首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cambial activity and vessel differentiation of the Quercus robur stem were investigated in relation to concentration of growth regulators and sucrose, seasonal changes in the sensitivity of cambial cells, and axial polarity of the stem. Basipetal efflux of natural auxin was measured in the oak stem cambial region. IAA, GA3, kinetin and sucrose affected cambial activity and/or initiation of vessel differentiation differently, depending upon concentration. Depending upon the season, kinetin increased or reduced the stimulation of cambial activity caused by IAA and GA3, but it did not affect the differentiation of vessels. Supply of sucrose in higher concentrations reduced the number of differentiated vessels but did not decrease the stimulation of cambial divisions.Unlike stimulation of cambial activity by GA3, auxin stimulation of cambial divisions and differentiation of vessels were highly dependent upon stem polarity, 2,3,5-triiodobenzoic acid (TIBA) inhibited formation of vessels, but not cambial activity. The oscillations in basipetal efflux of natural auxin from the cambial stem region of successive 6 mm long sections substantiate the hypothesis that the histogenesis of xylem tissue in ring-porous species is under control of the vectoriat field that is associated with oscillatory phenomena in polar auxin transport.  相似文献   

2.
Polar auxin transport (PAT) is a major determinant of plant morphology and internal anatomy with important roles in vascular patterning, tropic growth responses, apical dominance and phyllotactic arrangement. Woody plants present a highly complex system of vascular development in which isolated bundles of xylem and phloem gradually unite to form concentric rings of conductive tissue. We generated several transgenic lines of hybrid poplar (Populus tremula x alba) with the auxin-responsive DR5 promoter driving GUS expression in order to visualize an auxin response during the establishment of secondary growth. Distinct GUS expression in the cambial zone and developing xylem-side derivatives supports the current view of this tissue as a major stream of basipetal PAT. However, we also found novel sites of GUS expression in the primary xylem parenchyma lining the outer perimeter of the pith. Strands of primary xylem parenchyma depart the stem as a leaf trace, and showed GUS expression as long as the leaves to which they were connected remained attached (i.e., until just prior to leaf abscission). Tissue composed of primary xylem parenchyma strands contained measurable levels of free indole-3-acetic acid (IAA) and showed basipetal transport of radiolabeled auxin (3H-IAA) that was both significantly faster than diffusion and highly sensitive to the PAT inhibitor NPA. Radiolabeled auxin was also able to move between the primary xylem parenchyma in the interior of the stem and the basipetal stream in the cambial zone, an exchange that was likely mediated by ray parenchyma cells. Our results suggest that (a) channeling of leaf-derived IAA first delineates isolated strands of pre-procambial tissue but then later shifts to include basipetal transport through the rapidly expanding xylem elements, and (b) the transition from primary to secondary vascular development is gradual, with an auxin response preceding the appearance of a unified and radially-organized vascular cambium.  相似文献   

3.

Premise of the Study

Xylem vessels transition through different stages during their functional lifespan, including expansion and development of vessel elements, transition to vessel hydraulic functionality, and eventual transition to post‐functionality. We used information on vessel development and function to develop a model of vessel lifespan for woody plants.

Methods

We examined vessel functional lifespan using repeated anatomical sampling throughout the growing season, combined with active‐xylem staining to evaluate vessel hydraulic transport functionality. These data were combined with a literature review. The transitions between vessel functional lifespans for several species are illustrated, including grapevine (Vitis vinifera L., Vitaceae), English oak (Quercus robur L., Fagaceae), American chestnut [Castanea dentata (Marshall) Borkh.; Fagaceae], and several arid and semi‐arid shrub species.

Key Results

In intact woody plants, development and maturation of vessel elements may be gradual. Once hydraulically functional, vessel elements connect to form a vessel network that is responsible for bulk hydraulic flow through the xylem. Vessels become nonfunctional due to the formation of gas emboli. In some species and under some conditions, vessel functionality of embolized conduits may be restored through refilling. Blockages, such as tyloses, gels, or gums, indicate permanent losses in hydraulic functional capacity; however, there may be some interesting exceptions to permanent loss of functionality for gel‐based blockages.

