首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
Bouvier M  Demarre G  Mazel D 《The EMBO journal》2005,24(24):4356-4367
Integrons play a major role in the dissemination of antibiotic resistance genes among Gram-negative pathogens. Integron gene cassettes form circular intermediates carrying a recombination site, attC, and insert into an integron platform at a second site, attI, in a reaction catalyzed by an integron-specific integrase IntI. The IntI1 integron integrase preferentially binds to the 'bottom strand' of single-stranded attC. We have addressed the insertion mechanism in vivo using a recombination assay exploiting plasmid conjugation to exclusively deliver either the top or bottom strand of different integrase recombination substrates. Recombination of a single-stranded attC site with an attI site was 1000-fold higher for one strand than for the other. Conversely, following conjugative transfer of either attI strand, recombination with attC is highly unfavorable. These results and those obtained using mutations within a putative attC stem-and-loop strongly support a novel integron cassette insertion model in which the single bottom attC strand adopts a folded structure generating a double strand recombination site. Thus, recombination would insert a single strand cassette, which must be subsequently processed.  相似文献   

2.
3.
IntI2 integron integrase in Tn7   总被引:15,自引:0,他引:15       下载免费PDF全文
Integrons can insert and excise antibiotic resistance genes on plasmids in bacteria by site-specific recombination. Class 1 integrons code for an integrase, IntI1 (337 amino acids in length), and are generally borne on elements derived from Tn5090, such as that found in the central part of Tn21. A second class of integron is found on transposon Tn7 and its relatives. We have completed the sequence of the Tn7 integrase gene, intI2, which contains an internal stop codon. This codon was found to be conserved among intI2 genes on three other Tn7-like transposons harboring different cassettes. The predicted peptide sequence (IntI2*) is 325 amino acids long and is 46% identical to IntI1. In order to detect recombination activity, the internal stop codon at position 179 in the parental allele was changed to a triplet coding for glutamic acid. The sequences flanking the cassette arrays in the class 1 and 2 integrons are not closely related, but a common pool of mobile cassettes is used by the different integron classes; two of the three antibiotic resistance cassettes on Tn7 and its close relatives are also found in various class 1 integrons. We also observed a fourth excisable cassette downstream of those described previously in Tn7. The fourth cassette encodes a 165-amino-acid protein of unknown function with 6.5 contiguous repeats of a sequence coding for 7 amino acids. IntI2*179E promoted site-specific excision of each of the cassettes in Tn7 at different frequencies. The integrases from Tn21 and Tn7 showed limited cross-specificity in that IntI1 could excise all cassettes from both Tn21 and Tn7. However, we did not observe a corresponding excision of the aadA1 cassette from Tn21 by IntI2*179E.  相似文献   

4.
The integron platform codes for an integrase (IntI) from the tyrosine family of recombinases that mediates recombination between a proximal double-strand recombination site, attI and a single-strand target recombination site, attC. The attI site is only recognized by its cognate integrase, while the various tested attCs sites are recombined by several different IntI integrases. We have developed a genetic system to enrich and select mutants of IntI1 that provide a higher yield of recombination in order to identify key protein structural elements important for attC × attI1 recombination. We isolated mutants with higher activity on wild type and mutant attC sites. Interestingly, three out of four characterized IntI1 mutants selected on different substrates are mutants of the conserved aspartic acid in position 161. The IntI1 model we made based on the VchIntIA 3D structure suggests that substitution at this position, which plays a central role in multimer assembly, can increase or decrease the stability of the complex and accordingly influence the rate of attI × attC recombination versus attC × attC. These results suggest that there is a balance between the specificity of the protein and the protein/protein interactions in the recombination synapse.  相似文献   

