首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two tetracyanometalate building blocks, [Fe(5,5′-dmbipy)(CN)4]? (2) and [Fe(4,4′-dmbipy)(CN)4]? (3) (5,5′-dmbipy = 5,5′-dimethyl-2,2′-bipyridine; 4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine), and two cyano-bridged heterobimetallic complexes, [Cu2(bpca)2(H2O)2Fe2(5,5′-dmbipy)2(CN)8] · 2[Cu(bpca)Fe(5,5′-dmbipy)(CN)4] · 4H2O (4) and [Cu(bpca)Fe(4,4′-dmbipy)(CN)4]n (5) (bpca = bis(2-pyridylcarbonyl)amidate), have been synthesized and structurally characterized. Complex 4 contains two dinuclear and one tetranuclear heterobimetallic clusters in an asymmetric unit whereas the structure of complex 5 features a one-dimensional heterobimetallic zigzag chain. The Cu(II) ion is penta-coordinated in the form of a distorted square-based pyramid. Magnetic studies show ferromagnetic coupling between Cu(II) and Fe(III) ions with g = 2.28, J1 = 2.64 cm?1, J2 = 5.40 cm?1 and TIP = ?2.36 × 10?3 for complex 4, and g = 2.17, J = 4.82 cm?1 and zJ = 0.029 cm?1 for complex 5.  相似文献   

2.
The synthesis, crystallographic analysis and magnetic studies of six new copper(II) complexes of formulae [Cu(μ-ala)(im)(H2O)]n(ClO4)n (1), [Cu(μ-ala)(pz)(μ-ClO4)] (2), [Cu(μ-phe)(im)(H2O)]n(ClO4)n (3), [Cu(μ-gly)(H2O)(ClO4)]n (4), [Cu(μ-gly)(pz)(ClO4)]n(5) and [Cu(μ-pro)(pz)(ClO4)]n (6) have been carried out (ala = alanine; phe = phenylalanine; gly = glycine; pro = proline; im = imidazole; pz = pyrazole). In all cases, the deprotonated aminoacid ligand acts as chelate through the N(amine) and one O(carboxylato), whereas the second O atom of the same carboxylato acts as a bridge to the neighbouring copper(II) ion. The coordination of copper(II) ions is square-pyramidal in all complexes but 2 (elongated Oh). All complexes (16) are uniform chains with syn–anti (equatorial–equatorial) coordination mode of the carboxylato bridging ligand, exhibiting intrachain ferromagnetic interactions.  相似文献   

3.
Novel trinuclear Ni(II) complex [Ni3(pmdien)3(btc)(H2O)3](ClO4)3 · 4H2O, 1 where pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine, H3btc = 1,3,5-benzenetricarboxylic (trimesic) acid, has been prepared and structurally characterized. Three nickel atoms are bridged by btc trianion and their coordination sphere is completed by three N atoms of pmdien and O atom of the water molecule. The three nickel(II) magnetic centers are equivalent and their coordination spheres are completed to deformed octahedrons. Magnetic susceptibility was measured over the temperature range 1.8–300 K and zJ = ?0.19 cm?1, D = 3.79 cm?1, g = 2.18 parameters were calculated.  相似文献   

4.
《Inorganica chimica acta》2006,359(7):2015-2022
The reaction of [Cu(tren)(OH2)](ClO4)2 with KCN gave a mononuclear complex [Cu(tren)(CN)](ClO4) (1) (tren = tris(2-aminoethyl)amine). Using 1 as a building block, one pentanuclear compound, [{Cu(tren)(NC)}4Ni](ClO4)6 (2) and two trinuclear complexes, [{Cu(tren)NC}2Co(tren)](ClO4)5 · 2H2O (3), [{Cu(tren)CN}2NiL](ClO4)4 (4) (L = 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) were prepared and characterized by single crystal X-ray analysis. In 1, Cu(II) atom adopts a distorted trigonal bipyramidal (TBP) geometry. In 2, the Ni(II) atom occupies the center of the pentanuclear compound with a square-planar coordination geometry. In 3, the six-coordinated Co(III) atom presents a distorted octahedral geometry with four nitrogen atoms from tren and two carbon atoms of bridged cyano groups in cis-positions. In 4, the nickel atom is located in an inversion center and coordinated with two [(tren)CuCN]+ moieties through cyano-bridging ligands. Magnetic susceptibility measurements of 24 show that the magnetic interactions between the heterometallic ions are antiferromagnetical coupling through the cyano bridges with g = 2.25, J = −0.142 cm−1 and J = −0.167 cm−1 for 2, g = 2.06, J = −0.094 cm−1 for 3, and g = 2.20, J = −33.133 cm−1 for 4. The correlations between the structures and the J values are discussed.  相似文献   