Conclusions

The gradual development and maturation of vessel elements in woody plants, variation in the onset of functionality between different populations of vessels throughout the growing season, and differences in the timing of vessel transitions to post‐functionality are important aspects of plant hydraulic function.  相似文献   

4.
Despite extensive knowledge about vessel element growth and the determination of the axial course of vessels, these processes are still not fully understood. They are usually explained as resulting primarily from hormonal regulation in stems. This review focuses on an increasingly discussed aspect – mechanical conditions in the vascular cambium. Mechanical conditions in cambial tissue are important for the growth of vessel elements, as well as other cambial derivatives. In relation to the type of stress acting on cambial cells (compressive versus tensile stress) we: (i) discuss the shape of the enlarging vessel elements observed in anatomical sections; (ii) present hypotheses regarding the location of intrusive growth of vessel elements and cambial initials; (iii) explain the relationship between the growth of vessel elements and fibres; and (iv) consider the effect of mechanical stress in determining the course of a vessel. We also highlight the relationship between mechanical stress and transport of the most extensively studied plant hormone – auxin. We conclude that the integration of a biomechanical factor with the commonly acknowledged hormonal regulation could significantly enhance the analysis of the formation of vessel elements as well as entire vessels, which transport water and minerals in numerous plant species.  相似文献   

5.
Xylem vessel structure changes as trees grow and mature. Age‐ and development‐related changes in xylem structure are likely related to changes in hydraulic function. We examined whether hydraulic function, including hydraulic conductivity and vulnerability to water‐stress‐induced xylem embolism, changed over the course of cambial development in the stems of 17 tree species. We compared current‐year growth of young (1–4 years), intermediate (2–7 years), and older (3–10 years) stems occurring in series along branches. Diffuse and ring porous species were examined, but nearly all species produced only diffuse porous xylem in the distal branches that were examined irrespective of their mature xylem porosity type. Vessel diameter and length increased with cambial age. Xylem became both more conductive and more cavitation resistant with cambial age. Ring porous species had longer and wider vessels and xylem that had higher conductivity and was more vulnerable to cavitation; however, these differences between porosity types were not present in young stem samples. Understanding plant hydraulic function and architecture requires the sampling of multiple‐aged tissues because plants may vary considerably in their xylem structural and functional traits throughout the plant body, even over relatively short distances and closely aged tissues.  相似文献   

6.
The formation of new xylem in the spring is preceded by bud development. In decapitated pine stem the formation of xylem is arrested until the outgrowth of interfascicular buds takes place. When indole-3yl-acetic acid (IAA) is applied to the cut surfaces of decapitated stems it induces the formation of a xylem ring on the whole length of 5-ycar old trees. Naphthaleneacetic acid (NAA) causes the formation of xylem; however, the width of the growth ring is several times broader at the point of application than at the base of the leader. Cis- and trans-cinnamic acids, coumarin, L-tryptophan, kinetin (Kin), benzylaminopurine (BAP) and gibberellic acid (GA) alone do not induce cambial divisions; however, GA and the cytokinins given jointly with IAA or NAA accelerated the basipetal stimulus which has been induced by the auxins, resulting in normal xylem formation. 2,3,5-Triiodobonzoic acid (TIBA) given jointly with IAA-induced formation of compression wood in the apical part of the stem and narrow diameter tracheids at the base. When carboxyl labelled IAA or NAA are applied to pine segments it is found that the basipetal movement of IAA is much quicker than that of NAA. GA and the cytokinins increase the rate of transport of both auxins, whereas TIBA arrests the bulk of auxin in the apical part of the stem.  相似文献   

7.

Key message

By using a simple and rapid technique, the degree of vessel deviations in the stem xylem could be evaluated and compared between different plant species. The degree of vessel deviations was suggested to be one of the main factors determining the hydraulic integration in woody stems.

Abstract

The main objective of this study was to investigate the role of vessel tangential deviations in determining both intervessel connectivity and patterns of hydraulic integration in woody stems of six Fabaceae trees. It was hypothesized that increasing the degree of vessel deviations would increase lateral contacts between vessels thereby increasing hydraulic integration within stems. Species-specific differences in vessel deviations and intervessel connectivity were quantified by following the movement of an apoplastic dye that was injected to a limited number of vessels. Intervessel connectivity was measured as the number of laterally connected vessels, whereas the degree of vessel deviations was measured as the magnitude of divergence of a group of neighboring vessels. Hydraulic integration index was determined as the ratio of tangential to axial conductance. Results showed that the degree of vessel deviations differed significantly between species. Acacia cyanophylla showed the lowest degree of vessel deviations (1.75 ± 0.33), while the highest degree was observed in Acacia etbaica (2.48 ± 0.26). Hydraulic integration was positively correlated more with vessel deviations than with intervessel connectivity. Only a very weak positive correlation was observed between vessel deviations and intervessel connectivity. Tangential deviations in the course of vessels might be one of the main factors determining the patterns of integrated–sectored transport in woody stems and, consequently, might have ecological implications in terms of plant adaptation to various ecological conditions. This study confirmed the complexity of interactions in the xylem hydraulic system.  相似文献   