5.
Integrons are mobile genetic elements that can integrate and disseminate genes as cassettes by a site-specific recombination mechanism. Integrons contain an integrase gene (intI) that carries out recombination by interacting with two different target sites; the attI site in cis with the integrase and the palindromic attC site of a cassette. The plasmid-specified IntI1 excises a greater variety of cassettes (principally antibiotic resistance genes), and has greater activity, than chromosomal integrases. The aim of this study was to analyze the capacity of the chromosomal integron integrase SamIntIA of the environmental bacterium Shewanella amazonensis SB2BT to excise various cassettes and to compare the properties of the wild type with those of mutants that substitute consensus residues of active integron integrases. We show that the SamIntIA integrase is very weakly active in the excision of various cassettes but that the V206R, V206K, and V206H substitutions increase its efficiency for the excision of cassettes. Our results also suggest that the cysteine residue in the β-5 strand is essential to the activity of Shewanella-type integrases, while the cysteine in the β-4 strand is less important for the excision activity.Integrons are genetic elements that capture and rearrange genes that are contained within mobile gene cassettes by a mechanism of site-specific recombination mediated by an integrase (3). Several types of integron integrases have been described for clinical and environmental bacteria; classes 1, 2, and 3 integron integrases (1, 10, 11) and VchIntIA (17) and IntI9 (12) integrases are the only ones that are associated with antibiotic resistance genes. Some of these integrases were found exclusively on plasmids (IntI2*) (11) or on chromosomes (VchIntIA) (17), while others were found in both genetic contexts (IntI1) (7, 8, 20, 21). The efficiency of integron integrases to carry out cassette excision varies from one integrase to another and also depends on the structure and sequence of the attC sites located at both ends of the gene. IntI1 is generally the most active integrase, followed by IntI3. IntI2*179E and SonIntIA are less active but appear to tolerate more variation in attC sites. These enzymes could serve as models for determining important residues responsible for high levels of activity, using mutagenesis to substitute consensus residues and assaying for gain of function.Class 1 integrons, carrying the intI1 integrase gene, are generally associated with mobile elements, such as plasmids and Tn21-like transposons, and are most frequently found in clinical isolates (18). They are found mainly among gram-negative bacteria and especially among enterobacteria and pseudomonads (14). Class 1 integrons have also been found in some gram-positive bacteria, such as Enterococcus, Staphylococcus, and Corynebacterium (6). The clinical-type class 1 integrons (7) consist of two conserved regions and a variable region in which resistance genes are inserted in the form of cassettes (Fig. (Fig.1A).1A). These integrons were clearly derived from a structure related to Tn402, as they share many characteristics associated with this type of transposon (21). The common ancestor of clinical-type class 1 integrons was possibly a member of an integron pool that was acquired by diverse Betaproteobacteria (7). This hypothesis is based on the recent isolation of several new class 1 integron integrases from environmental DNA samples which are not associated with antibiotic resistance genes or with Tn402-like transposons (7, 8, 21).Open in a separate windowFIG. 1.(A) General structure of clinical-type class 1 integrons. Cassettes are inserted in the variable region of integrons by a site-specific recombinational mechanism. The attI1 and attC sites are shown by tiling and diagonal black lines, respectively, and promoters are denoted by P1, P2, P3, and P. Genes are as follows: intI1, integrase gene; qacEΔ1, antiseptic resistance gene; sul1, sulfonamide resistance gene; orf5, gene of unknown function. (B) Representation of the chromosomal integron of S. amazonensis SB2BT. The attISam and attC sites are shown by a black box and horizontal black lines, respectively. Genes are as follows: SamintIA, integrase gene; orf, open reading frame gene.Class 2 integrons, carrying the intI2* integrase pseudogene, are present on Tn7 transposons and their derivatives (11). The intI2* gene encodes an integrase identical to 46% with IntI1, but its reading frame was interrupted by an early termination codon. The activity of this protein is restored when the stop codon at position 179 is replaced by a glutamate codon (11). Recently, two new intI2 genes were identified within integrons found in Providencia stuartii (2) and Escherichia coli (16). The sequences of these genes are not interrupted; position 179 is occupied by a glutamine codon, and the genes apparently code for functional enzymes. These intI2 genes each differ from intI2* of Tn7 at five positions (2, 16).Class 3 integrons, characterized by the presence of the intI3 gene, have been found in Serratia marcescens AK9373, in Klebsiella pneumoniae FFUL 22K isolated in Portugal, in four strains of Pseudomonas putida isolated in Japan, and more recently, in Delftia acidovorans C17 and Delftia tsuruhatensis A90 (1, 4, 19, 23). The IntI3 integrase has 61% identity with IntI1.The class 4 integron, with VchintIA, is an integron carried by the small chromosome of Vibrio cholerae O:1 569B (17). This integron contains more than 216 open reading frames (ORFs) coding for proteins of unknown functions associated with V. cholerae repetitive DNA sequence (VCR) elements to form 179 cassettes, and occupies about 3% of the bacterial genome.In recent years, the draft genomes of various environmental strains led to the identification of more than 100 new integron integrases. Among these, the SonintIA and NeuintIA integrase genes have been found, respectively, in genomes of Shewanella oneidensis MR-1 and Nitrosomonas europaea and shown to be active in cassette excision and integration (5, 13). Shewanella amazonensis SB2BT is an environmental gram-negative gammaproteobacterium that plays an important role in the bioremediation of contaminated metals and radioactive wastes (22). The U.S. Department of Energy Joint Genome Institute sequenced its 4.3-Mbp genome (GenBank accession no. CP000507). The genome encodes an integron integrase, SamIntIA, which is 64.8% identical to SonIntIA and 60.2% identical to IntI2* but only 46.9% identical to VchIntIA and 44.6% to IntI1. A sequence alignment of SamIntIA, SonIntIA, and IntI2* indicates that they are closely related, especially in the N-terminal and the C-terminal regions.Several residues of SamIntIA differed from a consensus alignment of active integron integrases. We wished to determine whether SamIntIA is active, compare its activity to that of SonIntIA and of IntI2*179E, and determine whether the alteration of certain residues affects its excision activity.  相似文献   