5.
Two new pseudohalide-bridged copper(II) complexes [{Cu(PBH)(μ1,1-CNO)}2] (1) and {Cu(PBH)(μ1,5-NCNCN)}n (2) (where HPBH = 2-pyridinecarboxaldehyde benzoyl hydrazone) have been synthesised and characterised by elemental analysis, CV, IR and UV–Vis spectral studies. The tridentate hydrazone pro-ligand (HPBH) was obtained by the condensation of benzhydrazide and pyridine-2-carboxaldehyde. Structures of both complexes have been established by X-ray crystallography which shows that 1 is a μ1,1-CNO?-bridged dimer whereas 2 is a μ1,5-dca-bridged (dca = dicyanamide) linear polynuclear structure. Variable temperature magnetic susceptibility studies indicate weak antiferromagnetic interactions with J values ?0.50 cm?1 and ?0.10 cm?1 for 1 and 2, respectively.  相似文献   

6.
Three new compounds formulated (ClO4)2[Fe(pq)3] (1), (BF4)2[Fe(pq)3] · EtOH (2) and {(ClO4)[MnCr(C2O4)3][Fe(pq)2(H2O)2]} (3), where pq is 2,2′-pyridylquinoline, have been synthesised and characterised. Despite the different crystal packing exhibited by 1 and 2, the cationic species [Fe(pq)3]2+ are structurally quite similar. At 293 K, the Fe–N bond lengths are characteristic of the iron(II) in the high-spin state. In contrast to 1, 2 undergoes a continuous spin transition. Indeed, at 95 K its structure experiences a noticeable change in the Fe–N bonds and angles, i.e. the Fe–N bonds shorten by 0.194 Å on the average. The magnetic behaviour confirms that 1 is fully high-spin in the 4–300 K temperature range while 2 shows a spin transition centred at T1/2 = 150 K. The corresponding enthalpy, entropy and interaction parameter are ΔH = 7.49 kJ mol?1, ΔS = 50 J K?1 mol?1and Γ = 1.35 kJ mol?1. Compound 3 has been obtained as a microcrystalline powder. The magnetic properties of 3 point at the occurrence of ferromagnetic coupling below 100 K and the onset of a ferromagnetic ordering below 10 K (Weiss constant equal to 6.8 K). The Mössbauer spectra of 3 show the occurrence of a magnetic order at T ? 4.2 K.  相似文献   

7.
《Inorganica chimica acta》2006,359(4):1275-1281
Two new complexes of composition [Cu(2-NO2bz)2(3-pyme)2(H2O)2] (1) and/or [Cu{3,5-(NO2)2bz}2(3-pyme)2] (2) (3-pyme = 3-pyridylmethanol, ronicol or 3-pyridylcarbinol, 2-NO2bz = 2-nitrobenzoate and 3,5-(NO2)2bz = 3,5-dinitrobenzoate) have been prepared and studied by elemental analysis, electronic, infrared and EPR spectroscopy, magnetic susceptibility measurements and the structure of both complexes has been solved. Complex (1) shows an unusual molecular type of structure consisting of the [Cu(2-NO2bz)2(3-pyme)2(H2O)2] molecules held together by hydrogen bonds and van der Waals interactions. Complex (2) exhibits a polymeric chain-like structure [Cu{3,5-(NO2)2bz}2(3-pyme)2]n with copper atoms doubly bridged by two 3-pyridylmethanol molecules and the polymeric molecules are held together by van der Waals interactions. Complex (1) exhibits a magnetic moment μeff = 1.84 B.M. at 300 K that remains nearly constant within the temperature region (5–300 K). Further cooling results in lowering the magnetic moment to μeff = 1.82 B.M. at 1.8 K. The magnetic susceptibility temperature dependence obeys Curie–Weiss law with Curie constant of 0.423 cm3 K mol−1 and with Weiss constant of −0.06 K. The magnetic moment of (2) exhibits a small increase with a decrease in the temperature (μeff = 1.80 B.M. at 300 K and μeff = 1.85 B.M. at 1.8 K) with Curie constant of 0.409 cm3 K mol−1 and with Weiss constant of +1.1 K, which can indicate a very weak ferromagnetic interaction between the copper atoms within the chain. Applying the molecular field model resulted in obtaining zJ′ values −0.08 cm−1 for complex (1), and −0.07 cm−1 for complex (2), respectively, that could characterize intermolecular and interchain interactions transmitted through π–π stacking.  相似文献   

