for genetic fingerprinting must be available to identify isolated bifidobacteria or lactic acid bacteria from, e.g., various clinical environments of relevance in medical microbiology. Two opposing rRNA gene-targeted primers have been developed for specific detection of this microorganism by PCR. The specificity of this approach was evaluated and verified with DNA samples isolated from single and mixed cultures of bifidobacteria and lactobacilli (48 isolates, including the type strains of 29 Bifidobacterium and 9 Lactobacillus species). Furthermore, we performed a Multiplex-PCR using oligonucleotide primers targeting a specific region of the 16S rRNA gene for the genus Bifidobacterium and a conserved eubacterial 16S rDNA sequence. The specificity and sensitivity of this detection with a pure culture of B. lactis were, respectively, 100 bacteria/ml after 25 cycles of PCR and 1 to 10 bacteria/ml after a 50-cycle nested-PCR approach.  相似文献   

20.
Fungi fulfil a range of important ecological functions, yet current understanding of fungal biodiversity in soil is limited. Direct DNA extraction from soil, coupled with polymerase chain reaction amplification and community profiling techniques, has proved successful in investigations of bacterial ecology and shows great promise for elucidating the taxonomic and functional characteristics of soil fungal communities. These community profiling techniques include denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), single-strand conformation polymorphism (SSCP), terminal restriction fragment length polymorphism (T-RFLP), amplified rDNA restriction analysis (ARDRA), amplified ribosomal intergenic spacer analysis (ARISA) and cloning, and are generally coupled with DNA sequencing. The techniques and their potential limitations are discussed, along with recent advances that have been made possible through their application in soil fungal ecology. It is unlikely that a single approach will be universally applicable for assessing fungal diversity in all soils or circumstances. However, judicious selection of the methodology, keeping the experimental aims in mind, and the exploitation of emerging technologies will undoubtedly increase our understanding of soil fungal communities in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号