6.
The production of β-lactamases is the most important mechanism of Gram-negative rod resistance to β-lactams. Resistance to ceftazidime and cefepime in clinical isolates of Enterobacteriaceae (especially ESβL-positive E. coli and K. pneumoniae) and P. aeruginosa is life-threatening. However, all strains of the above mentioned species possess chromosomally encoded RND efflux pump systems in addition to β-lactamase production. The main goal of this study was to assess the role of efflux pump systems in cefepime and/or ceftazidime resistant phenotypes of ESβL-positive clinical strains of Enterobacteriaceae and P. aeruginosa. The influence of the efflux pump inhibitor PAβN on the minimum inhibitory concentration (MIC) values of tested cephalosporins was species-dependent. Generally, a significant reduction (at least four-fold) of β-lactam MICs was observed in the presence of PAβN only in the case of P. aeruginosa clinical isolates as well as the ESβL-producing transformant PAO1161 ΔampC. The usage of this agent resulted in the restoration of susceptibility to cefepime and/or ceftazidime in the majority of the P. aeruginosa ESβL-positive strains with low and moderate resistance to the above cephalosporins. Moreover, an outer membrane permeabilizing effect in the presence of PAβN was identified. Strain-dependent β-lactamase leakage upon PAβN or β-lactam treatment was demonstrated. The most important observation was the restoration of susceptibility of P. aeruginosa WUM226 to cefepime (MIC decrease from 32 to 4 mg/L) and ceftazidime (MIC decrease from 128 to 4 mg/L) in the presence of PAβN, which occurred despite an almost complete lack of β-lactamase leakage from bacterial cells. In conclusion, these data indicate that RND efflux pumps can modify the susceptibility to β-lactams in Gram-negative rods producing ESβLs. However, this phenomenon occurs only in P. aeruginosa strains and was not observed among E. coli and K. pneumoniae strains, representing the Enterobacteriaceae family.  相似文献   

7.
The novel method described in this paper combines the use of blaI, which encodes a repressor involved in Bacillus licheniformis BlaP β-lactamase regulation, an antibiotic resistance gene, and a B. subtilis strain (BS1541) that is conditionally auxotrophic for lysine. We constructed a BlaI cassette containing blaI and the spectinomycin resistance genes and two short direct repeat DNA sequences, one at each extremity of the cassette. The BS1541 strain was obtained by replacing the B. subtilis PlysA promoter with that of the PblaP β-lactamase promoter. In the resulting strain, the cloning of the blaI repressor gene confers lysine auxotrophy to BS1541. After integration of the BlaI cassette into the chromosome of a conditionally lys-auxotrophic (BS1541) strain by homologous recombination and positive selection for spectinomycin resistance, the eviction of the BlaI cassette was achieved by single crossover between the two short direct repeat sequences. This strategy was successfully used to inactivate a single gene and to introduce a gene of interest in the Bacillus chromosome. In both cases the resulting strains are free of selection marker. This allows the use of the BlaI cassette to repeatedly further modify the Bacillus chromosome.  相似文献   