8.
The structure of {HC(3,5-Me2pz)3Fe[μ-p-C6H4(CH2OCH2C(pz)3)2]Fe(3,5-Me2pz)3CH}(BF4)4 (pz = pyrazolyl ring) contains two octahedral iron(II) centers linked by a semirigid, bitopic tris(pyrazolyl)methane ligand. The solid-state structure shows the two heteroleptic-bonded iron(II) centers are low-spin at 200 K and situated in a trans orientation with respect to the central linking arene ring.  相似文献   

9.
In this contribution we study and analyse the influence of the different parameters involved in the magnetic susceptibility of six-coordinated high-spin Co(II) complexes. We propose an empirical expression to fit the magnetic susceptibility of polycrystalline samples of mononuclear Co(II) complexes with an axial distortion, the variable parameters being Δ (axial distortion), α (orbital reduction factor) and λ (spin–orbit coupling). This expression avoids solving the 12 × 12 matrix associated to the distortion of the 4T1g term. In order to take into account the magnetic coupling (J) in the polynuclear Co(II) complexes, a perturbational approach is proposed to describe their magnetic susceptibility in the whole temperature range (2–300 K) as a function of J, Δ, α and λ. This approach is valid in the limit of the weak magnetic coupling as compared to the spin–orbit coupling, |J/λ| < 0.1. The model allows the treatment of each cobalt(II) ion in axial symmetry as an effective spin Seff = 1/2. That causes a drastic reduction of the matrix size of the polynuclear compounds from 12n × 12n to 2n × 2n, n being the number of Co(II) ions in the complex. The main advantage of the model is to make possible the fit of the magnetic susceptibility data of those polynuclear Co(II) complexes whose high nuclearity involved intractable matrices.  相似文献   

10.
5-(4-(N-tert-Butyl-N-aminoxylphenyl))pyrimidine (RL, 4PPN) forms crystallographically isostructural and isomorphic pseudo-octahedral M(RL)2(hfac)2 complexes with M(hfac)2, M = Zn, Cu, Ni, Co, and Mn. Multiple close contacts occur between sites of significant spin density of the organic radical units. Magnetic behavior of the Zn, Cu, Ni, Co complexes appears to involve multiple exchange pathways, with multiple close crystallographic contacts between sites that EPR (of 4PPN) indicates to have observable spin density. Powder EPR spectra at room temperature and low temperature are reported for each complex. Near room temperature, the magnetic moments of the complexes are roughly equal to those expected by a sum of non-interacting moments (two radicals plus ion). As temperature decreases, AFM exchange interactions become evident in all of the complexes. The closest fits to the magnetic data were found for a 1-D Heisenberg AFM chain model in the Zn(II) complex (J/k = (?)7 K), and for three-spin RL—M—RL exchange in the other complexes (J/k = (?)26 K, (?)3 K, (?)6 K, for Cu(II), Ni(II), and Co(II) complexes, respectively).  相似文献   

11.
We have examined the crystal structures and the electrical and magnetic properties of the molecular compounds of a thiazyl radical, 1,3,2-benzodithiazolyl (abbreviated as BDTA). BDTA was found to be a useful building block for molecular conductors and magnets because it can operate as a counter cation, a donor or a ligand, depending on its charge. (i) A charge-transfer complex, [BDTA][TCNQ], crystallizes into a uniform segregated stacking structure with a short contact between the donor and acceptor columns. In spite of the partial charge transfer between the two components, this complex exhibits semiconductive behaviour, probably due to a large electron correlation on BDTA. (ii) The crystal structure of [BDTA][Ni(mnt)2] (mnt = maleonitriledithiolate) consists of alternating stacking columns of S = 0 [BDTA]+ and S = 1/2 [Ni(mnt)2]?, in which a ferromagnetic coupling operates between the [Ni(mnt)2]? anions through the [BDTA] + cation. (iii) [BDTA]2[Cu(mnt)2] consists of an alternating stack of a head-to-head [BDTA]+ dimer and a planar [Cu(mnt)2]2? dianion. Short intermolecular S?S contacts between the stacks give rise to an ideal 1D Heisenberg antiferromagnetic chain of [Cu(mnt)2]2? with a coupling constant of J/kB = 16–17 K. (iv) The crystal structure of [BDTA]2[Co(mnt)2] is similar to that of [BDTA]2[Cu(mnt)2] at 253 K, but this salt undergoes a phase transition at 190 K, below which a partial electron transfer occurs from [Co(mnt)2]2? to one of the [BDTA]+ cations along with formation of a coordination bond. (v) [BDTA][Ni(dmit)2]2 (dmit = 1,3-dithiol-2-thione-4,5-dithiolate) exhibits room-temperature conductivity of 0.1 S cm?1 and semiconductive behaviour over the range 80–200 K, which can be interpreted in terms of multi-conducting bands.  相似文献   