8.
Natural auxin content has been determined in the cambial region of large Pinus silvestris L. trees at various dates during the year. The tissue was collected from the stem of intact or ring-barked trees and from stumps remaining after the trees were cut down at breast height in early summer or late autumn. No seasonal decrease of concentration of the extractable auxin in the cambial region could be detected. Decapitation or ring-barking produced severe reduction in auxin content and arrested cambial division. In the next season the auxin level and the cambial activity remained completely depressed. It is concluded that without tissue continuity in the region external to xylem and without basipetal supply of substances, no mechanism operated by roots or remaining stem tissue near the tree base can ensure a high level of auxin in the cambial region or activate and maintain the cambial division. The activity of extracted pine auxin was found not to be identical with the stimulatory potential of authentic IAA determined by standard bioassays. The possibility of interaction with other extracted substances is discussed.  相似文献   

9.
10.
Treatment of erect stems of Prosopis with near phytotoxic levels of 2,4-D or 2,4,5-T causes the formation of an unusual wood with narrow, thick-walled vessels and axial parenchyma in which cell wall thickening is inhibited. Although reduced in diameter, the vessels formed during 2,4-D and 2,4,5-T treatment are so numerous that there is no significant difference between phenoxyacetic acid and control seedling groups with regard to total area of xylem occupied by vessels. The preferential maturation of xylem vessels over parenchyma and the transformation of fusiform initials into septate parenchyma strands in phenoxyacetic acid-treated Prosopis resemble the structural changes reported to occur after girdling in the cambial tissue of other arborescent angiosperms. Bending experiments indicate that tension-wood fibers of Prosopis differentiate in response to an auxin deficiency. However, xylogenesis in erect stems treated with TIBA is affected such that a significantly higher proportion of the cambial cell population becomes axial xylem parenchyma.  相似文献   

11.
Anatomical characteristics of vessels have a profound impact on the hydraulic conductivity of the xylem. However, pore shape, the cross‐section shape of a vessel, has been ignored in previous hydraulic architecture studies. In this study, we examined whether pore shape tended to be circular, and whether variation in pore shape may be affected by water flow path‐length and cambial age. The circularity of pores in Betula platyphylla Roth and Quercus mongolica (only earlywood) were analyzed from the pith to the bark along the water flow path. It was found that although there were very few pores with perfectly circular shape, solitary pores did tend to be regularly circular. The pore shape of sequentially formed vessels in the xylem was influenced by cambial age and flow path‐length. Pore shape tended to be more circular as flow path‐length increased or cambial age decreased. Circular pore shape appears to be an important morphogenetic mechanism for hydraulic architecture development, and studies of it expand our understanding of the structure–function relationships of the xylem.  相似文献   

12.
The effects of several concentrations of indole-3-acetic acid (IAA) and sucrose on xylogenic cambial activity and secondary xylem differentiation were investigated in isolated stem segments of Quercus robur L. supplied with liquid medium in aseptic conditions. After 5 weeks of culture auxin controlled cambial cell division and the number and size of vessel elements even without sugar in the medium. Sucrose modified these IAA effects, although little cambial activity occurred without auxin. The xylem increment correlated with changes of auxin concentration with the optimum at 28.5 μ M IAA. The formation of wide vessels was correlated with the optimal concentration of auxin. The frequency of vessel differentiation increased with auxin concentration. High concentrations of sucrose (0.24 M and 0.96 M ) reduced both the number of vessels and their diameter. The frequency of vessel formation was inhibited more than the vessel size by changes of sugar concentration. The vessels formed under low concentrations of IAA were circular in transverse section. With increase in IAA concentration the shape of the vessel cross-section changed to oval with the largest dimension in the radial direction.  相似文献   