8.
The spread of β-lactamases that hydrolyze penicillins, cephalosporins and carbapenems among Gram-negative bacteria has limited options for treating bacterial infections. Initially, Klebsiella pneumoniae carbapenemase-2 (KPC-2) emerged as a widespread carbapenem hydrolyzing β-lactamase that also hydrolyzes penicillins and cephalosporins but not cephamycins and ceftazidime. In recent years, single and double amino acid substitution variants of KPC-2 have emerged among clinical isolates that show increased resistance to ceftazidime. Because it confers multi-drug resistance, KPC β-lactamase is a threat to public health. In this study, the evolution of KPC-2 function was determined in nine clinically isolated variants by examining the effects of the substitutions on enzyme kinetic parameters, protein stability and antibiotic resistance profile. The results indicate that the amino acid substitutions associated with KPC-2 natural variants lead to increased catalytic efficiency for ceftazidime hydrolysis and a consequent increase in ceftazidime resistance. Single substitutions lead to modest increases in catalytic activity while the double mutants exhibit significantly increased ceftazidime hydrolysis and resistance levels. The P104R, V240G and H274Y substitutions in single and double mutant combinations lead to the largest increases in ceftazidime hydrolysis and resistance. Molecular modeling suggests that the P104R and H274Y mutations could facilitate ceftazidime hydrolysis through increased hydrogen bonding interactions with the substrate while the V240G substitution may enhance backbone flexibility so that larger substrates might be accommodated in the active site. Additionally, we observed a strong correlation between gain of catalytic function for ceftazidime hydrolysis and loss of enzyme stability, which is in agreement with the ‘stability-function tradeoff’ phenomenon. The high Tm of KPC-2 (66.5°C) provides an evolutionary advantage as compared to other class A enzymes such as TEM (51.5°C) and CTX-M (51°C) in that it can acquire multiple destabilizing substitutions without losing the ability to fold into a functional enzyme.  相似文献   

9.
Escherichia coli is generally considered as a commensal inhabitant of gastrointestinal tract of humans and animals. The aim of this study was to gain insight on the distribution of phylotypes and presence of genes encoding integrons, extended β-lactamases and resistance to other antimicrobials in the commensal E. coli isolates from healthy adults in Chandigarh, India. PCR and DNA sequencing were used for phylogenetic classification, detections of integrase genes, gene cassettes within the integron and extended β-lactamases. The genetic structure of E. coli revealed a non-uniform distribution of isolates among the seven phylogenetic groups with significant representation of group A. Integron-encoded integrases were detected in 25 isolates with class 1 integron-encoded intI1 integrase being in the majority (22 isolates). The gene cassettes identified were those for trimethoprim, streptomycin, spectinomycin and streptothricin. The dfrA12-orfF-aadA2 was the most commonly found gene cassette in intI1 positive isolates. Phenotypic assay for screening the potential ESBL producers suggested 16 isolates to be ESBL producers. PCR detection using gene-specific primers showed that 15 out of these 16 ESBL-producing E. coli harboured the bla CTX-M-15 gene. Furthermore, molecular studies helped in characterizing the genes responsible for tetracycline, chloramphenicol and sulphonamides resistance. Collectively, our study outlines the intra-species phylogenetic structure and highlights the prevalence of class 1 integron and bla CTX-M-15 in commensal E. coli isolates of healthy adults in Chandigarh, India. Our findings further reinforce the relevance of commensal E. coli strains on the growing burden of antimicrobial resistance.  相似文献   

10.
To control the antibiotic resistance epidemic, it is necessary to understand the distribution of genetic material encoding antibiotic resistance in the environment and how anthropogenic inputs, such as wastewater, affect this distribution. Approximately two-thirds of antibiotics administered to humans are β-lactams, for which the predominant bacterial resistance mechanism is hydrolysis by β-lactamases. Of the β-lactamases, the TEM family is of overriding significance with regard to diversity, prevalence, and distribution. This paper describes the design of DNA probes universal for all known TEM β-lactamase genes and the application of a quantitative PCR assay (also known as Taqman) to quantify these genes in environmental samples. The primer set was used to study whether sewage, both treated and untreated, contributes to the spread of these genes in receiving waters. It was found that while modern sewage treatment technologies reduce the concentrations of these antibiotic resistance genes, the ratio of blaTEM genes to 16S rRNA genes increases with treatment, suggesting that bacteria harboring blaTEM are more likely to survive the treatment process. Thus, β-lactamase genes are being introduced into the environment in significantly higher concentrations than occur naturally, creating reservoirs of increased resistance potential.  相似文献   