12.
A family of three copper benzenedicarboxylate coordination polymers has been constructed using the conformationally flexible and hydrogen-bonding capable tethering ligand N,N′-bis(3-pyridylmethyl)piperazine (3-bpmp). These three coordination polymers have been characterized via single crystal X-ray diffraction, infrared spectroscopy and elemental and thermogravimetric analysis. {[Cu(ph)(Hph)(H3-bpmp)(H2O)] · 3H2O} (1, ph = phthalate) manifests a 1-D chain motif held into a pseudo 3-D supramolecular structure through hydrogen bonding. While both {[Cu(ip)(3-bpmp)(H2O)] · 2H2O} (2, ip = isophthalate) and [Cu(tp)(3-bpmp)] (3, tp = terephthalate) exhibit 2-D (4,4) rhomboid grid-like layers, they possess different layer stacking patterns and supramolecular interactions due to coordination geometry variances.  相似文献   

13.
The purpose of this analysis was to empirically model and graphically illustrate the numerical relationships between richness (S, 4–35 species) and evenness (E) with respect to Shannon–Wiener index (H′, loge-based) values. Thirty-two richness-based third-order polynomial regression models (R > 0.99, P < 0.001, n = 28–71) were constructed to characterize these relationships. A composite diagram showed richness varied curvilinearly, with steepness increasing and the spacing between curves decreasing with greater evenness and H′. Maximum H′ values for each richness curve were equal to loge S (when E = 1), whereas minima were approximated by evenness values of ∼1/S (when H = 0). It was concluded from multiple and polynomial regression analyses that: (i) evenness contributed more than richness (E:S ≥3:1) to determining H′, based on standardized partial beta-coefficients; (ii) the differential in E:S ratios increased with greater richness; (iii) the patterns of H′ sample variation between maximum unevenness and perfect evenness was convexo-concave shaped; and (iv) richness as an explanatory variable of H′ was likely an artifact of evenness (0–1 scale) being rescaled according to individual H′ maxima. H′ was redefined as a logarithm-weighted measure of evenness at a given level of richness, which means H′ is either an imperfect index of diversity or a biased measure of evenness. It was also found that the fundamental components of the Shannon–Wiener index measure dominance concentration rather than evenness, with the reversal in emphasis due to multiplication of the H′ equation by −1. H′-derived effective species numbers (exp H′, D) increasingly deviated from those of the diversity model D = S × E in response to increasing richness (up to 69% for 35 species), particularly when evenness was between 0.15 and 0.40. Of two cross-validated H′ prediction methods (P < 0.001, n = 325), the collective use of individual richness-based polynomial regression equations (r = 0.954) was better than a single multiple regression model that incorporated a broad spectrum of richness levels (r = 0.882). A simple graphic model was constructed to illustrate patterns of evenness variation as a function of changing richness and H′ values. Based on the identified biases, particularly E:S ratios, it was recommended that use of H′ be discontinued as a basis for assessing diversity in ecological research or, at the very least, accompanied by independent analyzes of richness and evenness.  相似文献   