13.
Maintaining a high rate of water uptake is crucial for maximum longevity of cut stems. Physiological gel/tylosis formation decreases water transport efficiency in the xylem. The primary mechanism of action for post‐harvest Cu2+ treatments in improving cut flower and foliage longevity has been elusive. The effect of Cu2+ on wound‐induced xylem vessel occlusion was investigated for Acacia holosericea A. Cunn. ex G. Don. Experiments were conducted using a Cu2+ pulse (5 h, 2.2 mM) and a Cu2+ vase solution (0.5 mM) vs a deionized water (DIW) control. Development of xylem blockage in the stem‐end region 10 mm proximal to the wounded stem surface was examined over 21 days by light and transmission electron microscopy. Xylem vessels of stems stood into DIW were occluded with gels secreted into vessel lumens via pits from surrounding axial parenchyma cells. Gel secretion was initiated within 1–2 days post‐wounding and gels were detected in the xylem from day 3. In contrast, Cu2+ treatments disrupted the surrounding parenchyma cells, thereby inhibiting gel secretion and maintaining the vessel lumens devoid of occlusions. The Cu2+ treatments significantly improved water uptake by the cut stems as compared to the control.  相似文献   

14.

Background and Aims

Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.

Methods

Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.

Key Results

Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.

Conclusions

The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.  相似文献   

15.
Soluble-compound microautoradiography was used to determinethe distribution of radioactivity in transverse sections ofintact dwarf pea stems (Pisum sativum L.) following the applicationof [3H]IAA to the apical bud. Near the transport front labelwas confined to the cambial zone of the axial bundles, includingthe differentiating secondary vascular elements. Fully differentiatedphloem and xylem elements remained unlabelled and no radioactivitywas detected in the leaf or stipule traces. Similar resultswere obtained in experiments with Vicia faba L. plants. Nearerthe labelled apical bud of the pea there was a more generaldistribution of label and evidence was found of free-space transportof radioactive material in the pith. When [3H]IAA was applied to mature foliage leaves the greatestconcentration of label was found in the differentiated phloemelements of the appropriate leaf trace and in the phloem ofthe adjacent axial bundles. Both basipetal and acropetal transportwas detected in this case. These results are consistent with the conclusions drawn fromearlier transport experiments which indicated that in the intactplant the long-distance basipetal transport of auxin from theapical bud takes place in a system which is separated from thephloem transport system and suggests that the vascular cambiumand its immediate derivatives may function as the normal pathwayfor the longdistance movement of auxin in the plant. The physiologicalsignificance of such a transport system for auxin is discussed.  相似文献   

16.

Background and Aims

The networks of vessel elements play a vital role in the transport of water from roots to leaves, and the continuous formation of earlywood vessels is crucial for the growth of ring-porous hardwoods. The differentiation of earlywood vessels is controlled by external and internal factors. The present study was designed to identify the limiting factors in the induction of cambial reactivation and the differentiation of earlywood vessels, using localized heating and disbudding of dormant stems of seedlings of a deciduous ring-porous hardwood, Quercus serrata.

Methods

Localized heating was achieved by wrapping an electric heating ribbon around stems. Disbudding involved removal of all buds. Three treatments were initiated on 1 February 2012, namely heating, disbudding and a combination of heating and disbudding, with untreated dormant stems as controls. Cambial reactivation and differentiation of vessel elements were monitored by light and polarized-light microscopy, and the growth of buds was followed.

Key Results

Cambial reactivation and differentiation of vessel elements occurred sooner in heated seedlings than in non-heated seedlings before bud break. The combination of heating and disbudding of seedlings also resulted in earlier cambial reactivation and differentiation of first vessel elements than in non-heated seedlings. A few narrow vessel elements were formed during heating after disbudding, while many large earlywood vessel elements were formed in heated seedlings with buds.