11.
Integrons play a major role in the dissemination of antibiotic resistance genes among bacteria. Rearrangement of gene cassettes occurs by recombination between attI and attC sites, catalyzed by the integron integrase. Integron recombination uses an unconventional mechanism involving a folded single-stranded attC site. This site could be a target for several host factors and more precisely for proteins able to bind single-stranded DNA. One of these, Escherichia coli single-stranded DNA-binding protein (SSB), regulates many DNA processes. We studied the influence of this protein on integron recombination. Our results show the ability of SSB to strongly bind folded attC sites and to destabilize them. This effect was observed only in the absence of the integrase. Indeed, we provided evidence that the integrase is able to counterbalance the observed effect of SSB on attC site folding. We showed that IntI1 possesses an intrinsic property to capture attC sites at the moment of their extrusion, stabilizing them and recombining them efficiently. The stability of DNA secondary structures in the chromosome must be restrained to avoid genetic instability (mutations or deletions) and/or toxicity (replication arrest). SSB, which hampers attC site folding in the absence of the integrase, likely plays an important role in maintaining the integrity and thus the recombinogenic functionality of the integron attC sites. We also tested the RecA host factor and excluded any role of this protein in integron recombination.  相似文献   

12.
β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics, rendering them ineffective, Penicillin-Binding Proteins (PBPs), which share high structural similarity with β-lactamases, also confer antibiotic resistance to their host organism by acquiring mutations that allow them to continue their participation in cell wall biosynthesis. In this paper, we propose a novel approach to include ligand sharing information for classifying and clustering β-lactamases and PBPs in an effort to elucidate the ligand induced evolution of these β-lactam binding proteins. We first present a detailed summary of the β-lactamase and PBP families in the Protein Data Bank, as well as the compounds they bind to. Then, we build two different types of networks in which the proteins are represented as nodes, and two proteins are connected by an edge with a weight that depends on the number of shared identical or similar ligands. These models are analyzed under three different edge weight settings, namely unweighted, weighted, and normalized weighted. A detailed comparison of these six networks showed that the use of ligand sharing information to cluster proteins resulted in modules comprising proteins with not only sequence similarity but also functional similarity. Consideration of ligand similarity highlighted some interactions that were not detected in the identical ligand network. Analysing the β-lactamases and PBPs using ligand-centric network models enabled the identification of novel relationships, suggesting that these models can be used to examine other protein families to obtain information on their ligand induced evolutionary paths.  相似文献   

13.
Global spread of KPC poses to be a serious threat complicating treatment options in hospital settings. The present study investigates the genetic environment of bla KPC-2 among clinical isolates of Pseudomonas aeruginosa from a tertiary referral hospital of India. The study isolates were collected from different wards and clinics of Silchar Medical College and Hospital, India, from 2012–2013. The presence of bla KPC was confirmed by genotypic characterization followed by sequencing. Cloning of the bla KPC-2 gene was performed and the genetic environment of this gene was characterized as well. Transferability of the resistance gene was determined by transformation assay and Southern hybridization. Additionally, restriction mapping was also carried out. Two isolates of P. aeruginosa were found to harbor bla KPC-2, were resistant towards aminoglycosides, quinolone and β-lactam-β-lactamase inhibitor combination. In both the isolates, the resistance determinant was associated with class 1 integron and horizontally transferable. Both the isolates were co-harboring bla NDM-1. The first detection of this integron mediated bla KPC-2 coexisting with bla NDM-1 in P. aeruginosa from India is worrisome, and further investigation is required to track the gene cassette mediated bla KPC-2 in terms of infection control and to prevent the spread of this gene in hospitals as well as in the community.  相似文献   