14.
The crystals of the p-nitro perfluorophenyl dithiadiazolyl radical have been shown to present bulk ferromagnetism below 1.32 K. Using our first-principles bottom-up methodology, the mechanism of the magnetic interactions in these crystals has been studied to gain a rigorous quantitative understanding of such bulk ferromagnetism. The p-O2N-C6F4-CNSSN crystal is found to present only two non-negligible interactions (J(d1) = 0.83 cm?1 and J(d3) = 0.07 cm?1). The dominant interaction J(d1) generates a three-dimensional (3D) magnetic topology that can be described as a distorted diamond-like arrangement. Using the appropriate minimal magnetic model to describe this topology, the magnetic susceptibility and heat capacity curves were computed. A good agreement is found between the computed and experimental magnetic susceptibility data. Furthermore, the critical temperature obtained from the heat capacity curve (0.6 K) agrees well with the experimental one. A comparison of the magnetic data for p-O2N-C6F4-CNSSN and four nitronyl nitroxide bulk ferromagnets indicates that the critical temperature not only depends on the size of the largest J interactions, but also on the corresponding magnetic topology.  相似文献   

15.
Energetics of the catalysis of Class II α-mannosidase (E.C.3.2.1.24) from Aspergillus fischeri was studied. The enzyme showed Kcat/Km for Man (α1-3) Man, Man (α1-2) Man and Man (α1-6) Man as 7488, 5376 and 3690 M?1 min?1, respectively. The activation energy, Ea was 15.14, 47.43 and 71.21 kJ/mol for α1-3, α1-2 and α1-6 linked mannobioses, respectively, reflecting the energy barrier in the hydrolysis of latter two substrates. The enzyme showed Kcat/Km as 3.56 × 105 and 4.61 × 105 M?1 min?1 and Ea as 38.7 and 8.92 kJ/mol, towards pNPαMan and 4-MeUmbαMan, respectively. Binding of Swainsonine to the enzyme is stronger than that of 1-deoxymannojirimycin.  相似文献   

16.
《Inorganica chimica acta》2006,359(7):2271-2274
Two dinuclear nickel(II) complexes, [Ni2(L-Et)(N3)(H2O)3](NO3)2 · 2H2O (1) and [Ni2(L-Et)(μ-1,3-N3)(H2O)2](NO3)2 · 4H2O (2) containing (HL-Et = N,N,N′,N′-tetrakis[(1-ethyl-2-benzimidazolyl)methyl]-2-hydroxy-1,3-diaminopropane), have been synthesized and characterized by their IR and UV–Vis spectra and magnetic susceptibilities. The crystal structures of [Ni2(L-Et)(N3)(H2O)3](NO3)2 · CH3OH (1′) and [Ni2(L-Et)(μ-1,3-N3)(H2O)2](NO3)2 · 2C2H5OH (2′) similar to 1 and 2 were determined by X-ray crystallography. In 1′, the two nickel(II) ions are bridged by only an alkoxo group of L-Et, while an azido and an alkoxo connect two nickel(II) ions in 2′. Magnetic susceptibility measurements (2–300 K) showed a weak ferromagnetic exchange coupling between the two nickel(II) ions (2J = 10.1 cm−1) for 1. On the other hand, antiferromagnetic interactions were observed for 2 (2J = −15.8 cm−1).  相似文献   

17.
Inflammation is an important contributor to the pathogenesis of rheumatic heart disease (RHD), a disorder of heart valves caused by a combination of immune, genetic and environmental factors. Cytokines are important mediators of inflammatory and immune responses. The aim of this study was to investigate the role of cytokine gene polymorphisms and their potential usefulness as biomarkers in RHD patients from Pakistan. We screened 150 RHD patients and 204 ethnically matched controls for tumor necrosis factor (TNF)-α-308G/A, interleukin (IL)-10?1082 G/A, interleukin (IL)-6-174 G/C and a variable number of tandem repeats (VNTRs) polymorphism of the IL-1Ra gene using polymerase chain reaction. The results showed that TNF-α-308 A and IL-6-174 G alleles were associated with susceptibility to RHD (p = 0.000; OR = 2.81; CI = 1.5–5.14 and p = 0.025; OR = 1.50; CI = 1.04–2.16 respectively). The TNF-α-308 AA and GA genotypes were associated with susceptibility to RHD (p = 0.012; OR = 9.94; CI; 1.21–217.3 and p = 0.046; OR = 1.97; CI = 0.98–3.97 respectively) while the GG genotype seemed to confer resistance (p = 0.003; OR = 0.39; CI = 0.20–0.76). The GG genotype for IL-6-174 was significantly associated with predisposition to RHD (p = 0.015; OR = 2.6; CI = 1.17–5.85). The A1 (four repeats) and A2 (two repeats) alleles at the IL-1Ra VNTR polymorphism were associated with resistance and susceptibility to RHD respectively. However, this polymorphism deviated from Hardy–Weinberg equilibrium in both patients and controls in our population. TNF-α-308 and IL-6-174 polymorphisms may be useful markers for the identification of individuals susceptible to RHD in Pakistan. These individuals could be provided aggressive prophylactic intervention to prevent the morbidity and mortality associated with RHD.  相似文献   