Conclusions

The results suggested that, in seedlings of the deciduous ring-porous hardwood Quercus serrata, elevated temperature was a direct trigger for cambial reactivation and differentiation of first vessel elements. Bud growth was not essential for cambial reactivation and differentiation of first vessel elements, but might be important for the continuous formation of wide vessel elements.  相似文献   

17.
3H-IAA transport in excised sections of carnation cuttings was studied by using two receiver systems for recovery of transported radioactivity: agar blocks (A) and wells containing a buffer solution (B). When receivers were periodically renewed, transport continued for up to 8 h and ceased before 24 h. If receivers were not renewed, IAA transport decreased drastically due to immobilization in the base of the sections. TIBA was as effective as NPA in inhibiting the basipetal transport irrespective of the application site (the basal or the apical side of sections). The polarity of IAA transport was determined by measuring the polar ratio (basipetal/acropetal) and the inhibition caused by TIBA or NPA. The polar ratio varied with receiver, whereas the inhibition by TIBA or NPA was similar. Distribution of immobilized radioactivity along the sections after a transport period of 24 h showed that the application of TIBA to the apical side or NPA to the basal side of sections, increased the radioactivity in zones further from the application site, which agrees with a basipetal and acropetal movement of TIBA and NPA, respectively. The existence of a slow acropetal movement of the inhibitor was confirmed by using 3H-NPA. From the results obtained, a methodological approach is proposed to measure the variations in polar auxin transport. This method was used to investigate whether the variations in rooting observed during the cold storage of cuttings might be related to changes in polar auxin transport. As the storage period increased, a decrease in intensity and polarity of auxin transport occurred, which was accompanied by a delay in the formation and growth of adventitious roots, confirming the involvement of polar auxin transport in supplying the auxin for rooting. Received April 19, 1999; accepted December 2, 1999  相似文献   

18.
To determine whether an elevated carbon dioxide concentration ([CO2]) can induce changes in the wood structure and stem radial growth in forest trees, we investigated the anatomical features of conduit cells and cambial activity in 4‐year‐old saplings of four deciduous broadleaved tree species – two ring‐porous (Quercus mongolica and Kalopanax septemlobus) and two diffuse‐porous species (Betula maximowicziana and Acer mono) – grown for three growing seasons in a free‐air CO2 enrichment system. Elevated [CO2] had no effects on vessels, growth and physiological traits of Q. mongolica, whereas tree height, photosynthesis and vessel area tended to increase in K. septemlobus. No effects of [CO2] on growth, physiological traits and vessels were seen in the two diffuse‐porous woods. Elevated [CO2] increased larger vessels in all species, except B. maximowicziana and number of cambial cells in two ring‐porous species. Our results showed that the vessel anatomy and radial stem growth of Q. mongolica, B. maximowicziana and A. mono were not affected by elevated [CO2], although vessel size frequency and cambial activity in Q. mongolica were altered. In contrast, changes in vessel anatomy and cambial activity were induced by elevated [CO2] in K. septemlobus. The different responses to elevated [CO2] suggest that the sensitivity of forest trees to CO2 is species dependent.  相似文献   

19.
The influence of the auxin transport inhibitors naphthylphthalamic acid (NPA) and methyl-2-chloro-9-hydroxyflurene-9-carboxylate (CF), as well as the gaseous hormone ethylene on cambial differentiation of poplar was determined. NPA treatment induced clustering of vessels and increased vessel length. CF caused a synchronized differentiation of cambial cells into either vessel elements or fibres. The vessels in CF-treated wood were significantly smaller and fibre area was increased compared with controls. Under the influence of ethylene, the cambium produced more parenchyma, shorter fibres and shorter vessels than in controls. Since poplar is the model tree for molecular biology of wood formation, the modulation of the cambial differentiation of poplar towards specific cell types opens an avenue to study genes important for the development of vessels or fibres.  相似文献   

20.
For decades, botanists have considered Winteraceae as the least modified descendents of the first angiosperms primarily because this group lacks xylem vessels. Because of a presumed high resistance of a tracheid‐based vascular system to water transport, Winteraceae have been viewed as disadvantaged relative to vessel‐bearing angiosperms. Here we show that in a Costa Rican cloud forest, stem hydraulic properties, sapwood area‐ and leaf area‐specific hydraulic conductivities of Drimys granadensis L. (Winteraceae) are similar to several co‐occurring angiosperm tree species with vessels. In addition, D. granadensis had realized midday transpiration rates comparable to most vessel‐bearing trees. Surprisingly, we found that D. granadensis transpired more water at night than during the day, with actual water loss being correlated with wind speed. The failure of stomata to shut at night may be related to the occlusion of stomatal pores by cutin and wax. Our measurements do not support the view that absence of xylem vessels imposes limitations on water transport above those for other vesselled plants in the same environment. This, in turn, suggests that a putative return to a tracheid‐based xylem in Winteraceae may not have required a significant loss of hydraulic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号