14.
Expansion or shrinkage of existing tandem repeats (TRs) associated with various biological processes has been actively studied in both prokaryotic and eukaryotic genomes, while their origin and biological implications remain mostly unknown. Here we describe various duplications (de novo TRs) that occurred in the coding region of a β-lactamase gene, where a conserved structure called the omega loop is encoded. These duplications that occurred under selection using ceftazidime conferred substrate spectrum extension to include the antibiotic. Under selective pressure with one of the original substrates (amoxicillin), a high level of reversion occurred in the mutant β-lactamase genes completing a cycle back to the original substrate spectrum. The de novo TRs coupled with reversion makes a genetic toggling mechanism enabling reversible switching between the two phases of the substrate spectrum of β-lactamases. This toggle exemplifies the effective adaptation of de novo TRs for enhanced bacterial survival. We found pairs of direct repeats that mediated the DNA duplication (TR formation). In addition, we found different duos of sequences that mediated the DNA duplication. These novel elements—that we named SCSs (same-strand complementary sequences)—were also found associated with β-lactamase TR mutations from clinical isolates. Both direct repeats and SCSs had a high correlation with TRs in diverse bacterial genomes throughout the major phylogenetic lineages, suggesting that they comprise a fundamental mechanism shaping the bacterial evolution.  相似文献   

15.
Penicillin-binding proteins (PBPs) are enzymes responsible for the polymerization of the glycan strand and the cross-linking between glycan chains as well as the target proteins for β-lactam antibiotics. Mutational alterations in PBPs can confer resistance either by reducing binding of the antibiotic to the active site or by evolving a β-lactamase activity that degrades the antibiotic. As no systematic studies have been performed to examine the potential of all PBPs present in one bacterial species to evolve increased resistance against β-lactam antibiotics, we explored the ability of fifteen different defined or putative PBPs in Salmonella enterica to acquire increased resistance against penicillin G. We could after mutagenesis and selection in presence of penicillin G isolate mutants with amino-acid substitutions in the PBPs, FtsI, DacB and DacC (corresponding to PBP3, PBP4 and PBP6) with increased resistance against β-lactam antibiotics. Our results suggest that: (i) most evolved PBPs became ‘generalists” with increased resistance against several different classes of β-lactam antibiotics, (ii) synergistic interactions between mutations conferring antibiotic resistance are common and (iii) the mechanism of resistance of these mutants could be to make the active site more accessible for water allowing hydrolysis or less binding to β-lactam antibiotics.  相似文献   

16.
We characterized 12 clinical isolates of Klebsiella oxytoca with the extended-spectrum β-lactamase (ESBL) phenotype (high minimum inhibitory concentration [MIC] values of ceftriaxone) recovered over 9 months at a university hospital in Japan. To determine the clonality of the isolates, we used pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST), and PCR analyses to detect bla RBI, which encodes the β-lactamase RbiA, OXY-2-4 with overproduce-type promoter. Moreover, we performed the isoelectric focusing (IEF) of β-lactamases, and the determination of the MICs of β-lactams including piperacillin/tazobactam for 12 clinical isolates and E. coli HB101 with pKOB23, which contains bla RBI, by the agar dilution method. Finally, we performed the initial screening and phenotypic confirmatory tests for ESBLs. Each of the 12 clinical isolates had an identical PFGE pulsotype and MLST sequence type (ST9). All 12 clinical isolates harbored identical bla RBI. The IEF revealed that the clinical isolate produced only one β-lactamase. E. coli HB101 (pKOB23) and all 12 isolates demonstrated equally resistance to piperacillin/tazobactam (MICs, >128 μg/ml). The phenotypic confirmatory test after the initial screening test for ESBLs can discriminate β-lactamase RbiA-producing K. oxytoca from β-lactamase CTX-M-producing K. oxytoca. Twelve clinical isolates of K. oxytoca, which were recovered from an outbreak at one university hospital, had identical genotypes and produced β-lactamase RbiA that conferred resistance to piperacillin/tazobactam. In order to detect K. oxytoca isolates that produce RbiA to promote research concerning β-lactamase RbiA-producing K. oxytoca, the phenotypic confirmatory test after the initial screening test for ESBLs would be useful.  相似文献   

17.

Objectives

To obtain a broad molecular epidemiological characterization of plasmid-mediated AmpC β-lactamase CMY-2 in Escherichia coli isolates from food animals in China.