18.
The trinuclear cluster (cyclam)Co[(μ-Cl)U(Me2Pz)4]2 (cyclam = 1,4,8,11-tetraazacyclotetradecane, Me2Pz? = 3,5-dimethylpyrazolate) is synthesized through cleavage of the homoleptic dimer [U(Me2Pz)4]2 by (cyclam)CoCl2. A single crystal X-ray diffraction analysis reveals a linear chloride-bridged structure analogous to that previously reported for (cyclam)M[(μ-Cl)U(Me2Pz)4]2 (M = Ni, Cu, Zn). The magnetic exchange coupling of the CoU2 cluster was probed by analyzing the temperature dependence of its magnetic susceptibility. Comparison of χMT versus T between the CoU2 species and the diamagnetic ZnU2 cluster demonstrates the presence of ferromagnetic coupling between the CoII and UIV centers. We present methods for estimating upper and lower bounds for the exchange interaction energy in such systems and find that for CoU2, the exchange constant, J, lies in the range 15–48 cm?1. Application of these methods to the previously reported NiU2 cluster suggests somewhat weaker ferromagnetic exchange, with J lying in the range 2.8–19 cm?1. AC magnetic susceptibility experiments were not indicative of single-molecule magnet behavior for the CoU2 cluster, although qualitative interpretation of the low-temperature magnetization data suggests the presence of significant zero-field splitting in the ground state.  相似文献   

19.
The new d–f cyanido-bridged 1D assembly [Nd(pzam)3(H2O)Mo(CN)8] · H2O was prepared by self-assembly of pyrazine-2-carboxamide (pzam), Nd(NO3) · nH2O and (Bu3NH)3[Mo(CN)8] · 4H2O in acetonitrile. X-ray crystallographic studies indicate that the complex comprises chains of alternating, cyanido-bridged [Nd(pzam)3(H2O)]3+ and Mo(CN)8]3? fragments. The magneto-structural properties have been studied by field-dependent magnetization and specific heat measurements at low temperatures (?0.3 K). Below ≈10 K the Nd(III) moment is well approximated by an effective spin S = 1/2, with anisotropic g-tensor. The exchange coupling between the Nd(III) and the Mo(V) spins S = 1/2 along the structural chains is found to be ferromagnetic, with J/kB = 1.8 ± 0.2 K and approximately XY (planar) anisotropy. No evidence for 3D interchain magnetic ordering is found. A comparison with magneto-structural data of other cyanido-bridged complexes involving the Nd(III) ion is presented.  相似文献   

20.
Four flavonol glycosides isolated from non-flowering leafy shoots of Iberis saxatilis (Brassicaceae) were characterised by spectroscopic and chemical methods as saxatilisins A–D, the 3-O-β-d-glucopyranosyl-(1  3)-α-l-rhamnopyranosyl-(1  2)[β-d-glucopyranosyl-(1  2)-α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside, 3-O-β-d-glucopyranosyl-(1  3)-α-l-rhamnopyranosyl-(1  2)[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside, 3-O-(6-O-E-sinapoyl)-β-d-glucopyranosyl-(1  3)-α-l-rhamnopyranosyl-(1  2)[β-d-glucopyranosyl-(1  2)-α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside, and 3-O-(6-O-E-feruloyl)-β-d-glucopyranosyl-(1  3)-α-l-rhamnopyranosyl-(1  2)[β-d-glucopyranosyl-(1  2)-α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside of isorhamnetin (3,5,7,4′-tetrahydroxy-3′-methoxyflavone), respectively. Analysis of 2JHC correlations detected with the H2BC (heteronuclear two-bond correlation) pulse sequence aided the unambiguous assignment of glycosidic resonances in the 1H and 13C NMR spectra of these compounds. Saxatilisins A, C, and D, are the first flavonol glycosides to be described with a pentasaccharide chain at a single glycosylation site. Several pentaglycosides of kaempferol and quercetin, tentatively assigned as saxatilisin analogues from LC–MS/MS analyses, were present as minor constituents of the extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号