Methods

A total of 1083 E. coli isolates from feces, viscera, blood, drinking water, and sub-surface soil were examined for the presence of CMY-2 β-lactamases. CMY-2-producing isolates were characterized as follows: the bla CMY-2 genotype was determined using PCR and sequencing, characterization of the bla CMY-2 genetic environment, plasmid sizing using S1 nuclease pulsed-field gel electrophoresis (PFGE), PCR-based replicon typing, phylogenetic grouping, XbaI-PFGE, and multi-locus sequence typing (MLST).

Results

All 31 CMY-2 producers were only detected in feces, and presented with multidrug resistant phenotypes. All CMY-2 strains also co-harbored genes conferring resistance to other antimicrobials, including extended spectrum β-lactamases genes (bla CTX-M-14 or bla CTX-M-55), plasmid-mediated quinolone resistance determinants (qnr, oqxA, and aac-(6′)-Ib-cr), floR and rmtB. The co-transferring of bla CMY-2 with qnrS1 and floR (alone and together) was mainly driven by the Inc A/C type plasmid, with sizes of 160 or 200 kb. Gene cassette arrays inserted in the class 1 or class 2 integron were amplified among 12 CMY-2 producers. CMY-2 producers belonged to avirulent groups B1 (n = 12) and A (n = 11), and virulent group D (n = 8). There was a good correlation between phylogenetic groups and sequence types (ST). Twenty-four STs were identified, of which the ST complexes (STC) 101/B1 (n = 6), STC10/A (n = 5), and STC155/B1 (n = 3) were dominant.

Conclusions

CMY-2 is the dominant AmpC β-lactamase in food animals and is associated with a transferable replicon IncA/C plasmid in the STC101, STC10, and STC155 strains.  相似文献   

18.
Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3’-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa.  相似文献   

19.
Integrons confer a rapid adaptation capability to bacteria. Integron integrases are able to capture and shuffle novel functions embedded in cassettes. Here, we investigated cassette recruitment in the Vibrio cholerae chromosomal integron during horizontal transfer. We demonstrated that the endogenous integrase expression is sufficiently triggered, after SOS response induction mediated by the entry of cassettes during conjugation and natural transformation, to mediate significant cassette insertions. These insertions preferentially occur at the attIA site, despite the presence of about 180 attC sites in the integron array. Thanks to the presence of a promoter in the attIA site vicinity, all these newly inserted cassettes are expressed and prone to selection. We also showed that the RecA protein is critical for cassette recruitment in the V. cholerae chromosomal integron but not in mobile integrons. Moreover, unlike the mobile integron integrases, that of V. cholerae is not active in other bacteria. Mobile integrons might have evolved from the chromosomal ones by overcoming host factors, explaining their large dissemination in bacteria and their role in antibioresistance expansion.  相似文献   

20.
IntI1 integrase is a member of the prokaryotic DNA integrase superfamily. It is responsible for mobility of antibiotic resistance cassettes found in integrons. IntI1 protein, as well as IntI1-COOH, a truncated form containing its carboxy-terminal domain, has been purified. Electrophoretic mobility shift assays were carried out to study the ability of IntI1 to bind the integrase primary target sites attI and aadA1 attC. When using double-stranded DNA as a substrate, we observed IntI1 binding to attI but not to attC. IntI1-COOH did not bind either attI or attC, indicating that the N-terminal domain of IntI1 was required for binding to double-stranded attI. On the other hand, when we used single-stranded (ss) DNA substrates, IntI1 bound strongly and specifically to ss attC DNA. Binding was strand specific, since only the bottom DNA strand was bound. Protein IntI1-COOH bound ss attC as well as did the complete integrase, indicating that the ability of the protein to bind ss aadA1 attC was contained in the region between amino acids 109 and 337 of IntI1. Binding to ss attI DNA by the integrase, but not by IntI1-COOH, was also observed and was specific for the attI bottom strand, indicating similar capabilities of IntI1 for binding attI DNA in either double-stranded or ss conformation. Footprinting analysis showed that IntI1 protected at least 40 bases of aadA1 attC against DNase I attack. The protected sequence contained two of the four previously proposed IntI1 DNA binding sites, including the crossover site. Preferential ssDNA binding can be a significant activity of IntI1 integrase, which suggests the utilization of extruded cruciforms in the reaction mechanisms leading to cassette excision and integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号